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Abstract 
The scientific and medical communities are well aware that ultraviolet radiation can be 

detrimental to human health; however, it is unknown how much ultraviolet radiation people 
receive from sun exposure and what dosage is required before the sun becomes hazardous to 
human health. Current methods for determining the amount of solar radiation on the human form 
are crude and unrealistic approximations. So far, the best approach has been to place polysulfone 
patches, which react to ultraviolet radiation, on mannequins and expose the mannequins to the 
sun for several days.  These studies required time-consuming preparation and analysis and were 
poor approximations of typical sun exposure. Scientists who study the effects of sun exposure 
have asked for a better tool for measuring the amount of radiation received by a 3D form under 
given temporal, spatial and atmospheric conditions.  The SunRay system couples ray-tracing 
with a numerical solar radiation model to calculate the amount of radiation that falls on a 3D 
form. The system is intended to be used as a research tool to calculate, analyze and visualize 
solar radiation data for specified scenarios. The system also pulls atmospheric and geographic 
information from a worldwide network of pyranometers and weather stations to use as input. 
SunRay uses a validated, open source radiative transfer model to calculate solar radiation across 
several specific wavelengths that affect human health. The SunRay application provides an 
adjustable scenario control interface that gives the user the flexibility to run a range of tests and 
visually inspect the resulting data. 
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System Overview 
Background.  Solar energy sustains life on Earth. The visible region of the solar spectrum 
drives photosynthesis in plants. Organisms higher in the food chain ultimately derive their 
energy from plants. The extraterrestrial spectrum of the sun’s radiation is, however, incompatible 
with life. Solar radiation known as UVB is partially absorbed by stratospheric ozone. Pre-
industrial levels of stratospheric ozone sufficiently diminished surface irradiance of harmful 
UVB, allowing plant and animal life to flourish. Since the 1930’s ozone depletion from 
chlorofluorocarbons (CFCs) has resulted in an increase of UV energy that strikes the Earth’s 
surface [1]. The World Health Organization recognizes UV radiation as a human carcinogen [2].  
Today, skin cancer affects more than 1 million Americans each year and accounts for 10,000 
deaths annually, which is approximately 4% of all cancer deaths [3]. Additionally, solar UV 
radiation contributes to cataracts, which are the leading cause of blindness worldwide [4]. The 
1.2 million cataract surgeries performed annually are Medicare’s largest line item expenditure 
[3]. The exact percentage of cataracts that are caused by UV radiation is unknown; however, it is 
clear that increased UV exposure has significant implications for virtually all terrestrial 
ecosystems and the life that inhabits them [5].  

While the effects of solar UV radiation on living tissue are well documented, estimates 
for the total actual dosage received by people, and by plants and animals, have been severely 
limited. These estimates are limited due to the complex 3D geometry of human, animal and plant 
forms and mobility of humans and animals. Researchers have attempted to measure sun exposure 
using polysulfone radiation detectors placed on mannequins. These mannequin studies provide 
the majority of what is known today about human exposure to solar UV and have demonstrated 
non-uniformity in sun exposure across the human form [6]. Although these time-consuming 
studies were thorough, they were necessarily limited to specific postures, orientations, forms and 
atmospheric conditions. The mannequin studies did not address how radiation dosages change 
when a person engages in different activities at different locations at different times of year. 
Moreover, this measurement approach cannot accurately predict future sun exposure levels 
caused by further stratospheric ozone depletion. An alternative approach to measuring radiation 
exposure was published recently [7]. In that paper, the authors describe an algorithm to estimate 
solar radiation on a 3D human form using a numerical approach to solar radiation exposure 
simulation modeling. The SunRay system presented here builds upon this numerical simulation 
approach. Our goal is to provide a research tool for scientists to study sun exposure on living 
organisms. We believe this physically-based research tool will contribute to a more accurate 
assessment of sun exposure so that scientists can make the best case for societal changes that 
preserve, protect and enhance the environment. 
 

The SunRay System.  The SunRay system estimates radiation exposure across multiple 
spectral bands for a given 3D form under specific temporal, spatial and atmospheric conditions. 
The system collects atmospheric data from instrumentation to provide real-time input for the 
simulation. For each time step in the simulation, a ray-tracer determines which sun rays can hit 
the 3D model. Based on inputs specified by the user, the Solar Radiation Model (SRM) 
calculates the energy delivered by each sun ray to determine the dosage of solar radiation 
received on the 3D model. The output of the simulation is a graphic visualization of sun 
exposure levels on the 3D model and a corresponding data file.  
 

