
Witawas Srisa-an CSCE 351: Operating System Kernels

Lecture 9: Virtual Memory

Summary

1. Computer system overview (Chapter 1)

2. Basic of virtual memory; i.e. segmentation and paging (Chapter 7 and part of 8)

3. Process (Chapter 3)

4. Mutual Exclusion and Synchronization (Chapter 5 section 1-4)

• Conditions for race avoidance.

• Strict alternation.

• Semaphores.

• Producers and Consumers problem.

• Hardware support for mutual exclusion.

• Monitors.

5. Threading (user mode and kernel mode).

6. Deadlock and Starvation.

7. Memory management.

Virtual Memory

1. Lessons learned from memory management.

(a) All memory references are logical addresses that are dynamically translated into physical
address at run time. Thus, a process can be swapped in and out of memory and occupy
different regions of main memory during the course of execution.

(b) A process may be broken up into pieces and these pieces need not be contiguously located in
main memory during execution.

2. Break through: Based on the two preceding characteristics, it is not necessary that all pages or
segments be presented in the main memory during execution. Only the pieces that hold the next
instructions and necessary data need to be in the resident set.

3. If the issued logical address is not in main memory:

• Generate an interrupt to indicate that the desired address is not in main memory (access fault).

• The OS puts the interrupted process in a blocking state and takes control.

• The OS issues a disk I/O request to bring the needed piece to main memory.

• The OS dispatches another process to run.

• Once the desired piece has been brought into main memory, an I/O interrupt occurs.

• The OS takes control and put the blocked process into a ready state.

4. Implications:

University of Nebraska-Lincoln Lecture 9 – 1 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

• More processes can be maintained in main memory.

• The maximum process image (virtual memory) may be larger than all of main memory (real
memory).

5. Does virtual memory work?

• Small working set.

• If the OS frequently throws out the pieces about to be used, then thrashing can occur.

• Principle of locality: programs and data references within a process tend to cluster.

6. Paging: page table revisited.

• From last lecture, a process’ page table contains information about the mapping of page to
page frame.

– It is per process and loaded into the memory when all the process’ pages are loaded.
– To support VM, additional bits are needed: P (present bit) and M (modified bit). (See

Figure 8.2)
– Because page tables can be large, they are also subject to paging. Thus, the goal is to

break a page table into smaller chunks, and each chunk is equal to the page size (e.g.
4KB).

• Multilevel page table (see Figure 8.4 and 8.5).

(a) Load root page table (aka. page table directory). This table is the first that get loaded
and stays in the memory throughout the execution of that process.

(b) User the first n bit (10 in the example) to index the root page table for the secondary
page table.

(c) Index into the secondary page table and find the page frame.
– If the P bit is set, the page is in the main memory, done.
– If the P bit is clear, the page must be brought into the main memory.
∗ Identify the location in the main memory to place the page. If eviction is needed,

check the M bit of the evicted page to determine if writing to disk is needed before
replacement. Note that page replacement policy will be discussed a little later.

∗ Bring in the new page to this location then done.

• Inverted page table.

– An entry for every page frame. Thus, the table size is proportional to the amount of main
memory and not virtual memory.

– Entire table stay in the memory.

• Translation Lookaside Buffer (TLB) contains the page table entries that have be most recently
used (see Figure 8.7 and Figure 8.8).

7. Replacement policy:

• Optimal.

• Least Recently Used (LRU).

• First-in-first-out (FIFO).

• Clock (see Figure 8.16).

University of Nebraska-Lincoln Lecture 9 – 2 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

8. Other considerations.

• Resident set size.

• Page size.

• TLB size.

9. Segmentation (see Figure 8.13).

Scheduling Algorithms

1. Decision mode: preemptive or non-preemptive.

2. Policies (see Figure 9.5):

• First-come-first-serve (FCFS): Schedule processes based on the order of arrival.

• Round Robin: Use time slice to schedule processes that are ready to run.

• Shortest Process Next (SPN). The process with the shortest expected running time is selected
next. It is non-preemptive.

• Shortest Remaining Time (SRT). It is a preemptive version of SPN. The process with the
shortest remaining time is picked next.

• Highest Response Ratio Next (HRRN): R = w+s
s , w = wait time, s = expected service time.

The process with the greatest R is picked next.

• Feedback. Combine preemptive scheduling based on time-slice with dynamic priority. Pro-
cess loses one level of priority after each run. The lowest queue uses round-robin while
others use FCFS.

