Threads

CSCE 351: Operating System
Kernels

Witawas Srisa-an
Chapter 4-5

Threads
The Thread Model (1)

Process 1 Process 1 Process 1 Process

\\ | | 1
User
space
Thread

Thread

Kernel K |
space Kernel erne

(a) Three proc(ea)sses each with one thre(gd
(b) One process with three threads

The Thread Model (2)

Per process items
Address space
Global variables
Open files

Child processes
Pending alarms

Signals and signal handlers
Accounting information

Per thread items
Program counter
Registers

Stack

State

* ltems shared by all threads in a process
* |tems private to each thread

The Thread Model (3)

Thread 2

Thread 1 \ Thread 3
AY

Thread 1's —
stack

SER e
i B

|_~ Process

— Thread 3's stack

Kernel

Each thread has its own stack

Thread Usage (1)

=
Kernel

Keyboard Disk

A word processor with three threads

Thread Usage (2)

Web server process

|
:

Dispatcher thread

Worker thread u
ser
space

Web page cache
Kernel
Kernel space
Network
connection

A multithreaded Web server

Thread Usage (3)

while (TRUE) { while (TRUE) {
get_next_request(&buf); wait_for_work(&buf)
handoff_work(&buf); look_for_page_in_cache(&buf, &page);
} if (page_not_in_cache(&page)

read_page_from_disk(&buf, &page);
return_page(&page);
}
(@) (b)

» Rough outline of code for previous slide
(a) Dispatcher thread

(b) Worker thread
7
Thread Usage (4)
Model Characteristics
Threads Parallelism, blocking system calls
Single-threaded process | No parallelism, blocking system calls
Finite-state machine Parallelism, nonblocking system calls, interrupts

Three ways to construct a server

Implementing Threads in User Space

Process Thread

) /
\
o ’ 589
/AN —
“ | B

Kernel
space Kernel

/ |
Run-time Thread Process
system table table

A user-level threads package

Implementing Threads in the Kernel

Process Thread
Kernel E %
—
Process Thread
table table

A threads package managed by the kernel

10

Hybrid Implementations

Multiple user threads
on a kernel thread

\ |

User
space

Kernel
Kernel ~— Kernel thread space

Multiplexing user-level threads onto kernel-
level threads

11

Scheduler Activations

Goal — mimic functionality of kernel threads
— gain performance of user space threads

Avoids unnecessary user/kernel transitions

Kernel assigns virtual processors to each process
— lets runtime system allocate threads to processors

Problem:
Fundamental reliance on kernel (lower layer)

calling procedures in user space (higher layer)

12

Pop-Up Threads

Pop-up thread
Process created to handle

\ incoming message

(3

| | Incoming message | |

Existing thread

Network
(@) (b)

» Creation of a new thread when message arrives
(a) before message arrives
(b) after message arrives .

Making Single-Threaded Code Multithreaded (1)

Thread 1 Thread 2

Access (errno set)

~— Time

)

Open (errno overwritten)

j

Errno inspected

Conflicts between threads over the use of a global variable

14

Making Single-Threaded Code Multithreaded (2)

Thread 1's
code

Thread 2's
code

Thread 1's
stack ~

Thread 2's
/ stack

Thread 1's
globals

Thread 2's
globals

Threads can have private global variables

15

Interprocess Communication
Race Conditions

Spooler
directory
4 abc | out=4 |
Process A 5 preg.c
6 prog.n
7 [in=7 |

Two processes want to access shared memory at same time

16

Critical Regions (1)

1.
2.
3.

Four conditions to provide mutual exclusion

another process

No two processes simultaneously in critical region
No assumptions made about speeds or numbers of CPUs
No process running outside its critical region may block

No process must wait forever to enter its critical region

17

Critical Regions (2)

Processs A ——

Process B

A enters critical region

/

A leaves critical region

1 I
1 1
| |
B attempts to | B enters | B leaves
1 1
| |

N

Vil .

T
I
|
: enter critical critical region critical region
|
|
I
I
' B blocked ' '

T, Ty T,

Time ————>

Mutual exclusion using critical regions

18

Mutual Exclusion with Busy Waiting (1)

while (TRUE) { while (TRUE) {
while (turn = 0) /* loop */ ; while (turn = 1) /* loop */ ;
critical _region(); critical _region();
turn =1; turn = 0;
noncritical _region(); noncritical_region();

(a) (b)

Proposed solution to critical region problem
(a) Process 0. (b) Process 1.