Innovation & Benefits.  The SunRay system enhances and extends existing sun exposure 
measurement approaches by incorporating real-time data, a diffuse radiation model, multiple 
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spectral bands, and extensibility to a range of research investigations. SunRay is superior to 
empirical studies in its ability to easily manipulate scenarios, to collect results quickly, to predict 
radiation exposure for future ozone levels and to model both the direct and diffuse components 
of solar radiation at discreet spectral bands. The SunRay system can be used to address several 
questions of interest to the scientific community and the public. Scientists are interested in 
accurate measurements for the Total Body Burden (TBB) of radiation for humans and other 
species, which is correlated with systemic immune system suppression. SunRay could be 
extended to measure sun exposure for specific regions of the body, such as the eyes, head, chest 
and feet. This information can be used to communicate to the public the dangers of sun exposure 
and raise awareness of the discrepancy between actual UV exposure and the perception of UV 
exposure inferred from sunlight brightness and radiant heat. Finally, the modular and hierarchical 
design of the SunRay system permits it to be extended and upgraded to include more complex 
scenarios and additional phenomena.  
 

Performance & System Requirements.  In order for SunRay to be a valuable research tool, 
the system must meet several performance requirements important to the scientific community. 
SunRay must have an intuitive interface that allows the user to specify settings for the simulation 
scenario. In addition to a Graphical User Interface (GUI), the system must read settings from 
hardware devices and execute batch runs of specific scenarios. SunRay software should be 
optimized for speed so that researchers can simulate many scenarios in a reasonable amount of 
time. SunRay should utilize an efficient ray-trace algorithm and attempt to minimize the number 
of ray-traces required for a particular scenario. SunRay should also provide visual and numerical 
results so that the results can be easily inspected and accurately analyzed.   
 

Design Methodology.  The SunRay system was developed using an iterative software 
development methodology. This methodology was chosen so that the SunRay system would 
evolve gradually as new functionality was added and tested during each iteration. Before 
development began, the team collaborated on defining system requirements and 
compartmentalizing the design of the system into independent modules with well defined 
interfaces. Over the course of the next 14 weeks, four iterations led to a final product. At the 
beginning of each iteration, we identified and documented target system requirements for the 
iteration. A system design was developed and presented via UML diagrams. The entire team 
collaborated on the design of high-level system and module interfaces. However, internal design 
of modules was left to individual developers to implement their assigned requirements and 
ensure that there was traceability from their requirements to design, implementation and testing. 
 The SunRay system was built in layers utilizing existing open source software. During 
the first iteration, base-line functionality was developed for visualization, 3D model 
manipulation and a GUI. In the second iteration, ray-tracing, SRM interfacing and integration of 
the visualization engine with the GUI and ray-tracer were implemented.  During the third 
iteration, the SRM was integrated with the visualization engine and ray-tracer. During the final 
iteration, the system was completely integrated with the sensor interface and subjected to tests to 
verify that all requirements were met. 

The development team was composed of four members.  Hunter Davis, a computer 
science major, is responsible for GUI development. Josiah Gore, a computer science major, is 
responsible for generating output data and its visualization. Blake Lucas, a computer science, 
electrical engineering and computer engineering major, is responsible for the ray-tracing module. 
Eric Helms, a physics major, is responsible for the radiative transfer model. 
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Implementation and Engineering Considerations 
 SunRay’s system requirements were developed after consultation with the scientific 
community regarding how best to meet the project objectives. We believe these requirements are 
sufficient for SunRay to become a viable research tool for estimating sun exposure on 3D forms.  
 
System Requirements 

1. The system shall have an interface that allows user inputs for the time, date, ozone level, 
aerosol optical depth (AOD), 3D form, orientation and location, weighting function and 
diffuse grid resolution.  

2. The system shall have an interface for communicating with hardware sensors, particularly 
a pyranometer. 

3. The system shall be optimized such that many simulation scenarios can be run in a 
reasonable amount of time.   

4. The system shall calculate total irradiance for multiple distinct radiation bands.  
5. The user shall be able to adjust the spatial and temporal granularity of the simulation. 
6. The system shall use a ray-tracing algorithm that minimizes the number of ray-traces to 

determine the distribution of diffuse and beam radiation on a 3D model. 
7. The system shall allow the user to manipulate the camera position for the 3D model 

output interactively.  
8. The system shall provide 3D visualization and data inspection of irradiance results.  
9. The system shall provide XML files of the radiation intensity for one or more spectral 

bands. 
 
