Transactional Memory: An Overview (part II)

Written by Harris et al.

Another Example

$$
a=20, b=50, c=0
$$

$\quad \mathrm{Tl}$
$\ldots \mathrm{down}($ mutex $) ;$
$\mathrm{a}=\mathrm{a}+20 ;$
$\mathrm{b}=\mathrm{b}-10 ;$
$\mathrm{c}=\mathrm{c}-\mathrm{b} ;$
up(mutex);
...

$\quad 1 \quad$ T2
$\ldots \ldots$
down(mutex);
$b=b+20 ;$
$c=c+b ;$
up(mutex) $;$
\ldots

Another Example

$$
a=20, b=50, c=0
$$

$$
\begin{aligned}
& \text { if } \mathrm{T1} \text { before T2 } \\
& \begin{array}{l}
a=40 \\
b=60 \\
c=20 \\
\text { if T2 before T1 } \\
a=40 \\
b=60 \\
c=10
\end{array} \\
& \text { in }
\end{aligned}
$$

Another Example

$$
a=20, b=50, c=0
$$

T1	T2
begin TX	... begin TX
$a=a+20 ;$	$\mathrm{b}=\mathrm{b}+20$;
$\mathrm{b}=\mathrm{b}-10$;	$c=c+b ;$
$\mathrm{c}=\mathrm{c}-\mathrm{b}$;	end TX
end TX	
...	

if T1 commits before T2 $a=40$ $b=70$
$\mathrm{c}=70$
if T 2 commits before T 1

$$
\begin{aligned}
& a=40 \\
& b=40 \\
& c=-50
\end{aligned}
$$

Another Example (eager)

$$
a=20, b=50, c=0
$$

Tl
\ldots
begin TX
$a=a+20 ;$
$b=b-10 ;$
$c=c-b ;$
end TX
\ldots.

T2
\ldots
begin TX
$b=$
$b+20 ;$
$c=c+b ;$
end TX
\ldots

Another Example (eager)

$$
a=20, b=50, c=0
$$

Another Example (eager)

$$
a=20, b=50, c=0
$$

T1	$\begin{aligned} & \mathrm{RS} \\ & \mathrm{a}=20 \end{aligned}$
begin TX	$\mathrm{b}=5$
$\begin{aligned} & a=a+20 ; \\ & b=b-10 ; \end{aligned}$	ws
$\begin{aligned} & c=c-b ; \\ & \text { end TX } \end{aligned}$	a $=40$ $b=40$

T2
RS
begin TX
$b=b+20 ;$
$c=c+b ;$
end TX
\ldots

Another Example (eager)

$$
a=20, b=50, c=0
$$

T1	
be	$=50$ $=40$
$a=a+20$.	=0
$\mathrm{b}=\mathrm{b}-10$;	WS
$\mathrm{c}=\mathrm{c}-\mathrm{b}$;	a $=40$
end TX	

Another Example (eager)

$$
a=20, b=50, c=0
$$

Another Example (eager)

$$
a=20, b=50, c=0
$$

T1	
be	$=50$ $=40$
$a=a+20$.	=0
$\mathrm{b}=\mathrm{b}-10$;	WS
$\mathrm{c}=\mathrm{c}-\mathrm{b}$;	a $=40$
end TX	

Another Example (eager)

$$
a=20, b=50, c=0
$$

T1	
be	$=50$ $=40$
$a=a+20$.	=0
$\mathrm{b}=\mathrm{b}-10$;	WS
$\mathrm{c}=\mathrm{c}-\mathrm{b}$;	a $=40$
end TX	

Another Example (eager)

- Tl commits first so the result in T 2 is fine. What happen to both transactions if T 2 commits first?

Another Example (eager)

$$
a=20, b=50, c=0
$$

slightly behind TI

T1
begin TX
$a=a+20 ;$
$\mathrm{b}=\mathrm{b}-10$;
$\mathrm{c}=\mathrm{c}-\mathrm{b}$;
end TX

\quad T2
\ldots
begin TX
$b=b+20 ;$
$b=50$
$c=c+b ;$
end TX
\ldots

Another Example (eager)

$$
a=20, b=50, c=0
$$

Il	$\begin{aligned} & \text { RS } \\ & a=20 \end{aligned}$
- beg in TX	$b=50$
$a=a+20 ;$	
$\mathrm{b}=\mathrm{b}-10$;	WS
$\mathrm{c}=\mathrm{c}-\mathrm{b}$;	$a=40$
end TX	b $=40$

Another Example (eager)

$$
a=20, b=50, c=0
$$

Another Example (lazy)

$a=20, b=50, c=0$

T1	
	b $=50$ $\mathrm{~h}=40$
$a=a+20$;	$=0$
$\mathrm{b}=\mathrm{b}-10$;	Ws
$\mathrm{c}=\mathrm{c}-\mathrm{b}$;	a= $=40$
end TX	$b=40$ $==40$

Another Example (lazy)

$$
a=20, b=50, c=0
$$

T1	$\underset{\substack{\text { RS } \\ \mathrm{a}=20}}{ }$
	b $=50$
begin TX	b $=40$
$a=a+20 ;$	c=0
$\mathrm{b}=\mathrm{b}-10$;	ws
$\mathrm{c}=\mathrm{c}-\mathrm{b}$;	a $=40$ $b=40$
end TX	c= 40
	Commit Tl

Another Example (lazy)

$$
a=20, b=50, c=0
$$

I1	$\xrightarrow{\text { RS }}=20$
	$=50$
begin TX	$=40$
$\mathrm{a}=\mathrm{a}+20$;	$=0$
$\mathrm{b}=\mathrm{b}-10$;	WS
$c=c-b ;$	a $=40$
end TX	

Hardware TM

Minimalist

- modifying cache consistency protocol
- extending instruction set architecture
- keep speculative state in a buffer

Hardware TM

ISA support
delimiter instructions (STR and ETR)

- special load and store (TLD and TST)
- abort and validation (ABR and VLD)
- VLD is used for eager versioning

Hardware TM

Buffer or cache modifications

- store speculative states in hardware buffer or extended cache
- word level or cache-line level

Hardware TM

Herlihy and Moss

- read set and write set in data cache
- transactional cache
- two additional bits per cache line
- discard pre-transaction values or discard speculative values

Software TM

Two approaches

- separation of ordinary data and transactional data
- all data are ordinary but separate metadata structure for transactional data

Software TM

Transactional data

- store in object headers
- special methods (openforread, openforwrite) to dynamically build read set and write set
- private shadow copy of each object for each transaction

Software TM

Metadata for transactional objects

- special methods (openforreading, openforwriting) to track transactional accesses to ordinary objects

Software TM

Detecting conflicts

- two-phase locking
- acquire lock at the beginning of transaction and relinquish lock at the end
- hybrid
- lock on write, version control on read

Summary

Relieve the programmer's burden of coordinating parallelism offload the responsibility to runtime systems - conflict detection and resolution

Can be implemented in hardware and software
More details to follow in subsequent meetings