University of Nebraska-Lincoln Lecture 9 – 3 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Virtual Address
Page Number Offset

(a) Paging only

Page Table Entry

Virtual Address
Segment Number Offset

Segment Number Page Number Offset

(b) Segmentation only

Segment Table Entry

Virtual Address

Segment Table Entry

(c) Combined segmentation and paging

Figure 8.2 Typical Memory Management Formats

Page Table Entry

Frame NumberP MOther Control Bits

Frame NumberP MOther Control Bits

Length Segment BaseP MOther Control Bits

Length Segment BaseControl Bits

P= present bit
M = Modified bit

University of Nebraska-Lincoln Lecture 9 – 4 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

4-kbyte root
page table

4-Mbyte user
page table

• • •

• • •

Figure 8.4 A Two-Level Hierarchical Page Table

4-Gbyte user
address space

University of Nebraska-Lincoln Lecture 9 – 5 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

10 bits10 bits 12 bits

Root page
table ptr

Frame #

Virtual Address

4-kbyte page
table (contains

1024 PTEs)
Root page table

(contains 1024 PTEs)

Page
Frame

Offset

Figure 8.5 Address Translation in a Two-Level Paging System

+ +

Program Paging Mechanism Main Memory

University of Nebraska-Lincoln Lecture 9 – 6 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Page # Offset

Frame #

Virtual Address

Offset

Figure 8.7 Use of a Translation Lookaside Buffer

Offset

Load
pagePage Table

Main Memory
Secondary
Memory

Real Address

Translation
Lookaside Buffer

TLB hit

TLB miss

Page fault

University of Nebraska-Lincoln Lecture 9 – 7 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Start

CPU checks the TLB

Page Table
Entry in

TLB?

Access Page Table

Update TLB

Yes

Yes

Yes

No

No

No

CPU Generates
Physical Address

OS Instructs CPU
to Read the Page

from Disk

CPU Activates
I/O Hardware

Page Fault
Handling Routine

Return to
Faulted Instruction

Page Tables
Updated

Figure 8.8 Operation of Paging and Translation Lookaside Buffer (TLB) [FURH87]

Perform Page
Replacement

Page Transferred
from Disk to

Main Memory

Page
in Main

Memory?

Memory
Full?

University of Nebraska-Lincoln Lecture 9 – 8 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Page #Seg #

Se
g#

Offset

Seg Table Ptr

Frame #

Virtual Address

Segment
Table

Page
Table

Page
Frame

Offset

Offset

Figure 8.13 Address Translation in a Segmentation/Paging System

+ +

Pa
ge

#

Program Segmentation
Mechanism

Paging
Mechanism

Main Memory

University of Nebraska-Lincoln Lecture 9 – 9 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

0

6

1

2

3

4

5

7

8

n – 1

n – 1

•
•

•

page 19
use = 1

page 1
use = 1

next frame
pointer

page 45
use = 1

page 191
use = 1

page 556
use = 0

page 13
use = 0

page 67
use = 1

page 33
use = 1

page 222
use = 0

page 9
use = 1

(a) State of buffer just prior to a page replacement

0

6

1

2

3

4

5

7

8

•
•

•

page 19
use = 1

page 1
use = 1

page 45
use = 0

page 191
use = 0

page 727
use = 1

page 13
use = 0

page 67
use = 1

page 33
use = 1

page 222
use = 0

page 9
use = 1

(b) State of buffer just after the next page replacement

Figure 8.16 Example of Clock Policy Operation

First frame in
circular buffer of
frames that are
candidates for replacement

University of Nebraska-Lincoln Lecture 9 – 10 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Table 9.4 Process Scheduling Example

Process Arrival Time Service Time

A 0 3

B 2 6

C 4 4

D 6 5

E 8 2

First-Come-First
Served (FCFS)

0 5 10 15 20

0 5 10 15 20

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

A
B
C
D
E

Round-Robin
(RR), q = 1

Round-Robin
(RR), q = 4

Shortest Process
Next (SPN)

Shortest Remaining
Time (SRT)

Highest Response
Ratio Next (HRRN)

Feedback
q = 1

Feedback
q = 2i

Figure 9.5 A Comparison of Scheduling Policies
University of Nebraska-Lincoln Lecture 9 – 11 Computer Science and Engineering