Overall Design 

 
Figure 1: SunRay system flow diagram. 

 
Figure 1 illustrates the overall system flow and the division of responsibilities between 

the four developers.  First, the system reads pyranometer data from the interface. Next, the user 
selects scenario settings and a 3D model file for the simulation and selects to start the simulation.  
The GUI sends input parameters to the SunRay controller, which initializes the SRM and ray-
tracer. The Ray-tracer then traces the 3D model and calculates the irradiance based on values 
from SRM. The results are returned to the SunRay controller, which proceeds to increment the 
time step and repeat the ray-trace process. At the end of the simulation, the results are sent to an 
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interpreter that writes the irradiance values to a file and converts the values to colors. Finally, the 
3D model is shaded with the color values, displayed using the visualization module and written 
to a 3D model file.  

 
Sensor Hardware  

A pyranometer is a sensor that measures irradiance on a horizontal surface (see Figure 2). 
The simplest pyranometers measure broadband irradiance while more sophisticated 
pyranometers can measure spectrally resolved irradiance. Normal incidence flux can be 
calculated via broadband measurements while total column ozone and AOD can be derived using 
spectral band ratio algorithms.  
 

 
Figure 2: The pyranometer apparatus with the sensor, solar panel and control box. 

 
As a first step, a simple pyranometer(referred to below as the NCSU pyranometer) was 

installed by our team. A homemade base was fabricated and attached to the side of a building in 
order to structurally support the weight of the pyranometer and place the pyranometer as high as 
was possible (see Figure 3).  The location of the pyranometer was chosen to maximize the 
amount of visible sunlight during peak hours of the day. As seen in Figure 2, the sensor is 

Pyranometer Sensor:  Collects 
surface normal incidence flux. 

Solar Panel:  Used to recharge 
battery so that sensor runs 
continuously. 

Control Box:  Serves to 
interpret voltages produced by 
the senor and using a pre-
determined calibration curve 
converts those values to 
irradiance.  Then the values are 
transmitted to the computer. 

Pyranometer Sensor:  Collects 
surface normal incidence flux. 
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mounted at the apex of the assembly with the solar panel below, but high enough to get enough 
sunlight within a day in order to keep the battery charged. The white control box contains a 12-
volt battery along with a Sutron 9210 Data Logger. A SolRad sensor block is used to collect 
input from the pyranometer and transfer it to a computer.  Data is collected at a rate of 1 
sample/sec, and a nearby computer logs this data in a XML file by polling the pyranometer. The 
log can then be read off manually and parsed to extract the broadband horizontal surface flux for 
a given time of day. Dividing this value by the cosine of the solar zenith angle gives the normal 
incidence flux, which represents the maximum value that any point on the body can receive.   

 

 
Figure 3:  The team custom building a base for the pyranometer so  

that it gets maximum sun during the peak hours of the day. 
 

 After experimentation with the NCSU pyranometer, we discovered that more 
sophisticated pyranometers of a USDA network provided real-time data values for the total 
column ozone and AOD. The USDA operates the pyranometer network via a website and gives 
downloadable data from the previous day [3]. While the primary objective of the USDA network 
is to monitor UV and total column ozone for agricultural applications, our SunRay system is 
extending the use of this data to a human health application.  The values of total column ozone 
and AOD, combined with the geographic location of the pyranometer in the world can be used as 
real inputs to the SunRay system to create accurate estimates.  
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Figure 4: Network Interface GUI 

 
 Figure 4 depicts the GUI interface used to pull values from the USDA website without 
using a web browser. By creating an interface to automate the USDA website, data from one or 
many locations (e.g., Regina, Saskatchewan, Davis, CA, Fairbanks, AK, and Alexandra, New 
Zealand) can be used as input into the scenario. This input data includes the longitude and 
latitude of the sensor location, time of day, month and year for which the data was taken. The 
real-time AOD (i.e. visibility) and total column ozone are input to the regression equations.  
 

Software Design 
Software Architecture 
 SunRay’s software was designed to maximize the amount of code that could be 
developed independently among four team members. The system architecture consists of five 
tiers: Visualization, Network, GUI, SRM and Ray-tracer (see Figure 5). Modules in each tier 
were built upon existing Open Source Software (OSS) and developed independently of the other 
tiers. In order to complete this project in three months, it was crucial that we utilize OSS to 
accelerate development time. In order for SunRay to serve as a research tool, it was also essential 
that we use a modular design to allow the system to be modified and extended easily. For 
instance, the SRM can be updated by members of the scientific community without necessitating 
changes to other modules in the system. The layered architecture allows future developers to 
scale the SunRay system to more complex simulations that attempt to model typical activities of 
individuals who are exposed to the sun for prolonged periods of time.  

