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1 Abstract  
Although often neglected, urban ecosystems play a pivotal role in the health, economy, and 

quality of life of residents of urban areas.  As one of the few areas in metropolitan settings where 
nature is protected and cultivated, parks are essential to preserve.  Many city-dwellers value 
parks as a gateway to nature and a respite from their busy urban lives.  In addition to the 
aesthetic appeal of parks, the grounds also serve as homes for many different species of plants 
and animals.  However, human presence in parks has negative repercussions that can damage the 
ecosystem.  One prominent visible sign of human impact is the presence of trash cans, often 
overflowing with litter.  Furthermore, the trucks used to empty the trash cans are a major source 
of air pollution in parks.  Park officials spend a great deal of time and money emptying trash 
cans. These expenses are not limited merely to the cost of equipment and personnel needed to 
empty the trash cans, but also to the effort expended to retrieve any litter that has fallen out of the 
cans.  Since current trash can-emptying techniques entail static routes that assume every can is 
full, many unnecessary trips are made to unfilled trash cans, while trash cans that fill quicklyare 
not visited frequently enough.  

The SmarTrash system enables quicker and more efficient emptying of trash cans to 
prevent the overflow of litter.  Mesh-networked trash cans sense whether they are full by using 
two types of infrared (IR) sensors.  Infrared light- emitting diodes (LEDs) and phototransistors 
examine a plane at the top of the trash can, and an IR distance sensor looks down into the trash 
can from the lid.  Crossbow MICA2 motes are used to control the sensing hardware, provide 
wireless networking, and connect to an Ethernet Gateway board, which interfaces between the 
mesh network and a server.  The server displays trash can status via a Google Maps-based web 
interface, making the status easy to identify while allowing for more efficient emptying of full 
trash cans.  The server also stores the data in a database from where the data can be extracted and 
used to analyze long term trends by using various statistical analysis tools.  

 SmarTrash represents the first system enabling the centralized monitoring of trash cans.  
Utilizing data provided by SmarTrash, park officials can enhance efficiency by servicing only 
those trash cans known to be full. Moreover, SmarTrash will help parks nationwide save money 
on sanitation costs while simultaneously aiding in the maintenance of urban parks. Additionally, 
by harnessing renewable solar energy, SmarTrash avoids further exacerbating environmental 
problems.  

 Currently, the SmarTrash system exists as a fully functional prototype.  Extensive tests of 
the system helped determine that acquisition and transmission of data occurred with an accuracy 
greater than 99%.  The next step entails scaling up the system to deploy for long-term testing.  
Potential long-term future enhancements such as an automatic route finder, will provide park 
officials with additional tools to protect urban ecosystems. 
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2 System Overview 

2.1 Problem 
The inefficiencies in current trash can-emptying methods are harmful to the environment.  

Common garbage trucks are among the vehicles with the lowest fuel economy, averaging only 
2.8 miles per gallon [1].  In parks and beaches where the main roads may be inconveniently 
distant, maintenance workers use vehicles such as Broyhill’s Load-and-Pac.  Although the Load-
and-Pac is smaller than a conventional garbage truck, a discussion with Broyhill revealed that it 
burns about 3 gallons of diesel fuel per hour when loaded with trash and in heavy use.  Since 
trash collection vehicles spend a significant amount of time idling at trash can sites, their exhaust 
tends to linger in the parks.  Reductions in the time needed to empty trash cans as well as the 
number of trash cans to empty would certainly curtail the amount of pollutants emitted by these 
vehicles. 

Trash collection is also an expensive and time-consuming process.  In a SmarTrash survey 
sent to 50 municipal park authorities in the United States, 9 of 12 respondents conveyed interest 
in a system that would render trash can-related maintenance more efficient.  Assessing the data 
from the survey, it was evident that large cities spend millions on trash collection; the City of 
New York Parks and Recreation, for example, estimates that they spend over US$8 million 
annually on trash collection in the Borough of Manhattan’s parks alone.  Even in a smaller city 
such as St. Paul, MN, US$5.33 is spent on each trip to a single trash can, regardless of whether it 
is emptied or not.  

Furthermore, some trash cans require a higher frequency of emptying than others.  
Manually monitoring and emptying all the trash cans at the same frequency forces park officials 
to waste time in traversing large areas to determine the status of trash cans that may already be 
empty.  Prior knowledge of full trash cans could reduce the time and effort expended in trash 
collection in all these examples. 

2.2 Objectives  
SmarTrash was created to meet the following five objectives.  It should inform park 

services of the trash cans that need emptying without the need to visit each one.  Data should be 
presented on a user-friendly GUI and stored in a format compatible with GIS software.  The 
majority of communications should occur in a flexible manner over a wireless medium.  
SmarTrash should have minimal impact on its surrounding environment.  Finally, it should be 
able to harness renewable solar energy to make it a self-sufficient system. 

2.3 Performance Requirements 
The following performance requirements were created to meet the objectives stated in 

Section 2.2. 
Maximum Trash Can Spacing 100 m 
Battery Lifetime > 1 year 
Data Acquisition & Transmission Accuracy > 99 % 
Operating Temperature Range -10˚ C to 60˚ C 
Data Acquisition Frequency User configurable 
GUI  Portability All contemporary desktop operating systems 

 Table 1. Project Specifications
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2.4 Design Methodology  
The design strategy for this project followed a six step methodology used by practicing 

engineers - research, define problem, plan solution, execute plan, verify implementation, and 
conclude [2]. In the research phase, the problems associated with litter in municipal parks were 
investigated and a survey was conducted.  The data from the research phase was used in 
conjunction with standard problem definition tools, including a House of Quality matrix, Quad 
Chart, and a focus group.  This clarified and finalized the definition of the problem in 
engineering terms.  The solution to the problem had to be fully planned; this necessarily entailed 
the development of custom hardware and modeling flows of software.  Execution of the plan 
involved selecting components, implementing circuits, and coding software modules.  Major 
tasks were partitioned and assigned to different team members.  

