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Today’s Agenda

 Discuss Administrative issues
 Make suggestions on how to survive this

class
 Talk a little about the history of OS
 Assign the first homework (prerequisite

evaluation), group exercise, lab1
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Administrative Stuff
 Take first-day attendance
 About the instructor
 Go over the syllabus
 Help resources

 TA Introduction
 Forum
 Office Hours
 Online Survival Page

 Course scheduling
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Administrative Stuff (cont.)

 How to survive this class
 GIGO does apply
 Get to know one of your classmates now
 Participate, participate, participate

 Answer questions, ask questions
 Give insightful answers or questions in the forum
 Show up during office hours
 You can get up to five points for participation
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What Do You Expect?
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What You Should Get Out of This Class

 Knowledge of OS internal
 Ability to do system programming
 Ability to modify an OS to fit your needs
 Experience about hardware/software

interface
 Practical OS experience
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CSCE351 Versus CSCE451

Hardware

Operating System

Applications

CSCE 351 CSCE451
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Questions

What is an operating system?

How many operating systems have you used?
Can you name them?

What are some of the differences among them?
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More Questions
What happens when you boot a PC?

What happens when you simultaneously log-
in to the department server?

What is the relationship between what you’ve
learned in Computer Organization (CSCE
230) and this class?
What is your most favorite programming
language?
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Credits
 The slide set for this lecture composes of

 Slides provided by William Stallings
accompanying our adopted textbook (but 4th

Edition)
 Slides provided by Andrew Tanenbaum

accompanying his textbook “Modern
Operating System” (2nd Edition)

 Some concepts from Silberschatz and
Galvin’s “Operating Systems” (4th Edition)

 My own creation
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System Hierarchy

Operating System

Hardware

User 1 User 2 User 3 User 4 User n…

Compiler      Editor          Database       Calculator            WP

From Operating System Concepts, Silberschatz and Galvin
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Abstraction

Microprocessor

Operating System

Virtual Machine

?
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Basic Elements of Hardware

 Processor(s)
 Main Memory

 volatile
 I/O modules

 secondary storage devices
 communications equipment
 terminals

 System bus
 communication among processors, memory, and I/O

modules

Monitor

Bus
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Top-Level Components
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Processor Registers

 User-visible registers
 Enable programmers to minimize main-

memory references by optimizing register use
 Control and status registers

 Used by the processor to control operation of
the processor

 Used by operating-system routines to control
the execution of programs
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User-Visible Registers
 May be referenced by machine language
 Available to all programs - application

programs and system programs
 Types of registers

 Data
 Address

 Index
 Segment pointer
 Stack pointer
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User-Visible Registers (2)
 Address Registers

 Index
 involves adding an index to a base value to get

an address
 Segment pointer

 when memory is divided into segments, memory
is referenced by a segment and an offset

 Stack pointer
 points to top of stack
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Control and Status Registers
 Program Counter (PC)

 Contains the address of an instruction to be fetched
 Instruction Register (IR)

 Contains the instruction most recently fetched
 Program Status Word (PSW)

 condition codes
 Interrupt enable/disable
 Supervisor/user mode
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Control and Status Registers (2)

 Condition Codes or Flags
 Set by the processor hardware to indicate

results of operations
 Can be accessed by a program but not altered
 Examples

 positive result
 negative result
 zero
 Overflow
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Instruction Cycle

(a) A three-stage pipeline
(b) A superscalar CPU
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Instruction Fetch, Decode, and Execute

 The processor fetches the instruction from
memory

 Program counter (PC) holds address of
the instruction to be fetched next

 Program counter is incremented after each
fetch
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Instruction Register

 Fetched instruction is placed in the
instruction register

 Instruction is then decoded
 Types of instructions

 Processor-memory
 Processor-I/O
 Data processing
 Control
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Example of a Program Execution

Assume Accumulator Machine

Assume:

1 = load
2 = store
5 = add
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Example of a Real System
Structure of a large Pentium system
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How do they communicate?
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Example

 Often on-going in my household
 Week-end to do list

 Mow the lawn (interactive)
 Do the laundry (non-interactive)
 Wash the dishes
 Clean the house
 Go out to lunch
 Cook dinner
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Example (2)

 Key components
 Need event notification
 Ability to start a job and let go

 Dish washing example
 Hand wash versus machine wash

 View the dish washer as I/O devices
 Do your own washing or ask somebody to do it
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Interrupts
 An interruption of the normal sequence of

execution
 Improves processing efficiency
 Allows the processor to execute other

instructions while an I/O operation is in progress
 A suspension of a process caused by an event

external to that process and performed in such a
way that the process can be resumed
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Interrupts (2)