SunRay

Engine3D

Visualization Toolkit (VTK) GTK Wrapper (GTKmm++)

GIMP Toolkit (GTK+) Graphics API (GFX)

RayTrace

GNU Triangulated Surface 
(GTS)

RadiationTrace

SolarRadiationInterface

SolarRadiationModel (SRM)

SunRayGUI

Visualization GUI Solar Radiation Model Ray-Tracer

HttpPullData

New Software

Open Source Software

libXML cURL

Network

PatchTool

 
Figure 5: Software architecture of SunRay. 
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Sensor Interface 

In order for SunRay to use the data produced by the pyranometer an interface had to be 
created. The scenario input can either come from user selected input or a pyranometer selected 
from the network. To interact with the pyranometer network, an http interface was written to 
access the real-time data across the internet. 

 
Graphical User Interface 

 
Figure 6: The GUI 

 
The GUI was developed in consultation with the scientific community who will 

ultimately use our tool. The start time and date of the simulation are required inputs, and the user 
can choose whether to run an instantaneous or finite simulation. If finite, the end time and time 
resolution are required. Other necessary inputs include diffuse grid resolution, total column 
ozone, AOD, the 3D mesh file, orientation and location, weighting function, and spectral options 
(see Figure 6). 

The time resolution is the length of the intervals that the total simulation duration is 
broken into. A resolution of five minutes means that the sun’s position will be calculated and an 
irradiance value found at each five minute interval. Because the total duration of the simulation 
must be divided into equal sections, the time resolution must be a factor of the number of 
minutes in the total simulation. An error is displayed to the user if this condition is not met. The 
diffuse grid resolution represents the number of degrees that the visible sky is broken into for the 
azimuth and zenith directions. In order to compromise between data precision and speed of the 
calculations, the diffuse grid and time resolutions are presented to the user. The user can 

                    Page 9 of 22  



SunRay           North Carolina State University                                             2006 

decrease the angular resolution of the diffuse ray-trace to reduce computational time. 
Alternatively, the accuracy of the diffuse ray-trace can be improved by increasing angular 
resolution. These tradeoffs were provided so that users can get a quick qualitative idea of the 
solar radiation dosage being received. 

For the 3D mesh, the users can also select which mesh file to use, geographic location 
(latitude and longitude), and orientation, which is the geographical direction the model faces. 
The parameters for the SRM include selecting a spectral weighting function, the AOD, and total 
column ozone levels. The user is able to choose from a range of 180 to 320 Dobson units for the 
concentration of column ozone. The AOD is adjustable between 2 kilometers and 30 kilometers. 
The system has the ability to calculate diffuse irradiance, direct irradiance or both, and the users 
can specify which they want. If neither is chosen, the system will alert the user with an error 
message. 

To interface with the network pyranometer, the user clicks a button in the GUI that opens 
a secondary window (see Figure 4). This window provides a list of available network sites, as 
well as another calendar allowing the user to change the date without switching windows. The 
user is provided with three options, obtaining total column ozone, AOD, or the location of the 
pyranometer. By selecting one of these buttons, the application will download the appropriate 
values from the network, if available, and populate the GUI with these values. An error message 
is displayed to the user if the chosen value is unavailable.  
Numerical Simulation 
 GFX. The GFX Application Programming Interface (API) was a tool developed 
specifically for SunRay to provide the functionality necessary to implement the ray-trace 
algorithm we selected. GFX was built on an existing graphics API called the GNU Triangulated 
Surface (GTS) library. GTS provides all the functionality necessary for the ray-tracer, but 
because the library was written in C, it was difficult to use with our SunRay application, which is 
written in C++. GFX alleviated implementation difficulties by wrapping each C structure with a 
C++ class so that 3D models could be manipulated using object-oriented code. However, the 
wrapping processes turned out to be difficult process because C structures had to be created, 
initialized and destroyed in sync with the C++ classes. Moreover, multiple objects stored 
references to the same object, so it was not always appropriate to destroy all member objects 
associated with each class. For instance when a triangle is destroyed, not all the vertexes can be 
destroyed because multiple triangles can have a common vertex in a 3D model. Although GFX 
was a challenge to write, it ultimately saved us time when developing the ray-tracer because we 
could apply object-oriented concepts, such as inheritance, abstraction and encapsulation, to 
accelerate development. 

