
1

Operating System Kernels 1

Introduction

Witawas Srisa-an
Chapter 0

Operating System Kernels 2

Today’s Agenda

 Discuss Administrative issues
 Make suggestions on how to survive this

class
 Talk a little about the history of OS
 Assign the first homework (prerequisite

evaluation), group exercise, lab1

2

Operating System Kernels 3

Administrative Stuff
 Take first-day attendance
 About the instructor
 Go over the syllabus
 Help resources

 TA Introduction
 Forum
 Office Hours
 Online Survival Page

 Course scheduling

Operating System Kernels 4

Administrative Stuff (cont.)

 How to survive this class
 GIGO does apply
 Get to know one of your classmates now
 Participate, participate, participate

 Answer questions, ask questions
 Give insightful answers or questions in the forum
 Show up during office hours
 You can get up to five points for participation

3

Operating System Kernels 5

What Do You Expect?

Operating System Kernels 6

What You Should Get Out of This Class

 Knowledge of OS internal
 Ability to do system programming
 Ability to modify an OS to fit your needs
 Experience about hardware/software

interface
 Practical OS experience

4

Operating System Kernels 7

CSCE351 Versus CSCE451

Hardware

Operating System

Applications

CSCE 351 CSCE451

Operating System Kernels 8

Questions

What is an operating system?

How many operating systems have you used?
Can you name them?

What are some of the differences among them?

5

Operating System Kernels 9

More Questions
What happens when you boot a PC?

What happens when you simultaneously log-
in to the department server?

What is the relationship between what you’ve
learned in Computer Organization (CSCE
230) and this class?
What is your most favorite programming
language?

Operating System Kernels 10

Credits
 The slide set for this lecture composes of

 Slides provided by William Stallings
accompanying our adopted textbook (but 4th

Edition)
 Slides provided by Andrew Tanenbaum

accompanying his textbook “Modern
Operating System” (2nd Edition)

 Some concepts from Silberschatz and
Galvin’s “Operating Systems” (4th Edition)

 My own creation

6

Operating System Kernels 11

Computer Organization

Witawas Srisa-an
Chapter 1

Operating System Kernels 12

System Hierarchy

Operating System

Hardware

User 1 User 2 User 3 User 4 User n…

Compiler Editor Database Calculator WP

From Operating System Concepts, Silberschatz and Galvin

7

Operating System Kernels 13

Abstraction

Microprocessor

Operating System

Virtual Machine

?

Operating System Kernels 14

Basic Elements of Hardware

 Processor(s)
 Main Memory

 volatile
 I/O modules

 secondary storage devices
 communications equipment
 terminals

 System bus
 communication among processors, memory, and I/O

modules

Monitor

Bus

8

Operating System Kernels 15

Top-Level Components

Operating System Kernels 16

Processor Registers

 User-visible registers
 Enable programmers to minimize main-

memory references by optimizing register use
 Control and status registers

 Used by the processor to control operation of
the processor

 Used by operating-system routines to control
the execution of programs

9

Operating System Kernels 17

User-Visible Registers
 May be referenced by machine language
 Available to all programs - application

programs and system programs
 Types of registers

 Data
 Address

 Index
 Segment pointer
 Stack pointer

Operating System Kernels 18

User-Visible Registers (2)
 Address Registers

 Index
 involves adding an index to a base value to get

an address
 Segment pointer

 when memory is divided into segments, memory
is referenced by a segment and an offset

 Stack pointer
 points to top of stack

10

Operating System Kernels 19

Control and Status Registers
 Program Counter (PC)

 Contains the address of an instruction to be fetched
 Instruction Register (IR)

 Contains the instruction most recently fetched
 Program Status Word (PSW)

 condition codes
 Interrupt enable/disable
 Supervisor/user mode

Operating System Kernels 20

Control and Status Registers (2)

 Condition Codes or Flags
 Set by the processor hardware to indicate

results of operations
 Can be accessed by a program but not altered
 Examples

 positive result
 negative result
 zero
 Overflow

11

Operating System Kernels 21

Instruction Cycle

(a) A three-stage pipeline
(b) A superscalar CPU

Operating System Kernels 22

Instruction Fetch, Decode, and Execute

 The processor fetches the instruction from
memory

 Program counter (PC) holds address of
the instruction to be fetched next

 Program counter is incremented after each
fetch

12

Operating System Kernels 23

Instruction Register

 Fetched instruction is placed in the
instruction register

 Instruction is then decoded
 Types of instructions

 Processor-memory
 Processor-I/O
 Data processing
 Control

Operating System Kernels 24

Example of a Program Execution

Assume Accumulator Machine

Assume:

1 = load
2 = store
5 = add

13

Operating System Kernels 25

Example of a Real System
Structure of a large Pentium system

Operating System Kernels 26

How do they communicate?