The team was organized as follows:  
• Team Leader, Server Software, and PCB Layout – Yaniv Ophir 
• Mesh Networking Software - Andrew Hagedorn 
• Sensor Hardware and Software – Joseph D’Errico 
• Power Supply Hardware and Power Management Software – Vyas Venkataraman 

A timeline for completion of these modules was formulated using a Gantt chart.  Three 
formal design reviews allowed for continual refinement of the solution.  Portions of the 
verification stage were combined with the execution stage.  Errors were minimized through the 
use of a modular build-and-test approach.  Each component was first tested as a standalone unit.  
Finally, the components were integrated into a complete system and tested together. 

2.5 Design Decisions 
As the SmarTrash system was being created, several major design alternatives were 

considered before settling on the final design.  An initial issue that surfaced was the choice of  
the networking algorithm.  This is fully discussed in Section 3.6.6. Another major issue was the 
choice of sensor technology to detect trash.  Strain gage based weight sensors were considered 
first.  These had the disadvantage of requiring mounting on the base of the trash can, which 
would then require an electrical connection between the lid and the body of the trash can.  As 
trash cans have to be opened regularly, this connection would be susceptible to wear and would 
render the system useless if broken.  Ultrasonic sensors were considered next.  This idea was 
eventually abandoned as the power consumption of ultrasonic sensors was prohibitively high.  A 
system issue that greatly affected the final system design was the ability of the system to be able 
to wake up on a radio packet, as opposed to sleep achieved by powering down the radio 
transceiver completely.  This allows the user to poll the system.  This design decision traded off 
slightly longer battery lifetime in exchange for the ability for the user to be able to initiate a poll 
of the system.    

2.6 Project Originality  
The most common practice in park waste management is for park personnel to visit each 

trash can, determine if it is full, and then empty it if necessary. To the knowledge of the 
SmarTrash team, no park in the United States employs a centralized method of notifying staff 
when trash cans are full. 

One technological update to conventional trash can services is the addition of self-
compaction, as implemented in the Big Belly [3]. That system costs $4500 per can, almost twice 



CSIDC 2006: Boston University                                    

 
Page 5 of 22 

the price of conventional trash cans [4].  Moreover, the benefit of in-can compaction is 
diminished in an outdoor setting as many parks already use trucks with compaction in them to 
pick up trash.   

The SmarTrash system demonstrates the use of unique technological achievements for a 
novel purpose.  It is the first application of wireless mesh networked sensors to the field of trash 
collection.  The system possesses redundant in-can sensors that can accurately relay the status of 
the trash can and are able to ensure that the system is not registering false data.  The networking 
algorithm being used by SmarTrash is unique and was created to specifically balance the needs 
for accurate data transmission and low power consumption.  The SmarTrash system also 
provides user interfaces in the form of a user friendly map and analysis ready data never before 
associated with monitoring trashcans. Since this application is unique, SmarTrash required the 
development of customized hardware and software, including an original sensing package.  In 
keeping with the environmental aware design, the hardware designed for SmarTrash is RoHS 
compliant, i.e. is lead free.  

3 Implementation 
The system will be described by first describing the physical components, followed by the 
overall system architecture. Each subsystem in the architecture will then be elaborated. 

3.1 Hardware Components 

3.1.1 MICA2 Motes  
The MICA2 mote (Figure 1a) is a low-power embedded wireless device that runs on a 

7MHz Atmel processor.  It is powered by two 1.5V AA batteries and has various sleep modes to 
conserve battery power.  Each mote has eight 10-bit analog-to-digital converter (ADCs) pins as 
well as eight general purpose input/output (GPIO) pins, both of which are accessible via a 51-pin 
connector. The wireless communication operates at 38.4kbps over a 433MHz channel. In an 
urban park setting, the measured maximum range of the MICA2 is 100 m.   

Figure 1b. The MIB600 Ethernet GatewayFigure 1a. The MICA2 mote
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3.1.2 MIB600 Ethernet Gateway 

The MIB600 (Figure 1b) interfaces between the motes and the Internet.  This board has a built-in 
DHCP client and a 10 Base-T connection, enabling it to acquire an IP address almost anywhere 
an Ethernet connection is present.  A mote attached via the 51-pin connector provides the 
Ethernet Gateway with wireless communications capabilities. 

3.1.3 Sensors 

  
 
SmarTrash uses two systems of IR sensors to detect the level of trash in a trash can (Figure 

2).  The Sharp GP2D12 Distance Measuring Sensor is mounted on the lid, facing down into the 
trash can.  When activated, the GP2D12 uses IR reflection to determine the distance to the 
nearest object and outputs an analog voltage inversely proportional to this distance. This sensor 
can reliably measure objects from 80 cm to 10 cm .  As this sensor is used to measure the depth 
of trash in the trash can, it is referred to as the Depth Sensor.  The second sensing system 
consists of two IR LEDs and phototransistor pairs, aligned across the rim of the trash can, 
forming a plane.  Each phototransistor outputs an analog voltage proportional to the amount of 
IR radiation it detects.  When the plane is obstructed, the phototransistor detects less IR radiation 
and will therefore detect a lower voltage.  These Planar Sensors detect when trash has breached 
the trash can’s rim. 

