
1

Operating System Kernels 1

Deadlock

Witawas Srisa-an
Chapter 6

Operating System Kernels 2

 

Deadlock

 Permanent blocking of a set of processes
that either compete for system resources
or communicate with each other

 No efficient solution
 Involve conflicting needs for resources by

two or more processes



2

Operating System Kernels 4

 



3

Operating System Kernels 6

 

Reusable Resources
 Used by one process at a time and not

depleted by that use
 Processes obtain resources that they later

release for reuse by other processes
 Processors, I/O channels, main and

secondary memory, files, databases, and
semaphores

 Deadlock occurs if each process holds one
resource and requests the other



4

Operating System Kernels 7

 

Example of Deadlock

Operating System Kernels 8

 

Another Example of Deadlock
 Space is available for allocation of 200K

bytes, and the following sequence of
events occur

 Deadlock occurs if both processes
progress to their second request

P1

. . .

. . .
Request 80K bytes;

Request 60K bytes;

P2

. . .

. . .
Request 70K bytes;

Request 80K bytes;



5

Operating System Kernels 9

 

Consumable Resources

 Created (produced) and destroyed
(consumed) by a process

 Interrupts, signals, messages, and
information in I/O buffers

 Deadlock may occur if a Receive message
is blocking

 May take a rare combination of events to
cause deadlock

Operating System Kernels 10

 

Example of Deadlock

 Deadlock occurs if receive is blocking

P1

. . .

. . .
Receive(P2);

Send(P2, M1);

P2

. . .

. . .
Receive(P1);

Send(P1, M2);



6

Operating System Kernels 11

 

Conditions for Deadlock

 Mutual exclusion
 Only one process may use a resource at a

time
 Hold-and-wait

 A process request all of its required resources
at one time

Operating System Kernels 12

 

Conditions for Deadlock

 No preemption
 If a process holding certain resources is denied

a further request, that process must release its
original resources

 If a process requests a resource that is
currently held by another process, the
operating system may preempt the second
process and require it to release its resources



7

Operating System Kernels 13

 

Conditions for Deadlock

 Circular wait
 Prevented by defining a linear ordering of

resource types

Operating System Kernels 14

 

Deadlock Avoidance

 A decision is made dynamically whether
the current resource allocation request will,
if granted, potentially lead to a deadlock

 Requires knowledge of future process
request



8

Operating System Kernels 15

 

Two Approaches to
Deadlock Avoidance

 Do not start a process if its demands might
lead to deadlock

 Do not grant an incremental resource
request to a process if this allocation might
lead to deadlock

Operating System Kernels 16

 

Resource Allocation Denial

 Referred to as the banker’s algorithm
 State of the system is the current allocation

of resources to process
 Safe state is where there is at least one

sequence that does not result in deadlock
 Unsafe state is a state that is not safe



9

Operating System Kernels 17

 

Determination of a Safe State
Initial State

Safe or unsafe?

Operating System Kernels 18

 

Determination of a Safe State
P2 Runs to Completion



10

Operating System Kernels 19

 

Determination of a Safe State
P1 Runs to Completion

Operating System Kernels 20

 

Determination of a Safe State
P3 Runs to Completion



11

Operating System Kernels 21

 

Determination of an
Unsafe State

Operating System Kernels 22

 

Determination of an
Unsafe State



12

Operating System Kernels 23

 

Deadlock Avoidance
 Maximum resource requirement must be

stated in advance
 Processes under consideration must be

independent; no synchronization
requirements

 There must be a fixed number of resources
to allocate

 No process may exit while holding
resources

Operating System Kernels 24

 

Deadlock Detection
 Mark each process that has a row in the

Allocation matrix of all zeros
 Initialize a temp vector W to equal the

available vector
 Find an index I such that process I is

unmarked and the ith row of Q is <= W
 if not exist, terminate
 if exist, mark the process and add the

corresponding row of A matrix to W



13

Deadlock Detection

mark P4 since it has no allocated resources
Set W to available vector (00001)
R for P3 is less >= w so mark P3 and set W to 00001 + 00010 [P3 in A]
terminate

Operating System Kernels 26

 

Strategies once Deadlock Detected
 Abort all deadlocked processes
 Back up each deadlocked process to some

previously defined checkpoint, and restart
all process
 original deadlock may occur

 Successively abort deadlocked processes
until deadlock no longer exists

 Successively preempt resources until
deadlock no longer exists



14

Operating System Kernels 27

 

Selection Criteria Deadlocked
Processes

 Least amount of processor time consumed
so far

 Least number of lines of output produced
so far

 Most estimated time remaining
 Least total resources allocated so far
 Lowest priority


