
1

Lab2: Semaphores and
Monitors

Credits

• Material in this slide set is from G.
Andrews, “Foundation of Multithreaded,
Parallel, and Distributed Programming”,
Addison Wesley, 2000.

2

Semaphores

• Used for
– Mutual Exclusion (homework 2)
– Barriers

• Signaling events (lab 2)

• Low level mechanism
– Easy to make mistakes
– Hard to understand

Monitors

• Program modules that provide more
structure than semaphores
– Abstract objects that are well encapsulate
– Only one process or thread can be in the

monitor at one time
– Use condition variables

3

Monitors

• Active processes
– Interact by calling procedure in the same

monitor
• Passive monitors

– Provide methods to manipulate data but no
access to internal data structures

Monitors

• Benefits
– Implementation independent

• Only visible effects matter
– Callers independent

• Monitor writers can change the implementation as
long as the same effects are maintained

4

Monitors

• Provide mutual exclusion implicitly
– Only one instance of the monitor can be

active at one time
• 2 calls to two different procedures in the same

monitor? NO!
• 2 calls to the same procedure in the same

monitor? NO!

Monitors

• Condition Variables
– Delay a process

• Monitor’s state fails to satisfy Boolean condition
– Awaken a process

• Awaken a process or processes if the condition
becomes true

Is this possible?

5

Monitors

• Signaling Disciplines

CV queue

Executing
In monitorEntry queue

SC

SW

SW

Monitor free

wait

call return

From G. Andrews, “Foundation of Multithreaded, Parallel, and Distributed
Programming”, Addison Wesley, 2000

Monitors

• Signal and continue: signalers continues
and the signaled process executes at
some later time
– Non-preemptive

• Signal and wait: signaler waits and the
signaled process executes now
– Preemptive

6

Monitors

• Signal and Wait in Unix?