Figure 2. Left : The Planar Sensors in top cutout view of trash can.  
Right:  The Depth Sensor in front cutout view of trash can 

 
 :  IR LED 

 
 :  Photo Transistor 

 
 : Depth Sensor 
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3.1.4 Power Supply 
While the MIB600 and the server require line power, the motes are powered by two 1.5V 

AA rechargeable alkaline batteries.  To increase the operational lifetime of the system, each trash 
can unit is equipped with two 3V solar cells that trickle charge the batteries.  The solar cells are 
in series with a set of diodes to regulate the charging current, allowing the solar cell trickle 
charger to provide a variable current in proportion to the voltage of the battery.  When the battery 
is fully charged, the trickle charging circuit provides no current, ensuring that the batteries do not 
overcharge. As per design, the trickle charger is always active and will continue to charge the 
batteries until they reach their operating voltage, allowing SmarTrash to remain completely self-
contained with no need for an external power source.   

Power analyses were performed assuming the user polled the system two times per day, a 
number that is based on survey responses.  The absolute minimum life of batteries in the motes is 
5 months if no recharging occurs.  A conservative estimate of the solar cells’ benefits presumed 
that the trickle charging circuit provides an average of 2.5mA during the hypothetical 4 hours of 
usable sunlight each day. Under these conditions, SmarTrash has an operational life greater than 
two years.  

3.2 Architecture Overview 

 

51 Pin Connector 

Depth 
Sensor 
Power 

Planar 
Sensor  
Circuit 

Solar 
Charging 
Circuit 

Figure 3. SmarTrash two sided PCB, version 2  RoHS compliant (Lead Free) 

Figure 4. Architecture Overview
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Each trash can is equipped with a two Planar Sensors, one Depth Sensor, a MICA2 mote, 
and solar panels for recharging the two AA batteries that power the mote. The mote 
communicates wirelessly with the Ethernet Gateway either directly or via a mesh network of 
motes in other trash cans.  The Ethernet Gateway is accessed by a server that runs software to 
parse the messages received from the motes and display the motes’ status on a map.   Messages 
are passed in two directions through the network.  Sensing data is sent from the motes through 
the mesh network to the Ethernet Gateway, which forwards the data to the server.  Requests for 
the system to poll its status are sent from the server through the Ethernet Gateway and propagate 
through the mesh network.  These signals can either originate as part of a scheduled system 
update or be initiated by the user via the Web interface. 

3.3 Software Languages and Environments  
The mote software runs on the TinyOS operating system, which was developed for use in 

limited resource network systems. It is released under the Intel Open Source License.  All mote 
software, including TinyOS, is written in the nesC language.   

The operating system of the server is Ubuntu, a distribution of GNU/Linux.  The server 
runs Apache2 to handle web page requests and a mySQL database to store static can information.  
Software running on the server is written in Perl, while queries to the database are written in 
SQL.  The web GUI uses the Google Maps API [6] and AJAX.  Various tools created to 
facilitate and augment intermediate testing were written in rapid application development 
environments such as C#.NET and Java.  

3.4 Power Management 
In addition to the solar powered trickle charging hardware, the mote has power regulation 

software that allows it to enter low power sleep.  The low power sleep mode on the mote is 
enabled when the mote’s task queue is empty and all high speed interrupts are disabled.  In this 
mode, the mote’s radio is set to function at a 1% duty cycle, which allows it to drastically reduce 
its current consumption.  The motes remain capable of receiving packets sent to them, and when 
a wake-up packet is sent, the mote sets the antenna to operate at a 100% duty cycle and begins 
the sensing cycle. While it is possible to completely turn off the radio to achieve even lower 
power consumption, this approach was not incorporated as guaranteed wake-up synchronization 
would negate the calculated 4% increase in battery life. 

3.5 Sensing 

3.5.1 Sensing Algorithm 
When the mote is prepared to sense, it provides power to the sensors.  For each sense cycle 

(Figure 5), the mote gets two readings, 110 s apart, from each sensor.  These redundant readings 
allow the sensing decision algorithm to compensate for potential malfunctions in hardware.  
Between each reading, power to the sensors is turned off to minimize the current draw on the 
system.  For each reading, the mote samples the IR phototransistors with the IR LEDs both on 
and off.  Ambient infrared level is compensated by computing the difference between successive 
samples. The differences are averaged to give the final value for that reading.  The Depth Sensor 
is unaffected by ambient infrared, so no special consideration is needed for this sensor. Only one 
sample is taken per reading of the Depth Sensor.  The six readings are not interpreted on the 
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motes themselves; they are sent over the mesh network to the server, where they are used to 
make a decision about the state of the trash can. 

 

 

3.5.2   Decision Algorithm 
The intended object of detection is the level of trash.  The Depth Sensor threshold 

(DEPTH_THRESHOLD) is calibrated such that Depth Sensor triggers if there is an object less 
than 50cm from the rim of the trash can.  The Planar Sensor threshold 
(PLANAR_THRESHOLD) is calibrated such that the Planar Sensors trigger if an object blocks 
more than 75% of the beam.  A transient could cause a false trigger; a person throwing trash 
away at the exact moment a sensor is sampled could be detected. Therefore, two readings spaced 
110 s apart must both indicate the presence of trash.  By default, the sensor cycles are repeated 
every 12 hours, though the interval can be changed. Also, sensor cycles can be manually initiated 
via the web interface.  

Both Planar Sensors must detect trash or the algorithm does not determine that the trash 
can is full.  This is to compensate for any failure that may occur in a Planar Sensor, which would 
give a low voltage reading and result in a false positive.  By requiring both Planar Sensors to 
detect trash, the algorithm reduces false positives. 

