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Deadlock

 Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other

 No efficient solution
 Involve conflicting needs for resources by

two or more processes
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Reusable Resources
 Used by one process at a time and not

depleted by that use
 Processes obtain resources that they later

release for reuse by other processes
 Processors, I/O channels, main and

secondary memory, files, databases, and
semaphores

 Deadlock occurs if each process holds one
resource and requests the other
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Example of Deadlock
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Another Example of Deadlock
 Space is available for allocation of 200K

bytes, and the following sequence of
events occur

 Deadlock occurs if both processes
progress to their second request

P1

. . .

. . .
Request 80K bytes;

Request 60K bytes;

P2

. . .

. . .
Request 70K bytes;

Request 80K bytes;
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Consumable Resources

 Created (produced) and destroyed
(consumed) by a process

 Interrupts, signals, messages, and
information in I/O buffers

 Deadlock may occur if a Receive message
is blocking

 May take a rare combination of events to
cause deadlock
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Example of Deadlock

 Deadlock occurs if receive is blocking

P1

. . .

. . .
Receive(P2);

Send(P2, M1);

P2

. . .

. . .
Receive(P1);

Send(P1, M2);
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Conditions for Deadlock

 Mutual exclusion
 Only one process may use a resource at a

time
 Hold-and-wait

 A process request all of its required resources
at one time
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Conditions for Deadlock

 No preemption
 If a process holding certain resources is denied

a further request, that process must release its
original resources

 If a process requests a resource that is
currently held by another process, the
operating system may preempt the second
process and require it to release its resources
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Conditions for Deadlock

 Circular wait
 Prevented by defining a linear ordering of

resource types
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Deadlock Avoidance

 A decision is made dynamically whether
the current resource allocation request will,
if granted, potentially lead to a deadlock

 Requires knowledge of future process
request
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Two Approaches to
Deadlock Avoidance

 Do not start a process if its demands might
lead to deadlock

 Do not grant an incremental resource
request to a process if this allocation might
lead to deadlock
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Resource Allocation Denial

 Referred to as the banker’s algorithm
 State of the system is the current allocation

of resources to process
 Safe state is where there is at least one

sequence that does not result in deadlock
 Unsafe state is a state that is not safe
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Determination of a Safe State
Initial State

Safe or unsafe?
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Determination of a Safe State
P2 Runs to Completion
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Determination of a Safe State
P1 Runs to Completion
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Determination of a Safe State
P3 Runs to Completion
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Determination of an
Unsafe State
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Determination of an
Unsafe State
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Deadlock Avoidance
 Maximum resource requirement must be

stated in advance
 Processes under consideration must be

independent; no synchronization
requirements

 There must be a fixed number of resources
to allocate

 No process may exit while holding
resources
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Deadlock Detection
 Mark each process that has a row in the

Allocation matrix of all zeros
 Initialize a temp vector W to equal the

available vector
 Find an index I such that process I is

unmarked and the ith row of Q is <= W
 if not exist, terminate
 if exist, mark the process and add the

corresponding row of A matrix to W
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Deadlock Detection

mark P4 since it has no allocated resources
Set W to available vector (00001)
R for P3 is less >= w so mark P3 and set W to 00001 + 00010 [P3 in A]
terminate
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Strategies once Deadlock Detected
 Abort all deadlocked processes
 Back up each deadlocked process to some

previously defined checkpoint, and restart
all process
 original deadlock may occur

 Successively abort deadlocked processes
until deadlock no longer exists

 Successively preempt resources until
deadlock no longer exists
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Selection Criteria Deadlocked
Processes

 Least amount of processor time consumed
so far

 Least number of lines of output produced
so far

 Most estimated time remaining
 Least total resources allocated so far
 Lowest priority


