
1

1

Threads

CSCE 351: Operating System
Kernels

Witawas Srisa-an
Chapter 4-5

2

Threads
The Thread Model (1)

(a) Three processes each with one thread
(b) One process with three threads

2

3

The Thread Model (2)

• Items shared by all threads in a process
• Items private to each thread

4

The Thread Model (3)

Each thread has its own stack

3

5

Thread Usage (1)

A word processor with three threads

6

Thread Usage (2)

A multithreaded Web server

4

7

Thread Usage (3)

• Rough outline of code for previous slide
(a) Dispatcher thread
(b) Worker thread

8

Thread Usage (4)

Three ways to construct a server

5

9

Implementing Threads in User Space

A user-level threads package

10

Implementing Threads in the Kernel

A threads package managed by the kernel

6

11

Hybrid Implementations

 Multiplexing user-level threads onto kernel-
level threads

12

Scheduler Activations

• Goal – mimic functionality of kernel threads
– gain performance of user space threads

• Avoids unnecessary user/kernel transitions
• Kernel assigns virtual processors to each process

– lets runtime system allocate threads to processors
• Problem:

 Fundamental reliance on kernel (lower layer)
 calling procedures in user space (higher layer)

7

13

Pop-Up Threads

• Creation of a new thread when message arrives
(a) before message arrives
(b) after message arrives

14

Making Single-Threaded Code Multithreaded (1)

Conflicts between threads over the use of a global variable

8

15

Making Single-Threaded Code Multithreaded (2)

Threads can have private global variables

16

Interprocess Communication
Race Conditions

Two processes want to access shared memory at same time

9

17

Critical Regions (1)

• Four conditions to provide mutual exclusion
1. No two processes simultaneously in critical region
2. No assumptions made about speeds or numbers of CPUs
3. No process running outside its critical region may block

another process
4. No process must wait forever to enter its critical region

18

Critical Regions (2)

Mutual exclusion using critical regions

10

19

Mutual Exclusion with Busy Waiting (1)

Proposed solution to critical region problem
(a) Process 0. (b) Process 1.

No process running outside its critical region may block another process

20

Mutual Exclusion with Busy Waiting (2)

Peterson's solution

11

21

Mutual Exclusion with Busy Waiting (3)

Entering and leaving a critical region using the
TSL instruction

22

Sleep and Wakeup

Producer-consumer problem with fatal race condition

12

23

Semaphores

• A variable type
– 0 or any positive values (counting)
– 0 or 1 (binary)

• Support two operations
– down (p)

• if value > 0 then decrement
• if value = 0 then suspend process without completing the

down
• indivisible atomic action

– up (v)
• increment the semaphore value and if there are

processes sleeping on the semaphore, wake one of them
up

24

Semaphore

arena

…queue

13

25

Semaphores

The producer-consumer problem using semaphores

26

Mutexes

Implementation of mutex_lock and mutex_unlock

14

27

Example Program

• suspend.c and wake.c

28

Monitors

• Language construct
– higher level synchronization primitive

• Only one process can be active in a
monitor at any instant

• Use condition variables to block
processes
– wait operation
– signal operation

15

29

Monitors (1)

Example of a monitor

30

Monitors (2)

• Outline of producer-consumer problem with monitors
– only one process can be active in a monitor at one time
– buffer has N slots

16

31

The Readers and Writers Problem

A solution to the readers and writers problem

32

The Sleeping Barber Problem (1)

17

33

The Sleeping Barber Problem (2)

Solution to sleeping barber problem.

34

Scheduling
Introduction to Scheduling (1)

• Bursts of CPU usage alternate with periods of I/O wait
– a CPU-bound process
– an I/O bound process

18

35

Introduction to Scheduling (2)

Scheduling Algorithm Goals

36

Scheduling in Batch Systems (1)

An example of shortest job first scheduling

(8 + 12 + 16 + 20) / 4

= 14 units

(4 + 8 + 12 + 20) / 4

= 11 units

19

37

Scheduling in Batch Systems (2)

Three level scheduling

38

Scheduling in Interactive Systems (1)

• Round Robin Scheduling
– list of runnable processes
– list of runnable processes after B uses up its quantum

20

39

Scheduling in Interactive Systems (2)

A scheduling algorithm with four priority classes

40

Scheduling in Real-Time Systems (1)

Schedulable real-time system
• Given

– m periodic events
– event i occurs within period Pi and requires

Ci seconds
• Then the load can only be handled if

1

1

m

i

i i

C

P=

!"

21

41

Scheduling in Real-Time Systems (2)

• Example
– four periodic events: 100, 200, 400, 600 ms
– required CPU times: 25, 40, 100, 120 ms

Is this system schedulable?

42

Thread Scheduling (1)

Possible scheduling of user-level threads
• 50-msec process quantum
• threads run 5 msec/CPU burst

22

43

Thread Scheduling (2)

Possible scheduling of kernel-level threads
• 50-msec process quantum
• threads run 5 msec/CPU burst