Figure 5. Flowchart of sensing cycle

IF (Planar1_Reading1 < PLANAR_THRESHOLD) AND  
(Planar1_Reading2 < PLANAR_THRESHOLD) 

THEN Planar1 sees Trash 
 
IF (Planar2_Reading1 < PLANAR_THRESHOLD) AND  

(Planar2_Reading2 < PLANAR_THRESHOLD) 
THEN Planar2 sees Trash 
 
IF (Depth_Reading1 > DEPTH_THRESHOLD) AND  

(Depth_Reading2 > DEPTH_THRESHOLD) 
THEN Depth sees Trash 
 
IF Planar1 sees Trash AND Planar2 sees Trash  
THEN 
{ 
 IF Depth sees Trash 
 THEN Trash can is “Full” 
 ELSE Trash can “Needs Maintenance” 
} 
ELSE  
{ 
 IF Depth sees Trash 
 THEN Trash can is “Almost Full” 
 ELSE Trash can is “Empty” 
} 

Figure 6. Pseudo code for the decision algorithm



CSIDC 2006: Boston University                                    

 
Page 10 of 22 

If all sensors detect trash, the trash can’s status is set to “Full.”  Since the Depth Sensor 
detects trash 50 cm from the rim and would presumably detect trash before the Planar Sensors, a 
Depth Sensor reading above DEPTH_THRESHOLD sets the trash can’s status to “Almost Full.”  
The trash can’s status is set to “Empty” if no sensors detect trash.  If the Depth Sensor fails, it 
gives a low voltage, or “Empty,”, reading regardless of any trash that may exist.  If both of the 
Planar Sensors detect trash, trash must exist within the range of the Depth Sensor.  Therefore, if 
the Planar Sensors both detect trash, and the Depth Sensor does not detect trash, then the Depth 
Sensor has failed.  In this situation, the trash can is given a “Needs Maintenance” status. 

3.6 Mesh Networking  

3.6.1 Introduction to Mesh Network Algorithm 
The mesh networking algorithm was specifically developed for SmarTrash.  This 

application required that the algorithm have several properties.  Data must be guaranteed to reach 
its destination, either directly or by taking multiple hops over several motes.  The network must 
be able to heal; in the event that a mote fails or cannot communicate with its neighbors, the 
network must be able to find an alternate route if one exists.  All networking must be 
implemented with minimal memory use as the wireless motes are a restricted memory 
environment.   

Conceptually, the mesh network is a tree where all data flows to the root.  In this tree, 
routing is accomplished by each mote knowing the next mote in the tree that is closer to the root, 
its parent.  In this implementation, each mote needs only to store its parent’s 16-bit address 
instead of a full routing table which contains every mote in the network.  Not only does this 
minimize the memory overhead of the network, but it also prevents each mote from having to 
update its routing table every time the network heals.  When a mote wants to communicate, it 
attempts to send a data packet to its parent and then listens for its parent to forward the packet.  
Since all messages are broadcast using the mote’s omnidirectional antenna, the forwarded packet 
can be heard by the original sender mote and acts as an implicit acknowledgement.  If the mote 
does not hear this acknowledgement, then the mote resends its packet, allowing any nearby mote 
to forward it through the network.  This guarantees that if there is a path to the root, the packet 
will be forwarded there; this process also heals the network to compensate for the loss of a mote.  
To ensure that the healing is permanent, the mote that has lost its parent will update its parent 
address with the address of the mote that receives its data packet. 

3.6.2 Network Components 
The network is comprised of motes that have been programmed to be one of three types.  

Data Motes, which are present in the trash cans and collect data from their sensors, are the most 
common type of mote in the network.  After data collection, Data Motes transmit their data and 
forward any data that is sent to them. Similarly, the Extender Motes also forward any data that 
they receive.  Extender Motes have the same power hardware and store the same networking 
information as Data Motes, but are neither located in trash cans nor attached to sensors.  
Extender Motes can optionally be powered by external sources.  If two Data Motes are placed 
farther apart than their range allows, an Extender Mote will bridge the gap. From the viewpoint 
of the networking protocol, Extender Motes are a subset of Data Motes and are treated 
identically.  A single Base Mote is the third kind of mote in the network.  The Base Mote is 
positioned at the root of the network and forwards all data from the Data Motes to the server.  
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The Base Mote also relays control signals from the server to the network.  To accomplish this, 
the Base Mote is connected to an Ethernet Gateway, which allows the server to establish a 
connection through which the Base Mote can transfer its data. 

3.6.3 Data Packets 
Data Field Length Meaning Values 

Type 8   Data or Wake up Packet Type 0x21 or 0x2C 
Source 16  Address of sending mote  0x0000-0xFFFF 

Destination 16 Address of destination mote.  0x0000-0xFFFF 
Hop Count 16 Hop count of the sending mote 0x0000-0xFFFF 

Data Frame 1 8 Data head delimiter 0x42 (ASCII B) 
Data Frame 2 8 Data head delimiter 0x45 (ASCII E) 
Data Frame 3 8 Data head delimiter 0x47 (ASCII G) 

ID 16 Mote of data’s origin. 0x0000-0xFFFF 
Voltage 1 16 First reading of Planar Sensor 1 0x0000-0x03FF 
Voltage 2 16 Second reading of Planar Sensor 1 0x0000-0x03FF 
Voltage 3 16 First reading of  Planar Sensor 2 0x0000-0x03FF 
Voltage 4 16 Second reading of Planar Sensor 2   0x0000-0x03FF 
Voltage 5 16 First  reading of Depth Sensor  0x0000-0x03FF 
Voltage 6 16 Second reading of  Depth Sensor  0x0000-0x03FF 

Data Frame 4 8 Data tail delimiter 0x45 (ASCII E) 
Data Frame 5 8 Data tail delimiter 0x4E (ASCII N) 
Data Frame 6 8 Data tail delimiter 0x44 (ASCII D) 

 
 

The TinyOS operating system limits the size of the packet data payload to 29 bytes.  All 
network packets have the same format (Table 2).   All packets types require the first four fields 
for route control and forwarding.  A value of 0xFFFF in the Destination field will broadcast the 
packet to all motes.  The data frames that follow are delimiters for the parsing software on the 
server.  It allows the software to clearly find the ID and voltages. 