No process running outside its critical region may block another pro%ess

Mutual Exclusion with Busy Waiting (2)

Peterson's solution

#define FALSE 0
#define TRUE 1

#define N 2 /* number of processes */
/* whose turn is it? */
int interested[N]; /* all values initially 0 (FALSE) */
void enter__region(int process); /* process is 0 or 1 */
{ int other; /* number of the other process */
other = 1 — process; /* the opposite of process */

interested[process] = TRUE; /* show that you are interested */
/* set flag */
while (turn == process && interested[other] == TRUE) /* null statement */ ;

}

void leave _region(int process) /* process: who is leaving */

{

interested[process] = FALSE; /* indicate departure from critical region */

20

10

Mutual Exclusion with Busy Waiting (3)

enter_region:

TSL REGISTER,LOCK | copy lock to register and set lock to 1
CMP REGISTER,#0 | was lock zero?
JNE enter_region | if it was non zero, lock was set, so loop

RET | return to caller; critical region entered

leave_region:
MOVE LOCK,#0 | store a 0 in lock
RET | return to caller

Entering and leaving a critical region using the
TSL instruction

21

Sleep and Wakeup

#define N 100 /* number of slots in the buffer */
int count = 0; /* number of items in the buffer */

void producer(void)

int item;

while (TRUE) { /* repeat forever */
item = produce_item(); /* generate next item */
if (count == N) sleep(); /* if buffer is full, go to sleep */
insert_item(item); /* put item in buffer */

= * increment count of items in buffer */
if (count == 1) wakeup(consumer); /¢ was buffer empty? */

H

}

void consumer(void)

int item;
while (TRUE /* repeat forever */
w /+ if buffer is empty, got to sleep */
item = remove _item(); /* take item out of buffer */
count = count - 1; /* decrement count of items in buffer */
if (count == N — 1) wakeup(producer); /* was buffer full? */
consume__item(item); /* print item */

}
}

Producer-consumer problem with fatal race condition

22

11

Semaphores

* A variable type
— 0 or any positive values (counting)
— 0 or 1 (binary)

» Support two operations

— down (p)
« if value > 0 then decrement

« if value = 0 then suspend process without completing the
down

* indivisible atomic action
— up (V)
* increment the semaphore value and if there are
processes sleeping on the semaphore, wake one of ther2r31

up

Semaphore

arena

L I e

24

12

Semaphores

#define N 100

typedef int semaphore;
semaphore mutex = 1;
semaphore empty = N;
semaphore full = 0;

void producer(void)
int item;

while (TRUE) {

item = produce_item();

down(&empty);
down(&mutex);
insert_item(item);
up(&mutex);
up(&full);
}
}

void consumer(void)
int item;

while (TRUE) {
down(&full);
down(&mutex);
item = remove_item();
up(&mutex);
up(&empty);
consume _item(item);

}

/* number of slots in the buffer */

/* semaphores are a special kind of int */
/* controls access to critical region */

/* counts empty buffer slots */

/* counts full buffer slots */

/* TRUE s the constant 1 */

/* generate something to put in buffer */
/* decrement empty count */

/* enter critical region */

/* put new item in buffer */

/* leave critical region */

/* increment count of full slots */

/* infinite loop */

/* decrement full count */

/* enter critical region */

/* take item from buffer */

/* leave critical region */

/* increment count of empty slots */
/* do something with the item */

}
The producer-consumer problem using semaphores 25

mutex__lock:

Mutexes

TSL REGISTER,MUTEX | copy mutex to register and set mutex to 1
CMP REGISTER,#0 | was mutex zero?
JZE ok | if it was zero, mutex was unlocked, so return
CALL thread_yield | mutex is busy; schedule another thread
JMP mutex__lock | try again later

ok: RET| return to caller; critical region entered

mutex_unlock:
MOVE MUTEX,#0
RET | return to caller

| store a 0 in mutex

Implementation of mutex_lock and mutex _unlock

26

Example Program

» suspend.c and wake.c

27

Monitors

« Language construct
— higher level synchronization primitive

» Only one process can be active in a
monitor at any instant

» Use condition variables to block
processes
— wait operation
— signal operation

28

14

Monitors (1)

monitor example
integer i;
condition c;

procedure producer();

end;

procedure consumer();

end;
end monitor:;

Example of a monitor

29

Monitors (2)

monitor ProducerConsumer
condition full, empty;
integer count;
procedure insert(item: integer);
begin
if count = N then wait(full);
insert_item(item);
count = count + l;
if count = 1 then signal(empty)
end;
function remove: integer;
begin
if count = 0 then wait(empty);
remove = remove _item;
count := count — 1;
if count = N — 1 then signal(full)
end;
count :=0;
end monitor;

procedure producer;
begin
while true do
begin
item = produce_item;
ProducerConsumer.insert(item)
end
end;
procedure consumer;
begin
while true do
begin
item = ProducerConsumer.remove;
consume _item(item)
end
end:

