
1

Operating System Kernels 1

Operating System Support for
Performance Monitoring

Witawas Srisa-an
Chapter: not in the book

Operating System Kernels 2

Imagine …
 Tom is deploying a new server program for his

client. During the field test, he notices that its
performance is below his expectation. How would
he identify the main causes?

 A company is planning to upgrade the server
systems. You are asked to analyze which
systems and which configurations will perform
best when executing its main point-of-sale
application. How would you perform the analysis?

2

Operating System Kernels 3

Imagine …
 You are deploying an embedded computer

system that will run only 3 applications
simultaneously. You are asked to hand tuned
these three applications to minimize:
 Instruction count
 Execution time in cycles
 L1 data cache misses
 Pipeline stalls, etc.

 You want to compare the performance of your
very own malloc function to existing techniques.
How would you conduct the comparison?

Operating System Kernels 4

Remember?

3

Operating System Kernels 5

Outline

 What are Model Specific Registers (MSRs)
 Why are they there?
 How do we use them in the OS context?

Operating System Kernels 6

MSRs

 Programmable registers to satisfy
performance cognizant consumers
 A small number (2 in P1, 4 in Athlon, 8 in P4)
 Can count several on-going events
 Each counter has a control register

 Set interrupts on overflow
 Cycle detection versus event detection
 Work in various privilege levels
 Set the event(s) to monitor

4

Operating System Kernels 7

MSRs

 Currently supported by many architectures
 AMD Athlon, Opteron
 HP (DEC or Compaq) Alpha
 Intel Itanium, Pentium
 Sun UltraSparc II
 Many more

Operating System Kernels 8

MSRs

 Intel
 P1: RDTSC and 2 MSRs
 P4: RDTSC and 9 registers to monitor 48

events
 AMD

 Athlon & Opteron: RDTSC and 4 registers to
monitor 58+ events

5

Operating System Kernels 9

MSRs

 L1 Misses
 Load-Store Buffer Full
 Dispatched Floating Point Unit operations
 Cycle counter
 many many more events

Operating System Kernels 10

MSRs

 RDTSC (in X86)
 A special 64 bit register
 Stored the cycle counter value in eax and ecx
 Start from zero when the machine is booted

 For a 3GHz, takes about 195 years to roll over

6

Operating System Kernels 11

MSRs

 Not well documented
 No APIs support
 Change frequently
 Last thing on the (long) to-do list of the

hardware engineers

Sounds great! What’s the catch?

Operating System Kernels 12

No More Wall Clock Time?

 Yes, cycle counting is more accurate
 Yes, monitoring micro-architecture events

give us more insights
 No, the information is still system wide.

 Getting L1 misses in a system with 105
processes. What does that tell you about each
process?

7

Operating System Kernels 13

Performance Monitoring in the OS
Context

 The focus of Programming Assignment 2
 To obtain events information per process

 Simplified by using RDTSC
 Create new system calls to provide per process information

What do we need from the OS?

Operating System Kernels 14

OS support

new ready running exit

blocked