Ray-Tracer. For direct and diffuse irradiance calculation, SunRay utilizes the ray-trace 
algorithm described by Matt Pharr and Greg Humphreys in their open source ray-tracing package 
PBRT [8]. To meet performance requirements for SunRay, we chose PBRT because its ray-
tracing algorithm is optimized for complex models that have multiple light sources, which is the 
case for our SunRay application. However, PBRT was developed as a plug-in for Maya 3D 
rendering software and not intended for standalone use. Since SunRay required only a small 
portion of PBRT’s functionality, we decided to rewrite the core ray-tracing algorithm using our 
own graphics API instead of modifying the PBRT package for this application.  

The efficiency of all ray-tracing algorithms hinges on the ability to minimize the number 
of intersection tests required to determine if and where a ray intersects a 3D model’s surface.  
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PBRT utilizes a K dimensional Tree (Kd-Tree) of triangular faces derived from the 3D model to 
minimize the total computational cost of intersection tests for each ray cast. 

 
Figure 7: Bounding Box example. 

 
A Kd-Tree is simply a tree where each node represents an Axis-Aligned Bounding Box 

(AABB) that encloses a set of triangular faces (see Figure 7). The root node encloses all 
triangular faces. Each child node encloses a subset of the parent node’s faces. The leaf nodes of 
the Kd-Tree each contain a single face.  

Ray-AABB intersection tests are significantly less computationally intensive than ray-
triangle intersection tests. Therefore, the Kd-Tree attempts to minimize the number of ray-
triangle intersection tests by performing cheaper ray-AABB intersection tests for interior nodes 
and ray-triangle intersection tests for leaf nodes. During top-down Kd-Tree construction, the 
objective is to split a node perpendicular to the X, Y or Z axis to create two child nodes whose 
combined estimated intersection cost is less than the intersection cost of the parent node. PBRT 
uses the following metric that incorporates the cost of traversing the tree (traversalCost), the cost 
of a ray-triangle intersection (intersectCost), the number of faces in each child node (NA, NB) and 
an estimate for the probability that the ray will intersect either the left or right child ( pA, pB )  (see 
Equation 1).  
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Equation 1: PBRT ray-tracing algorithm. 
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Figure 8: Ray-tracer state chart diagram. 

 
 The ray-tracing algorithm is depicted in Figure 8. For each ray-trace, the Kd-Tree is 
traversed in a depth-first order starting at the root node, and a ray-AABB intersection test is 
performed for each node. If the ray intersects a node’s bounding box, then the node’s children 
are traversed. If the node is a leaf node, then a ray-triangle intersection test is performed for all 
faces enclosed by the node’s bounding box. If the ray does not intersect any of the faces in a 
node, then the search continues. If the ray does intersect a triangle face inside a leaf node, then 
the minimum distance along the ray to the surface of the object is updated and the search 
continues for a shorter distance along the ray to the surface. Since nodal bounding boxes can 
overlap, faces are tagged after an intersection test so they are not tested again for the same ray. In 
addition, faces are cull tested to check if the ray could intersect the front side of the face. The 
cull test can reduce the amount of ray-triangle intersection tests by half for closed 3D models, 
which is the case for most models used by SunRay.  

Solar Radiation Model (SRM).  The spectral solar radiation model (SRM) uses the 
radiative transfer algorithm from the LibRadtran model [9]. LibRadtran calculates diffuse and 
direct beam irradiance from 100nm to 800nm in 1nm bandwidths. In addition to spectral 
calculations, SRM accounts for total column ozone and AOD in the regression equations for 
radiation.  SRM also provides the capability to calculate biologically-effective irradiance and 
exposure by convolving spectral weighting functions with the irradiances/exposures at each 
wavelength. The model currently has weighting functions for the following outcomes: erythema, 
DNA, skin cancer, melanoma, cataract, immuno-suppression, plant growth and photoplankton.  
An exposure model with spectral resolution is important because photobiological reactions, such 
as skin cancers, cataracts, immunosuppression, or foliar necrosis, are wavelength dependent. 
Since most of the SRM model was written in FORTRAN, a C++ interface was written to 
interface with the FORTRAN subroutines.   
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Figure 9: Depiction of a sun ray hitting the top of a person’s head [7]. 