3.6.4 Collision Avoidance 
Each mote makes multiple attempts to send each data packet, stopping if acknowledged 

before an upper limit is reached.  To arbitrate through a collision, each mote implements a 
unique delay timer.  The delay is calculated using a linear function of the mote’s unique local 
address.  Any communication from its parent, an indication that the parent is functional, forces 
the mote to increase its delay time. This prevents excessive traffic on the network while its 
parent is busy. 

3.6.5 Detailed Algorithm 
All motes hold three pieces of networking information:  their unique local address, their 

hop count from the root, and the address of their parent.  When the system is reset, the routing 
information present on each mote is shown in Table 3 below:   

Type of Mote Local Address Parent Address Hop Count 
Data Mote Unique 0xFFFF (infinity) 0xFFFF (infinity) 

Extender Mote Unique 0xFFFF (infinity) 0xFFFF (infinity) 
Base Mote 0x0000 NA 0x0000 

Table 2:  Data Payload Contents

Table 3: Network Initialization 
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Initially, the base mote broadcasts a wake-up packet.  Sleeping motes receive this packet, 
causing them to exit low power sleep mode.  The mote updates its parent to the source of the 
packet, sets its hop count, increments the hop count of the packet, and then forwards the packet.  
Motes that are awake drop this packet to prevent the network from infinitely forwarding wake-up 
packets.  Thus, as the wake-up packets propagate through the network, they set up the initial 
network tree.   

 

 

 
Figure 7 shows the initial setup algorithm.  The Base Mote, B, broadcasts a packet so that 

all motes within range will receive the packet and update their routing information.    In the 
figure, Data Motes D1 and D2 are within range to receive the packet, which they then broadcast 
to all motes within their range.  Since D1 and D2 are already awake, they will disregard the 
packets that they receive from each other. In the next tier of the tree, Data Mote D3 receives a 
packet from D1 and updates its data; D5 does the same with its packet from D2.  D4 receives a 
packet from both D1 and D2, but since there is a delay before sending based on local address, it 
will receive the packet from D1 first.  D4 then updates its information atomically to prevent race 
conditions, and when it receives the packet from D2, it is dropped because it does not have a 
better hop count.  This leads to a routing tree as seen in the third panel of Figure 7, which 
illustrates the optimal route for each mote. 

While meshing, there are three basic operations that a Data or Extender Mote can perform: 
sending the data of the mote, forwarding the data of another mote, and waiting for the mesh 
cycle to time out.  When sensing is complete, each Data Mote attempts to send its data packet to 
its parent by following the resend algorithm (Figure 8).  After each attempted send, the mote 
listens to the medium for all network activity and waits for its parent to forward its packet.  The 
action of the parent forwarding is an implicit acknowledgement of the data packet. If the Data 
Mote does not hear its parent forward the packet in a set amount of time, then the mote attempts 
to resend the packet to its parent.  It repeats this process eight times with an increasing timeout 
between data resends.  After this point, the Data Mote attempts to heal the network and find a 
new parent.  This is accomplished by resetting its hop count to logical infinity (0xFFFF) and its 
parent to the broadcast address.  It then resends to the broadcast address so that any mote within 
range will receive the packet.  Though this creates a temporarily sub-optimal routing path, it will 
ensure that the data is able to get to the Base Mote if a path exists.  The sub-optimal path is only 

Figure 7 : Network Initialization 
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temporary because if the mote ever receives a packet with a better hop count, it will change its 
parent address and hop count.  This can also lead to redundant copies of packets, but this issue is 
handled on the server. 

 
Figure 8: Pseudo-code for Resend algorithm 

Once a Data Mote’s own data packet has been implicitly acknowledged by another mote, 
the mote enters a time out phase in which it waits for network traffic to stop before re-entering 
the low power sleep mode.  When the mote receives a packet that is addressed to it or to the 
broadcast address, the mote exits the time out phase and attempts to forward the packet.  The 
forwarding process follows the same resending algorithm (Figure 8) that the mote uses for its 
own data. When the forwarded packet is acknowledged, the mote re-enters the time out phase. 
This ensures that the mote is awake for all network traffic and allows all data to propagate 
through the network.  

 
 In Figure 9, the mote D2 is absent from the network, D3 and D5 are attempting to send 
their own data, and the routing table is set up similarly to Figure 8.   When D3 and D5 send data 
packets to their parent, D1 receives the data packet; however, since D2 is out of the network, it 

Resend( ) 
  IF ( Resend Flag == TRUE)   
  THEN 
  {  

IF ( Resend Counter > 8) AND  
( Resend Counter < 16 )   

   THEN 
 {  

Parent = Broad Cast Address 
  Hop Count = Infinity 
  Call Send( Data ) 
  Call Resend( ) 
 } 
 ELSE IF ( Resend Counter < 8 )   

THEN 
{  

Call Send( Data ) 
  Call Resend( ) 
 } 
 ELSE 

{ 
Resend Flag = FALSE; 

  Call Time Out( ) 
} 

Figure 9 : Mesh Network Data Propagation and Healing
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does not receive the packet from D5.  In the second panel, D1 forwards the packet to the base 
station and D3 receives implicit acknowledgement when it hears its data being forwarded.  D5 
will eventually attempt to heal the network by broadcasting its data packet.  D4 will receive the 
packet and forward it to its parent, D1.  As with D3, D5 will receive the acknowledgement when 
it hears its packet broadcast to D1.  In the third panel, the activity at D1 is variable. Though the 
base has forwarded its data to the server, it rebroadcasts the packet it received as an 
acknowledgement. D1 will either receive both the packet from the base mote and the packet from 
D4, or it will receive only one of them.  In either case, D1 or D4 will not receive the implicit 
acknowledgement and resend to its parent, allowing the data to propagate to the base station. 

