
Transactional Memory:
An Overview

Written by Harris et al.

Goal

Give an overview of transactional memory

Implementations will be discussed next week

“Writing applications that benefit from ... multicore chip
multiprocessors will not be an easy task for
mainstream programmers accustomed to

sequential algorithms rather than parallel ones ...”

Tim Harris et al.

Immense Opportunity ...

Multicore processors

exploit thread-level parallelism

If Done Right ...

Multithreaded programming

low level synchronization primitives

lock, pessimistic approach to synchronization

hard to get right -> deadlock

lead to parallel-programming wall

Transactions

A sequence of instructions, including reads and write to
memory that either executes completely (commit) or has no
effects (abort)

commit: all writes become visible to other transactions

abort: speculative writes are discarded

Transactional Memory
Abstraction of complexities due to concurrent accesses

multiple threads try to access shared data atomically and
simultaneously

if no conflicts, all accesses within a thread are
successful

if conflicts, all accesses within a thread are
unsuccessful

Transactional Memory
Defining conflict: violation
of a temporal order

e.g. read operation
from an on-going
transactions fails to
used the write result
from a previous
transaction

start T1

W(x)

commit T1 start T2

R(x)

commit T2

No conflict
Assume T2 needs x from T1

Transactional Memory
Defining conflict: violation
of a temporal order

e.g. read operation
from an on-going
transactions fails to
used the write result
from a previous
transaction

start T1

W(x)

commit T1

start T2

R(x)

commit T2

Conflict
Assume T2 needs x from T1

Transactional Memory

T1

W(x)

commit

T2

R(x)

abort

T3

R(x)

abort

T4

R(x)

commit

T5

R(x)

commit

T6

R(x)

abort

Transactional Memory

When a conflict occurs

abandon the work of conflicting transactions

reexecute the abandoned transactions

Transactional Memory

Two major tasks:

conflict detection

conflict resolution

Summary: TM versus Lock
Locking mechanism

programmers identify a portion of code that forms a critical section

programmers write code that isolates the critical section

Transactional Memory (TM)

programmers identify a portion of code that forms a critical section

a runtime system tries to execute the critical section in isolation from
other threads

Summary: TM versus Lock

TM

•high-level abstraction
•better scaling/effort
•no deadlock

Lock

•allow fine-grained locking
•better performance
•easily deadlock

Speculative Writes
Undo log (eager versioning)

optimized for rarely occurring conflicts

write the the actual memory but record old values for roll-back

Buffered update (lazy versioning)

more straight forward

each transaction has its own buffer

store write values in the buffer until commit time

Detecting Conflicts

Conflict occurs when two or more transactions operate
concurrently on the same data with at least one transaction
writing a new version

Read-set and write-set

inside each transaction, each load is added to the read
set and each store is added to the write set

Detecting Conflicts

Pessimistic detection

the read set and write set of every transaction is
available to other transaction

check every read and write operation to determine
conflicts

Detecting Conflicts

Optimistic detection

wait until commit time of a transaction before checking
its read and write sets against other transactions’ read
and write sets

does not work with eager versioning

Detecting Conflict

T1

R(x)

commit

T2

W(x)

commit

T1

R(x)

commit

T2

W(x)

commit

(a) (b)

Conflict Resolution

Stalling in place (applicable to eager versioning)

Abort mid-transaction (applicable to eager versioning)

Abort during commit process (applicable to lazy versioning)

Next Weeek

Implementation of Transactional Memory

Software

Hardware