(a) Steps in starting an I/O device and getting interrupt
(b) How the CPU is interrupted

(a)
(b)
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Classes of Interrupts
 Program

 arithmetic overflow
 division by zero
 execute illegal instruction
 reference outside user’s memory space

 Timer
 I/O
 Hardware failure
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Interrupt Handler

 A program that determines nature of the
interrupt and performs whatever actions
are needed

 Control is transferred to this program
 Generally part of the operating system
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Interrupt Cycle
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Interrupt Cycle (2)

 Processor checks for interrupts
 If no interrupts, processor fetches the next

instruction of the current program
 If an interrupt is pending,

 Suspends the execution of the current program
 Executes the interrupt handler
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Interrupt Cycle (3)

Write 1 is not done;
program hangs 
because Write 2
cannot be processed.
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Multiple Interrupts

 Disable interrupts
while an interrupt is
being processed
 Processor ignores

any new interrupt
request signals
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Multiple Interrupts Sequential Order

 Disable interrupts so the processor can
complete the task

 Interrupts remain pending until the
processor enables interrupts

 After the interrupt handler routine
completes, the processor checks for
additional interrupts
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Multiple Interrupts Priorities

 Higher priority interrupts cause lower-
priority interrupts to wait
 Causes a lower-priority interrupt handler to be

interrupted
 Example

 When an input arrives from a communication
line, it needs to be absorbed quickly to make
room for more input
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Multiprogramming

 Processor has more than one program to
execute

 The sequence the programs are executed
depend on their relative priority and
whether they are waiting for I/O

 After an interrupt handler completes,
control may not return to the program that
was executing at the time of the interrupt
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Memory Hierarchy
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Memory Hierarchy (2)

Year 2000 numbers

Let’s replace with 2005 numbers
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Going Down the Hierarchy

 Decreasing cost per bit
 Increasing capacity
 Increasing access time
 Decreasing frequency of access of the

memory by the processor
 locality of reference
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Disk Cache

 A portion of main memory used as a buffer
to temporarily to hold data for the disk

 Disk writes are clustered
 Some data written out may be referenced

again.  The data are retrieved rapidly from
the software cache instead of slowly from
disk
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Cache Memory

 Invisible to operating system
 Increase the speed of memory access
 Bridging processor/memory gap

 Processor speed is faster than memory speed
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Cache Memory
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Cache Memory

 Contains a portion of main memory
 Processor first checks cache
 If not found in cache, the block of memory

containing the needed information is
moved to the cache
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Cache/Main Memory System
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Cache Design
 Cache size

 small caches have a significant impact on
performance

 Block size
 the unit of data exchanged between cache

and main memory
 hit means the information was found in the

cache
 larger block size more hits until probability of

using newly fetched data becomes less than
the probability of reusing data that has been
moved out of cache
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Cache Design

 Mapping function
 determines which cache location the block will

occupy
 Replacement algorithm

 determines which block to replace
 Least-Recently-Used (LRU) algorithm
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Cache Design

 Write policy
 When the memory write operation takes place
 Can occur every time block is updated
 Can occur only when block is replaced

 Minimizes memory operations
 Leaves memory in an obsolete state
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Programmed I/O

 I/O hardware module performs
the action, not the processor

 Sets appropriate bits in the I/O
status register

 No interrupts occur
 Processor checks status until

operation is complete
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Interrupt-Driven I/O
 Processor is interrupted when I/O

module ready to exchange data
 Processor is free to do other work

 No needless waiting
 Still consumes a lot of processor

time because every word read or
written passes through the
processor
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Direct Memory Access (DMA)

 I/O exchanges occur directly with memory
 Processor grants I/O module authority to

read from or write to memory
 Relieves the processor responsibility for

the exchange
 Processor is free to do other things
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Direct Memory Access

 Transfers a block of data
directly to or from memory

 An interrupt is sent when
the task is complete

 The processor is only
involved at the beginning
and end of the transfer



28

Operating System Kernels 55

 

Summary
 Today’s computers are complex

 Multiple CPUs even on a desktop (SMP in a box)
 dual processors
 dual core

 Large memory
 16 GB of main memory on the motherboard

 Complex I/O devices
 Clusters and server farms

 resource isolation and binary compatibility
 Need sophisticated software systems to manage

the underlying hardware