3.6.6 Networking vs. Battery Life Trade Offs 
The need for the mesh network to transmit all of its data is paramount.  As discussed in 

Section 3.4 the motes spend a majority of their time in a low power sleep mode, which allows 
them to maximize battery lifetime.  However, in the event that a mote can find no route to 
transmit its data, it must conserve battery power while waiting for some future time when a route 
may exist.  In order to balance these two needs, the networking algorithm makes the following 
trade off. As long as the mote receives new data to forward and can effectively forward this data, 
the mote will stay awake, favoring accuracy of data transmission. When there is no more data to 
forward, or when it is unable to find another mote to forward the data to, the mote saves battery 
power by going into low power sleep mode after a set amount of time.   

3.7 Server Applications 

3.7.1 Server Initialization 
Sending the position of each mote in each transmission is wasteful as this data is static. As 

each trash can has a unique local address, the mySQL database on the server will be able to 
correlate the ID of the mote to its geographical location.  This database is created during 

installation of the system by using a GPS receiver or geocoding software to determine the trash 
can’s coordinates and then making an entry for that mote identifier in the mySQL database.  This 
database also stores a log of the status of the system over time.  

 

Start Wait For 
Event Receive 

Network 
Wake-up 

Signal

Receive 
Data

Parse 
Data

Decision 
Algorithm

mySQL 
Database

Write Files

Send 
Wake-up 
Packet

Figure 10 : Flowchart for Server Software
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3.7.2 Server Software  
 
The server software, SmarTrash Transmitting And Receiving Daemon (STARd), handles 

communication with the mesh network and stores incoming data to the hard disk.  It was written 
in Perl to capitalize on the language's specialized parsing functions.  STARd opens a TCP 
connection to the Ethernet Gateway and, once connected, waits for one of two events to occur.  
One event, a network wake-up signal, can either be user-initiated through a web interface, or can 
be set to automatically occur at a specific time.  When this signal is received, STARd sends a 
packet to the Ethernet Gateway that wakes the motes and initiates the mote sense cycle.  
Additionally, STARd generates a unique run ID and writes it into the mySQL database along 
with the time of the signal.  The other event occurs when data is received from the Ethernet 
Gateway.  In this scenario, STARd extracts the 16-bit voltage readings and the mote ID, 
discarding the excess networking overhead. 

STARd uses the mote ID to query the mySQL database to retrieve a trash can’s latitude 
and longitude. The voltage readings and respective geographic locations are placed in a hash 
table keyed by the mote ID (Figure 11).  Once the hash table has been filled, each trash can’s 
status is determined by the decision algorithm (Section 3.5.2) and saved in the hash table. As a 
large number of packets can arrive in a short amount of time, the packet data is buffered by 
adding it into a hash table.  STARd waits until no packets have been received for 300 seconds to 
write the contents of the hash table to hard disk, preventing excessive writes. 

Trash can status information is stored in two XML files.  The first includes all of the data; 
this file is used for logging, debugging, and as a data transfer module to other programs, such as 
ESRI ArcGIS mapping software.  The second follows guidelines specified by Google Maps.  
This file stores only the locations and status of the trash cans.  

 

  Figure 11 : Top Left: Trash can data structure; Top Right: SmarTrash XML; Bottom: Google Maps 
compatible XML 

 
 

<Trashcans> 
 <Trashcan id="6"> 
   <Latitude>42.3535</Latitude> 
   <Longitude>-71.0655</Longitude> 
      <Status>1</Status> 
      <Sense1> 
        <Planar1>94</Palanr1> 
        <Planar2>104</Planar2> 
        <Depth>191</Depth> 
      </Sense1> 
      <Sense2> 
        <Planar1>89</Planar1> 
        <Planar2>102</Planar2> 
        <Depth>204</Depth> 
      </Sense2> 
 </Trashcan> 
</Trashcans> 

<markers> 
  <marker lat="42.35347772212898" lng="-71.065514087677" status="1"/> 
</markers> 
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Additionally, the status of each trash can after a run is stored in the mySQL database for 
data logging purposes. The database has two tables, one that has the run ID and the time the 
sense cycle was initiated, while the other contains a list of the trash can IDs, trash can statuses, 
and the run IDs.  The second table contains trash can status from each run, so all the previous 
history of the system is preserved.  The server software also has a tool that allows the user to 
output the values from the table into a tab delimited text file that can easily be imported into a 
spreadsheet program for further analysis.  At the end of every sense cycle, STARd marks its data 
as old data, and when on the next sense cycle, new data is received from a trash can, that trash 
can’s data is marked new.  If data is not received for one trash can on a given run, then its last 
known status is displayed along with a small red cross on its icon to indicate that no data was 
received from that trash can on this sensing cycle. 