 
Irradiance is power density ouput by the sun incident on a surface.  Direct irradiance is 

found by computing the dot product between the irradiance vector for the direct sun ray and the 
normal to the surface of the polygon (see Figure 9).  Diffuse irradiance is found by integrating 
the radiance contained in each diffuse sun ray over the hemispherical field of view for each 
polygon.  Radiance, the brightness at a given point in the sky, is dependent on the angle between 
a particular sun ray and the location of the sun.  Direct and diffuse irradiance can be summed to 
compute the total irradiance.   

System Output 
 Once the results have been computed for a mesh, SunRay presents a 3D interactive 
display window that gives the user control over the view. Using only the mouse, the camera can 
be rotated and zoomed, giving the user the ability to examine the mesh from all angles, as well as 
direct the camera onto a specific area of the mesh. This ability to focus on and enlarge a certain 
area is made extremely quick and simple with a “fly to” feature, through which one keypress 
moves and turns the camera toward the geometry pointed to by the mouse. Another interactive 
feature provided to the user switching between wireframe and full surface rendering. A full 
visualization of spectral solar radiation data requires a more sophisticated approach than the 
strict use of false color mapping. Since it would be difficult to simultaneously visualize all 
wavelengths on the 3D model, the display will allow the user to select one or multiple 
wavelengths to visualize the effects of different spectral ranges. An additional feature of the 
display interface is the display of directional axes to provide a sense of orientation to the mesh. 
XML 
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Software Integration 

 
Figure 10: Primary Classes of SunRay. 

 
 Figure 10 shows the class level integration of the four primary SunRay components: 
GUI, SRM, Ray-tracer, and Visualization. The SunRay execution process begins by creating an 
instance of a GTK window, which allows the user to input values to define the simulation. When 
the user presses the start button, the parameters are passed to the Solar Radiation Interface, and 
control passes back to the SunRay main controller. The RayTrace class builds a KdTree on the 
3DModel specified by the user in the GUI and creates an instance of the RadiationTrace class. 
RadiationTrace accesses the data provided by the SolarRadiationInterface to calculate flux 
values while doing the ray-tracing calculations. The final results are sent to Engine3D for 
visualization. Utility modules, not detailed in Figure 10, were created to provide enhanced 
visualization tools and a USDA network interface. 
Verification and Testing 
 The user interface and visualization modules were tested through extensive and repeated 
user interaction. Boundary values were used to test the constraints placed on the GUI 
components. During this phase, inputs on were printed to standard output to make certain they 
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are true to those the user specified. The visualization, which involves mouse and keyboard 
shortcuts, was given every possible keypress and mouse click to determine any flaws in the 
interaction. Initially, panning was included in the camera interaction, but testing indicated that 
this functionality could easily allow the user to lose track of the model while not providing 
appreciable benefits. As a result, this feature was removed from the system. 
 Having tested these individual pieces for correct functionality, integration became our 
next priority. The first working full builds were run through a wide variety of scenarios, and the 
magnitude of the results was monitored in order to verify that they were reasonable. For our 
purposes, we defined reasonable magnitudes as being roughly between 0 and 9000. Other 
verification of the data included ensuring that for a given vertex, spectral data followed expected 
patterns, with larger values occurring in the visible wavelengths than outside it, for example. 
 Aside from ensuring that correct results were given in typical scenarios, we tested the 
bounds of the system by providing it with extreme values. Some of these tests were simple to 
verify. If the user selects a time in the early morning before the sun has risen, the flux values 
should obviously be negligible. The effects of extreme values for other variables were more 
difficult to verify. With assistance of an expert from the scientific community, we made certain 
that we only allowed the user to select reasonable bounds for the atmospheric conditions, and 
that using values at the boundaries resulted in realistic output. 
 At the beginning of the GUI development phase, we consulted with the scientist to 
determine which inputs were necessary. At several vital stages during implementation, we 
consulted with the sample user again to make sure the layout and input values were intuitive and 
useful to the user. Some changes suggested by the user were to give an easy option for setting 
model orientation to one of the eight primary directions, and to make the selection for beam, 
diffuse or both simpler. 
 To test the GUI, we used command line output with C++ console output commands. We 
selected values from the GUI and compared parsed results to the selected values. At each stage 
of testing we used the same procedure to ensure that the correct values were being used. 
Boundary testing of input values was simplified by Glade’s WYSIWYG editor. For instance, 
GTK spin buttons can be initialized with upper and lower boundaries, and combo boxes with a 
list of options. This kept the amount of code needed to bound input values very low.  
 The ray-tracer was tested via visual inspection of the Stanford Bunny [10] and seashell 
[11] models after false-color rendering (see Figure 11). The 3D models were specifically chosen 
because the expected results could be easily predicted, and the models are sufficiently complex 
to demonstrate the robustness of the ray-tracer. To test direct beam visibility, vertexes intersected 
by sun rays were colored red, such as the bunny’s back, and all other vertexes were colored 
green, such as the inner bunny ear. When the model is viewed from the sun’s direction, the 
model appears all red and appears green when viewed from the opposite direction. To test diffuse 
functionality, the number of ray intersections were counted for each vertex and mapped to 
different colors. For the seashell model, the interior of the shell receives few sun rays, indicated 
by orange and red, while the exterior of the shell receives many sun rays, indicated by yellow 
and green.  
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Figure 11: Ray-Tracer Testing. 