14

Operating System Kernels 27

Example

 Often on-going in my household
 Week-end to do list

 Mow the lawn (interactive)
 Do the laundry (non-interactive)
 Wash the dishes
 Clean the house
 Go out to lunch
 Cook dinner

Operating System Kernels 28

Example (2)

 Key components
 Need event notification
 Ability to start a job and let go

 Dish washing example
 Hand wash versus machine wash

 View the dish washer as I/O devices
 Do your own washing or ask somebody to do it

15

Operating System Kernels 29

Interrupts
 An interruption of the normal sequence of

execution
 Improves processing efficiency
 Allows the processor to execute other

instructions while an I/O operation is in progress
 A suspension of a process caused by an event

external to that process and performed in such a
way that the process can be resumed

Operating System Kernels 30

Interrupts (2)

(a) Steps in starting an I/O device and getting interrupt
(b) How the CPU is interrupted

(a)
(b)

16

Operating System Kernels 31

Classes of Interrupts
 Program

 arithmetic overflow
 division by zero
 execute illegal instruction
 reference outside user’s memory space

 Timer
 I/O
 Hardware failure

Operating System Kernels 32

Interrupt Handler

 A program that determines nature of the
interrupt and performs whatever actions
are needed

 Control is transferred to this program
 Generally part of the operating system

17

Operating System Kernels 33

Interrupt Cycle

Operating System Kernels 34

Interrupt Cycle (2)

 Processor checks for interrupts
 If no interrupts, processor fetches the next

instruction of the current program
 If an interrupt is pending,

 Suspends the execution of the current program
 Executes the interrupt handler

18

Operating System Kernels 35

Interrupt Cycle (3)

Write 1 is not done;
program hangs
because Write 2
cannot be processed.

Operating System Kernels 36

Multiple Interrupts

 Disable interrupts
while an interrupt is
being processed
 Processor ignores

any new interrupt
request signals

19

Operating System Kernels 37

Multiple Interrupts Sequential Order

 Disable interrupts so the processor can
complete the task

 Interrupts remain pending until the
processor enables interrupts

 After the interrupt handler routine
completes, the processor checks for
additional interrupts

Operating System Kernels 38

Multiple Interrupts Priorities

 Higher priority interrupts cause lower-
priority interrupts to wait
 Causes a lower-priority interrupt handler to be

interrupted
 Example

 When an input arrives from a communication
line, it needs to be absorbed quickly to make
room for more input

20

Operating System Kernels 39

Multiprogramming

 Processor has more than one program to
execute

 The sequence the programs are executed
depend on their relative priority and
whether they are waiting for I/O

 After an interrupt handler completes,
control may not return to the program that
was executing at the time of the interrupt

Operating System Kernels 40

Memory Hierarchy

21

Operating System Kernels 41

Memory Hierarchy (2)

Year 2000 numbers

Let’s replace with 2005 numbers

Operating System Kernels 42

Going Down the Hierarchy

 Decreasing cost per bit
 Increasing capacity
 Increasing access time
 Decreasing frequency of access of the

memory by the processor
 locality of reference

22

Operating System Kernels 43

Disk Cache

 A portion of main memory used as a buffer
to temporarily to hold data for the disk

 Disk writes are clustered
 Some data written out may be referenced

again. The data are retrieved rapidly from
the software cache instead of slowly from
disk

Operating System Kernels 44

Cache Memory

 Invisible to operating system
 Increase the speed of memory access
 Bridging processor/memory gap

 Processor speed is faster than memory speed

23

Operating System Kernels 45

Cache Memory

Operating System Kernels 46

Cache Memory

 Contains a portion of main memory
 Processor first checks cache
 If not found in cache, the block of memory

containing the needed information is
moved to the cache

24

Operating System Kernels 47

Cache/Main Memory System

Operating System Kernels 48

Cache Design
 Cache size

 small caches have a significant impact on
performance

 Block size
 the unit of data exchanged between cache

and main memory
 hit means the information was found in the

cache
 larger block size more hits until probability of

using newly fetched data becomes less than
the probability of reusing data that has been
moved out of cache

25

Operating System Kernels 49

Cache Design

 Mapping function
 determines which cache location the block will

occupy
 Replacement algorithm

 determines which block to replace
 Least-Recently-Used (LRU) algorithm

Operating System Kernels 50

Cache Design

 Write policy
 When the memory write operation takes place
 Can occur every time block is updated
 Can occur only when block is replaced

 Minimizes memory operations
 Leaves memory in an obsolete state

26

Operating System Kernels 51

Programmed I/O

 I/O hardware module performs
the action, not the processor

 Sets appropriate bits in the I/O
status register

 No interrupts occur
 Processor checks status until

operation is complete

Operating System Kernels 52

Interrupt-Driven I/O
 Processor is interrupted when I/O

module ready to exchange data
 Processor is free to do other work

 No needless waiting
 Still consumes a lot of processor

time because every word read or
written passes through the
processor

27

Operating System Kernels 53

Direct Memory Access (DMA)

 I/O exchanges occur directly with memory
 Processor grants I/O module authority to

read from or write to memory
 Relieves the processor responsibility for

the exchange
 Processor is free to do other things

Operating System Kernels 54

Direct Memory Access

 Transfers a block of data
directly to or from memory

 An interrupt is sent when
the task is complete

 The processor is only
involved at the beginning
and end of the transfer

28

Operating System Kernels 55

Summary
 Today’s computers are complex

 Multiple CPUs even on a desktop (SMP in a box)
 dual processors
 dual core

 Large memory
 16 GB of main memory on the motherboard

 Complex I/O devices
 Clusters and server farms

 resource isolation and binary compatibility
 Need sophisticated software systems to manage

the underlying hardware