3.8 Web Interface  
The user interacts with SmarTrash via a web browser.  The GUI is built using HTML, 

AJAX, and Version 2 of the Google Maps API.  When the user first opens the web site, a map is 
created using the Google Maps API.  An AJAX script then loads and parses trash can 
information from an XML file, and updates the status of each trash can on the map (Figure 12).  
The web interface also contains a 128-bit SSL secured area where, after password-based 
authentication, the user can initiate a poll of the trash cans’ status.   

 A web browser interface was chosen over a standalone program to ensure portability and 
user-familiarity.  Moreover, many potential users have had exposure to online maps.  The 
Google Maps API makes it easy for users to manipulate the map, move around the field, and 
zoom in and out in familiar ways. 

Icon Trash can Status 

 Empty 

 Almost full 

 Full 

 Needs maintenance 

 Empty, old data 

 Almost full, old data 

 Full, old data 

 
Needs Maintenance, 
old data 

Figure 12 : Screen shot of Web 
interface 

Table 4 : Map Icon Legend
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3.9 Practical Considerations 

3.9.1 Economic Viability 
A preliminary cost analysis suggests that SmarTrash is economically viable. To 

demonstrate this, the SmarTrash system can be compared to the cost of current trash collection 
systems in parks. A typical, full-size (55 US gallon) outdoor trash can costs between US$400 [6] 
and US$2500 [6].  SmarTrash infrastructure expenses, which include the web server and 
Ethernet Gateway, can be as low as US$325 (Table 5b). Subsequently, the additional hardware 
per trash can cost approximately US$200 (Table 5a).  Further, the US$200 in hardware does not 
factor in economies of scale, in which case the price of mote hardware could drop by a factor of 
10  [7]. 

 
Studies of the system’s economic feasibility also showed that the system had a payback 

period of 28 months. The calculations used very conservative estimates and assumed a cost of 
US$200 per trash can and an attrition rate of 5% of total cans per year.  The study was for a 100 
can deployment, in a usage scenario where 5% of total monthly trips were saved and each trip 
cost US$5.33 per can, regardless of whether it was emptied or not.  It is projected that when the 
costs per can fall to US$100, with all other parameters constant, the system will have paid for 
itself in less than 14 months.  The figure for the attrition rate provides correction for vandalism 
and loss of trash cans. 

3.9.2 Scalability 
The system has been tested using four motes.  However, based on TinyOS limitations, the 

system is capable of supporting up to 65,000 motes per Ethernet Gateway. 

3.9.3 Physical Construction 
The SmarTrash system is designed for seamless integration into a customized injection- 

molded plastic lid that fits onto a 55-gallon steel trash can.  The lid features weather-proof 
housing for all electronics, including channels for wiring, while internally mounting the antenna 
protects it from vandalism.  With the exception of the batteries, which are accessible via a locked 
compartment, all internal components are sealed within the housing to prevent theft.  The 
hardened solar cells are mounted externally and appropriately positioned to maximize sun 
exposure.  Although the plastic lid and low mass of electronics provide some protection against 
impact damage that is expected from service operations of emptying cans, or minor vandalism, 
the electronics are attached using rubber mountings which further reduce shock.  As a final 
precautionary measure, the lid is secured to the trash can to prevent its accidental or malicious 
removal.  As is evinced by the CAD schematic of the proposed lid (Fig. 13), the Planar Sensors 

Description Cost in US$ 
MIB 600 Ethernet Gateway Board 300.00
Server Running Linux 25.00
Total 325.00

Description Cost in US$ 
Custom PCB 33.00
Batteries (2x AA) 3.60
MICA2 mote 125.00
GP2D12 Infrared Depth Sensor 11.50
Solar Cell (2x 3V solar cells) 24.50
Small components 15.14
Total 212.74

Table 5a (Left) : Hardware cost per trash can 
 Table 5b (Top) : Infrastructure hardware cost  
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are housed in the grey ring.  The Depth Sensor is mounted in such a way that it looks through the 
hole in the green housing.  The sensors are 
integrated into their housings and require little 
maintenance, as the entire assembly can be easily 
replaced.  The blue compartment contains the 
mote, antenna, PCB and the battery pack.  The 
entire lid is created out of injection- molded 
plastic and thus the antenna can be housed 
internally, preventing vandalism while retaining 
the ability to transmit at close to its full range.  
The various colored housings snap into place, 
allowing for ease of assembly while ensuring that 
the electronics are well protected.  

The prototype system has not implemented 
the expensive injection molded plastic lid, but has 
used a standard steel lid.  All testing was with the 
steel lid and an external quarter wavelength 
antenna.  Performance with the plastic lid should 
be as good as or better than the prototype. 

4 System Verification 

4.1 Tools 
Two tools were developed to aid in the design, debugging, and verification of the main design 
effort. 

4.1.1 Mote Interpreter  
A mote message packet interpreter 

was developed using C# .NET 
Framework to aid in the debugging of 
the network.  The program connects with 
the Ethernet Gateway, parses packets 
into several formats, and outputs the data 
to both the screen and a file.  This 
allowed the programmer to see the 
packets that were being sent between the 
Base Mote and the Data Motes in the 
network. 

   
 

 

Figure 13 : Breakaway view of Plastic Lid

Figure 14 : Screen shot of mote interpreter software 
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4.1.2 Packet Injector 
The packet injector was developed to test the sleep and wake-up functions of the mote.  

The tool, based on a TinyOS program, is written in Java and enables the user to inject a packet 
into the mote running on the Ethernet Gateway.  This packet is then broadcast to all the nodes, 
signaling that the mote should wake-up and begin its sensing cycle.  

4.2 Incremental Testing 
The Depth and Planar sensors were tested extensively before being integrated with the 

mote software.  First, a mock construction of the trash can rim was created to test and revise the 
sensing methods.  When the results demonstrated that the system could effectively discern the 
presence of an object, software was written to control the sensors.  This was also tested 
separately from the entire SmarTrash system, using the MICA2’s LEDs to indicate the sensor 
status.  