 
Results 
 Data results from the simulation are rendered as a false colored 3D form and written to a 
XML file. The false color rendering below shows how the irradiance values vary across the 
entire form of the body (see Figure 12). The scaling ranges from blue being the minimum 
irradiance and red being the maximum. Below The 3D model, there are histograms detailing the 
distribution of power density across all spectral bands. There is also a plot of the average power 
density per band and a table of irradiance values. 
 The spectral band and patch selection GUI allow the user to inspect the data (see Figure 
13). The spectral band selection component allows the user to display certain spectral bands on 
the model and on the graphs (see Figure 14).  This functionality improves readability and allows 
the user to focus on the spectral range of interest. The patch selection component allows the user 
to add, delete or select a patch. A patch is a subset of triangle faces on the 3D model. If a 
researcher is only interested in a certain region of the model, the patch selection component will 
allow the user to select that region. The irradiance is then recalculated for only those selected 
regions and displayed in the tables and graphs surrounding the 3D model visualization (see 
Figure 15).  
 The XML files represent the diffuse and/or direct beam irradiance calculations and the 
data provided via the NCSU pyranometer.  These XML files allow for easy importation into a 
spreadsheet program such as Microsoft Excel which allows for production of graphs of the entire 
range of values for every vertex or all wavelengths for a particular vertex by selecting a single 
row.   
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Figure 12: Visualization of Total Body Irradiance 

 

 
Figure 13: Spectral Band and Patch Selection GUI 
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Figure 14: Example of UV Band Selection 

 

 
Figure 15: Top of Head Patch Selection 
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Project Management 
The SunRay project consisted of four milestones that were scheduled to be completed at 

the end of each sprint, except for the last milestone which marked final testing and demonstration 
of the system. The project schedule included extra time in case a task took longer to accomplish 
than predicted. Developers often had to work longer than the scheduled 30 hours per sprint in 
order to implement all their requirements for each milestone. All milestones were met a few days 
before the scheduled completion of each sprint (see Figure 16). 

 
Figure 16: SunRay project timeline. 

Scrum Technique 
 The Scrum technique was used to manage the iterative development process effectively 
[12]. Scrum’s key practices emphasize individual interactions, working software, customer 
collaboration, and responsiveness to change. The product backlog is at the core of Scrum 
management. Once system requirements were identified, they were prioritized and documented 
in a product backlog. The project proceeded in twenty-one day sprints. The highest priority 
features were removed from the backlog, implemented and demonstrated at the end of each 
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sprint. Milestones encompassed the amount of work that was predicted to be accomplished b
the end of each sprint. Each developer was expected to implement 30 hours of work in the 
backlog per sprint. At least once per week, the team met to discuss the work they accomplis
since the last Scrum meeting, problems they encountered, and what they will do for the next 
Scrum meeting. Daily progress on the project was documented in written logs by each develo
 

y 

hed 

per.  

radeoffs
n installing the local pyranometer, there were logistical decisions to be made 

concern

n 
unobstr

hen deciding what software tools to use for developing the components of the system, 
we had

 knew that our program 
was to 

 provide discreet spectral 

T
Whe
ing the location, position and networking of the installation. It is necessary that the 

sensor not be shaded during daylight hours, which meant it would have to be mounted high up 
above nearby obstructions such as trees and buildings. Before development of our system began, 
the sensor was mounted on top of a building on NCSU campus. This location was adequate, but 
it did not allow for access by team members, as only maintenance personnel can access a roof.  

