
Transactional Memory: 
An Overview (part II)

Written by Harris et al.



Another Example

T1
...
down(mutex);
a = a + 20;
b = b - 10;
c = c - b;
up(mutex);
...

T2
...
down(mutex);
b = b + 20;
c = c + b;
up(mutex);
...

a = 20, b = 50, c = 0



Another Example

T1
...
down(mutex);
a = a + 20;
b = b - 10;
c = c - b;
up(mutex);
...

T2
...
down(mutex);
b = b + 20;
c = c + b;
up(mutex);
...

a = 20, b = 50, c = 0 if T1 before T2
a = 40
b = 60
c = 20

if T2 before T1
a = 40
b = 60
c = 10



Another Example

T1
...
begin TX
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0 if T1 commits before T2
a = 40
b = 70
c = 70

if T2 commits before T1
a = 40
b = 40
c = -50



Another Example (eager)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0



Another Example (eager)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
a = 20

WS
a = 40

RS

WS



Another Example (eager)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
a = 20
b = 50

WS
a = 40
b = 40

RS

WS



Another Example (eager)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
b = 40

WS

RS
a = 20
b = 50
b = 40
c = 0

WS
a = 40
b = 40
c = -40



Another Example (eager)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
b = 40

WS

RS
a = 20
b = 50
b = 40
c = 0

WS
a = 40
b = 40
c = -40

Should we abort T2?



Another Example (eager)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
b = 40

WS
b = 60

RS
a = 20
b = 50
b = 40
c = 0

WS
a = 40
b = 40
c = -40



Another Example (eager)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
b = 40
b = 60
c = -40

WS
b = 60
c = 20

RS
a = 20
b = 50
b = 40
c = 0

WS
a = 40
b = 40
c = -40



Another Example (eager)

T1 commits first so the result in T2 is fine.

What happen to both transactions if T2 commits first?



Another Example (eager)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
a = 20
b = 50

WS
a = 40

RS
b = 50

WS

slightly behind T1



Another Example (eager)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
a = 20
b = 50

WS
a = 40
b = 40

RS
b = 50

WS



Another Example (eager)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
a = 20
b = 50

WS
a = 40
b = 40

RS
b = 50

WS

Abort T2



Another Example (lazy)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
a = 20
b = 50
b = 40
c = 0

WS
a = 40
b = 40
c = -40

RS
b = 50

WS
b = 70



Another Example (lazy)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
a = 20
b = 50
b = 40
c = 0

WS
a = 40
b = 40
c = -40

RS
b = 50
b = 70
c = 0

WS
b = 70
c = -70

Commit T1



Another Example (lazy)

T1
...
begin TX 
a = a + 20;
b = b - 10;
c = c - b;
end TX
...

T2
...
begin TX
b = b + 20;
c = c + b;
end TX
...

a = 20, b = 50, c = 0
RS
a = 20
b = 50
b = 40
c = 0

WS
a = 40
b = 40
c = -40

RS
b = 50
b = 70
c = 0

WS
b = 70
c = -70

Abort T2



Hardware TM

Minimalist

modifying cache consistency protocol

extending instruction set architecture

keep speculative state in a buffer



Hardware TM

ISA support

delimiter instructions (STR and ETR)

special load and store (TLD and TST)

abort and validation (ABR and VLD)

VLD is used for eager versioning



Hardware TM

Buffer or cache modifications

store speculative states in hardware buffer or extended 
cache

word level or cache-line level 



Hardware TM

Herlihy and Moss

read set and write set in data cache

transactional cache

two additional bits per cache line

discard pre-transaction values or discard speculative 
values



Software TM

Two approaches

separation of ordinary data and transactional data

all data are ordinary but separate metadata structure for 
transactional data



Software TM

Transactional data

store in object headers

special methods (openforread, openforwrite) to 
dynamically build read set and write set

private shadow copy of each object for each transaction



Software TM

Metadata for transactional objects

special methods (openforreading, openforwriting) to 
track transactional accesses to ordinary objects



Software TM

Detecting conflicts

two-phase locking 

acquire lock at the beginning of transaction and 
relinquish lock at the end

hybrid

lock on write, version control on read



Summary

Relieve the programmer’s burden of coordinating parallelism

offload the responsibility to runtime systems

conflict detection and resolution

Can be implemented in hardware and software

More details to follow in subsequent meetings