The sleep software was tested by measuring the current consumption of the mote hardware 
and by verifying its ability to interpret the wake-up and sleep packets correctly. 

The mesh network was tested both as a standalone system and as a component integrated 
with the sensing and sleep software.  The verification process encompassed three separate tests:  
single-hop data transmission, multi-hop data transmission, and high traffic testing.  Single-hop 
data transmission tests were conducted with a single mote communicating with the Base Mote, 
while multi-hop data transmission tests were conducted with a set of 4 motes.  Communications 
were verified with a mote two and three hops away from the Base Mote.   To simulate high 
traffic, the motes were placed within close proximity (1 m) of the base station so that the 
probability of collisions was increased.  In all cases, the percentage of data packets received by 
the Base Mote was 100%.    

Combined testing of the networking, sensing, and sleep software focused less on the 
capabilities of each of the individual components and, instead attempted to demonstrate that the 
three SmarTrash mote software pieces functioned as a unit.  The initial round of tests addressed 
single-hop transmission of sensor data to the Base Mote.  The goal of this round was to observe 
the voltages transmitted to the Base Mote when the sensors were blocked in different 
configurations.  Since the desired range of voltages were known a priori from previous testing of 
the sensors, the concordant values received by the Base Mote were found to be correct. 

The web interface has been extensively tested with all leading browsers and is compatible 
with Firefox, Internet Explorer, Netscape, Opera, Camino, and KHTML/Safari.   

4.3   Full System Testing 
The SmarTrash system was also fully tested with all components integrated.  Results were 

determined by observing the map interface.  The system contains two major variables: – the 
network and the sensors. The large number of possible distributions of trash within a trash can 
creates a large number of circumstances to test.  Sample trash used to test the accuracy of the 
system was a heterogeneous mix of paper and plastic objects. The system was tested with the 
following four levels of trash, which encompass essentially all working trash can statuses: 

• 10 cm from the bottom of the can 
• 50 cm from the rim of the can 
• 30 cm from the rim of the can 
• 1 cm over the rim of the can 
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There are four possible configurations of the mesh network using the four motes available to the 
SmarTrash team.  The following network configurations, using four motes, were tested for each 
trash level: 

• [(Base)],[(1 Hop)],[(1 Hop)],[(1 Hop)] 
• [(Base)],[(1 Hop)],[(1 Hop)],[(2 Hops)] 
• [(Base)],[(1 Hop)],[(2 Hops)],[(2 Hops)] 
• [(Base)],[(1 Hop)],[(2 Hops)],[(3 Hops)] 

One mote acted as a Base Mote, one mote was attached to the sensors, and the remaining two 
motes sent an arbitrary valid voltage values.  The mote attached to the sensors was in every 
possible position in each permutation. 

From these extensive tests, it was determined that the system was accurate in 99.3% of the 
total results.  “Accurate” means here that each mote determined correctly the trash can’s 
empty/full/disabled status and successfully transmitted this data to the Base Mote.  The 99.3% 
represented 1 failures out of 140 trials.    



CSIDC 2006: Boston University                                    

 
Page 21 of 22 

5 Summary 

5.1 Conclusion 
The SmarTrash system exists as a fully functional prototype.  The system consists of a 

custom-designed circuit board (Figure 4) connected to sensors and MICA2 motes integrated into 
a 55-gallon outdoor trash can.   The trash can lid currently in use is a steel hemispherical lid, 
although future models will employ a custom-built plastic lid.  The antenna and solar cells are 
mounted externally on the lid, while all other electronics are housed internally in a ruggedized 
plastic box and attached with shock-absorbing rubber grommets and washers to the lid.  The 
system is able to detect the status of a trash can and transmit the sensor readings over single or 
multiple hops to the base station, where the server software can extract the data and update a 
Google Maps-based GUI to reflect the new information.  The server software also produces the 
data in formats that can be converted for use in ESRI ArcGIS.  Additionally, the web interface 
allows users to manually initiate a poll of system status.  The motes enter low power sleep mode 
and the solar cells recharge the mote batteries, permitting self-contained operation.  This 
complete system has been shown to successfully meet design specifications and functional 
requirements.  SmarTrash is able to store data from each run for a long term allowing the user to 
perform statistical analyses to discern long term trends in the trash cans’ statuses, that could lead 
to more efficient positioning of trash cans. 

Additional analyses of the economic viability and scalability show that SmarTrash lends 
itself to large-scale deployment in urban parks.  A system like SmarTrash will simultaneously 
pay for itself and protect the environment.  Using conservative estimates and data collected from 
the SmarTrash survey, a payback period of two years is estimated.  Most importantly, SmarTrash 
will enable park officials to efficiently schedule trash pickup, reducing emissions from garbage 
trucks and allowing more time for other environmental projects, while still effectively preventing 
the overflow of trash cans. 

5.2 Future Work  
The next stage of work involves the finalization of designs for and construction of the 

custom plastic lid.  Schematics for this lid have been created in CAD software to allow for mass-
production.  Once the plastic lid is fabricated, long-term outdoor testing of the SmarTrash system 
can commence.  When these tests are successful, more lids can be manufactured to allow for 
deployment on a larger scale. 

The server-side processing of information opens the door for the server to be able to 
provide additional services to the user, such as approximate route finding.  Approximate route 
finding will add an overlay on the map, showing a reasonably good path a worker could employ 
to empty the trash cans.  An existing best-case algorithm with reasonable computation overhead 
would be used. 
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