We chose a location in North Raleigh, NC, because it was isolated enough to provide a
ucted view of the sky, protected against tampering and vandalism, and was accessible to 

the team. We had to build a structure to support the weight of the sensor and raise it high enough 
to prevent the tree line from blocking sunlight. A nearby building provided shelter for the PC 
that accesses the sensor data via a serial cable connection between the PC and the sensor. From 
there, the data could be read from the PC through a wireless internet connection already in place 
on site.  

W
 several options to consider. Early in the development process, we each researched the 

available options for our assigned components, and then discussed them at our meetings. We 
made suggestions and helped determine compromises for each section.  

For the GUI, we considered using either Java or GTKmm. We
be written in C++, so linking a Java GUI to the C++ back end would be a challenge. It 

would require writing dll wrappers to interface the java to the C++, which proved to be too 
cumbersome and time-consuming. On the other hand, the GTKmm API has a C++ interface, 
which eliminated the problem with linking the GUI to the main code.  
 The SRM is built upon open source code that was extended to
capabilities. This original code was written in FORTRAN and formed a working radiative 
transfer model. It was based off arbitrarily defined polygons, but still produced accurate results. 
We modified the code to operate with our ray-tracing algorithm. The challenge was to combine it 
with our C++ code. We identified two plausible options: to rewrite the FORTRAN subroutines in 
C++, or create a C++ interface to make the subroutine calls. Rewriting the code would require a 
significant amount of work for coding, as well as revalidation of the correctness of the solar 
model. FORTRAN subroutines cannot return a value, but we solved this problem by passing 
variables by reference through the interface. Since interfacing the Fortran with C++ functions 
required less work and was less prone to bugs, we decided to preserve the Fortran code. Another 
issue the team faced was what development environment to use. The visualization component 
uses VTK, which is designed to compile under Cygwin. The GUI was originally developed with 
Visual Studio .NET, but was switched to Cygwin to accommodate integration with the other 
components of the system.  
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Conclusion 
Summary 
 Researchers interested in the propagation of solar radiation now have a powerful tool at 
their disposal. SunRay is currently a functional prototype, implementing all of the features 
necessary to run a solar exposure simulation on any 3D mesh presented in 3DStudio or GTS 
format. While the software exists as a working system, it is far from complete. Currently, the 
team is continuing work on testing and debugging the prototype, as well as further developing 
the interface between the pyranometer network and the software. 
 There will always be areas in which the system could be improved, and in which more 
efficient analysis of the data could be facilitated. The utility of the prototype as it exists, 
however, is significant. We believe the SunRay system makes a contribution to the study and 
understanding of solar radiation and its relation to terrestrial life. The system provides data that 
has never before been available to the scientific community through spectrum-specific data 
results, calculations of total body burden, and accurate predictions of the effects of changing 
atmospheric conditions on life. 
  
Recommendations for the Future 

Throughout the design, development and testing of the system, ideas for future system 
enhancements were repeatedly discussed. For the sake of time, however, limits had to be placed 
on additions to the requirements. Some of these additional features were deemed feasible, and 
were integrated into the requirements, but the remaining additions had to be logged as 
possibilities for the future. For example, several potential extensions to the handling of 3D forms 
could provide much greater flexibility.  
 During all stages of work on this project, we kept in sight the goal of creating easily 
extensible software in order to allow and encourage enhancement in the future. Plentiful 
possibilities for extension exist that could provide meaningful data to the scientific community as 
well as the layperson. Adding the capability to incorporate an animation sequence into the ray-
tracing process would provide a more accurate representation of the exposure resulting from 
specific activities involving repetitive motion or changing positions. Furthermore, the reflective 
properties of materials could be considered in order to gauge the contribution of water, ice, or 
snow toward irradiance. 
 Other future enhancements may be more practically tied to the preservation of health. For 
instance, SunRay could be extended to predict the daily dosage of solar radiation under 
hypothetical environmental changes, or to estimate the risk of cataracts over an extended period 
of exposure. As another extension, SunRay could model the attenuation of sun exposure due to 
clothing and indicate the level of sun protection offered by certain types of clothing or sunscreen. 
Such information could be quite helpful in providing clues to how we can better protect 
ourselves against harmful amounts of radiation. Although many of these applications directly 
benefit humans, animals are equally vulnerable to solar radiation. Efforts to mitigate sun 
exposure, such as preserving forests and reducing agents that deplete the ozone layer, will benefit 
humans, plants and animals alike. 
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