» OQutline of producer-consumer problem with monitors

— only one process can be active in a monitor at one time

— buffer has N slots

30

15

The Readers and Writers Problem

typedef int semaphore; /* use your imagination */

semaphore mutex = 1; /* controls access to 'rc’ */

semaphore db = 1; /* controls access to the database */
intrc=0; /* # of processes reading or wanting to */

void reader(void)

while (TRUE) { /* repeat forever */
down(&mutex); /* get exclusive access to 'rc’ */
rc=rc+1; /* one reader more now */
if (rc == 1) down(&db); /* if this is the first reader ... */
up(&mutex); /* release exclusive access to 'rc’ */
read_data_base(); /* access the data */
down(&mutex); /* get exclusive access to 'rc’ */
rc=rc—1; /* one reader fewer now */
if (rc == 0) up(&db); /* if this is the last reader ... */
up(&mutex); /* release exclusive access to 'rc’ */
use_data_read(); /* noncritical region */

void writer(void)

while (TRUE) { /* repeat forever */
think_up_data(); /* noncritical region */
down(&db); /* get exclusive access */
write__data_base(); /* update the data */
up(&db); /* release exclusive access */

A solution to the readers and writers problem 3

The Sleeping Barber Problem (1)

32

16

The Sleeping Barber Problem (2)

#define CHAIRS 5
typedef int semaphore;

semaphore customers = 0;
semaphore barbers
semaphore mutex =
int waiting = 0;

void barber(void)

while (TRUE) {
down(&customers);
down(&mutex);

waiting = waiting — 1;

up(&barbers);
up(&mutex);
cut__hair();

void customer(void)

down(&mutex);
if (waiting < CHAIRS) {

waiting = waiting + 1;

up(&customers);
up(&mutex);
down(&barbers);
get_haircut();
}else {
up(&mutex);
}

/* # chairs for waiting customers */
/* use your imagination */

/* # of customers waiting for service */

/* # of barbers waiting for customers */

/* for mutual exclusion */

/* customers are waiting (not being cut) */

/* go to sleep if # of customers is 0 */

/* acquire access to 'waiting’ */

/* decrement count of waiting customers */
/* one barber is now ready to cut hair */

/* release 'waiting’ */

/* cut hair (outside critical region) */

/* enter critical region */

/* if there are no free chairs, leave */

/* increment count of waiting customers */
/* wake up barber if necessary */

/* release access to ‘waiting’ */

/* go to sleep if # of free barbers is 0 */

/* be seated and be serviced */

/* shop is full; do not wait */

Solution to sleeping barber problem.

. Introduction to Scheduling (1)

Scheduling

@ I — i 1]

/

Long CPU burst

Waiting for 1/0

Short CPU burst

/

[
T

Il Il
u | =} | =}]

Time

» Bursts of CPU usage alternate with periods of 1/0 wait
— a CPU-bound process
— an I/O bound process

34

17

Introduction to Scheduling (2)

All systems
Fairness - giving each process a fair share of the CPU
Policy enforcement - seeing that stated policy is carried out
Balance - keeping all parts of the system busy

Batch systems
Throughput - maximize jobs per hour
Turnaround time - minimize time between submission and termination
CPU utilization - keep the CPU busy all the time

Interactive systems
Response time - respond to requests quickly
Proportionality - meet users’ expectations

Real-time systems
Meeting deadlines - avoid losing data
Predictability - avoid quality degradation in multimedia systems

Scheduling Algorithm Goals

35

Scheduling in Batch Systems (1)

8 4 4 4 4 4 4 8
A B C D B Cc D A
(a) (b)
8+12+16+20)/4 4+8+12+20)/4

= 14 units =11 units

An example of shortest job first scheduling

36

18

Scheduling in Batch Systems (2)

Arriving

job gt 00000

queue

Main
O [Joolop] ———> Memory <>

|

Disk

Admission Memory
scheduler scheduler
Three level scheduling .

Scheduling in Interactive Systems (1)

Current Next Current
process process process
&] o] o] 8]
(a) (b)

* Round Robin Scheduling
— list of runnable processes
— list of runnable processes after B uses up its quantum38

19

Scheduling in Interactive Systems (2)

Queue Runable processes
headers . A

Priority 4 (Highest priority)

Priority 3

Priority 2

Priority 1 (Lowest priority)

A scheduling algorithm with four priority classes

39

Scheduling in Real-Time Systems (1)

Schedulable real-time system
» Given
— m periodic events

— event j occurs within period P, and requires
C, seconds

» Then the load can only be handled if

i%sl

i=1 I 40

Scheduling in Real-Time Systems (2)

« Example

— four periodic events: 100, 200, 400, 600 ms
—required CPU times: 25, 40, 100, 120 ms

Is this system schedulable?

41

Thread Scheduling (1)

Process A Process B
Order in which
threads run
M Y
2. Runtime 1 @2
system
picks a —{
thread = [=]

L14 Kernel picks a process

Possible: A1, A2, A3, A1, A2, A3
Not possible: A1, B1, A2, B2, A3, B3

Possible scheduling of user-level threads
* 50-msec process quantum

+ threads run 5 msec/CPU burst o

21

Thread Scheduling (2)

Process A Process B

y y

\1 . Kernel picks a thread E

Possible: A1, A2, A3, A1, A2, A3
Also possible: A1, B1, A2, B2, A3, B3

Possible scheduling of kernel-level threads
* 50-msec process quantum

* threads run 5 msec/CPU burst .

22

