
Witawas Srisa-an CSCE 351: Operating System Kernels

Lecture 7: Deadlock and Starvation

Summary

1. Computer system overview (Chapter 1)

2. Basic of virtual memory; i.e. segmentation and paging (Chapter 7 and part of 8)

3. Process (Chapter 3)

4. Mutual Exclusion and Synchronization (Chapter 5 section 1-4)

• Conditions for race avoidance.

• Strict alternation.

• Semaphores.

• Producers and Consumers problem.

• Hardware support for mutual exclusion.

• Monitors.

5. Threading (user mode and kernel mode).

Deadlock

1. Deadlock: Permanent blocking of a set of processes that either compete for system resources or
communicate with each other.

• A set of processes is deadlocked when each process in the set is blocked awaiting an event
that can only be triggered by another blocked process in the set.

– Permanent.
– No efficient solution.

2. Examples:

• Traffic deadlock (see figure 6.1 in the book)

• Processes and computing resources (see joint progress diagrams, Figure 6.2 and Figure 6.3).

3. Reusable resources: Used by one process at a time and not depleted by that use. Processes obtain
resources that they later release for reuse by other processes.

• Examples: CPUs, printers, I/O channels, main and secondary memory, files, databases, and
semaphores (see Figure 6.4).

• Embedded systems example (see Figure 6.5):

4. Consumable resources: Created (produced) and destroyed (consumed) by a process (see Figure
6.6).

• Examples: Interrupts, signals, messages, and information in I/O buffers.

• Deadlock may occur if a Receive message is blocking.

• May take a rare combination of events to cause deadlock.

University of Nebraska-Lincoln Lecture 7 – 1 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Assume 200KB of available physical memory.

===============
P1
...
Request 80K bytes;
...
Request 60K bytes;
===============
P2
...
Request 70K bytes;
...
Request 80K bytes;
===============

Figure 6.5: Deadlock in a memory constrained device.

Assume 200KB of available physical memory.

===============
P1
...
Receive (P2);
...
Send (P2, M1);
===============
P2
...
Receive (P1);
...
Send (P1, M2);
===============

Figure 6.6: Deadlock with blocking I/O.

5. Conditions for Deadlock (all for must be present for deadlock to occur):

• Mutual Exclusion.

• Hold and Wait.

• No preemption.

• Circular wait.

6. Deadlock prevention: tries to prevent any of the four conditions from occurring.

7. Deadlock avoidance: dynamically decides whether the current resource allocation request will, if
granted, potentially lead to a deadlock.

• Do not start a process if its demands might lead to deadlock.

University of Nebraska-Lincoln Lecture 7 – 2 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

– Know the total amount of resources.
– Know the amount of available resources.
– Know the exact amount of needed resources by a process.
– A process is only started if the maximum claim of all current processes plus those of the

new process can be met.

• Do not grant an incremental resource request to a process if this allocation might lead to
deadlock.

– Banker’s algorithm: assume fixed number of processes and fixed number of resources
(see accompanying slides).
∗ State: claim matrix, allocation matrix, resource vector, available vector.
∗ Safe state: there is at least one sequence of resource allocations to processes that

does not result in a deadlock.
∗ Unsafe state: a state that can would lead to deadlock if the request is granted.

• Restrictions for deadlock avoidance:

– Maximum resource requirement must be stated in advance.
– Processes under consideration must be independent; no synchronization requirements.
– There must be a fixed number of resources to allocate.
– No process may exit while holding resources.

8. Deadlock detection: use existing allocation matrix (A), resource vector, available vector and the
new request metrix (Q) (see accompanying slides).

9. Recovering from Deadlock

• Abort all deadlocked processes.

• Back up each deadlocked process to some previously defined checkpoint, and restart all
processes (original deadlock may occur).

• Successively abort deadlocked processes until deadlock no longer exists.

• Successively preempt resources until deadlock no longer exists.

10. Dining philosophers (see Figure 6.11).

• Come up with some solutions.

University of Nebraska-Lincoln Lecture 7 – 3 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

c b

d a
1

2

3

4

(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock

Progress
of Q

Progress
of PGet A

Get A

Get B

Get B

B
Required

B Required

A
Required

A
Required

Release A

Release
A

Release B

Release
B

deadlock
inevitable

P and Q
want A

P and Q
want B

1 2

3

4
5

6

Figure 6.2 Example of Deadlock

= possible progress path of P and Q.

! Horizontal portion of path indicates P is executing and Q is waiting.

! Vertical portion of path indicates Q is executing and P is waiting.

= both P and Q want resource A

= both P and Q want resource B

= deadlock-inevitable region

University of Nebraska-Lincoln Lecture 7 – 4 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Progress

of Q

Progress

of P
Get A

Get A

Get B

Get B

B

Required

B Required

A

Required

A Required

= possible progress path of P and Q.

� Horizontal portion of path indicates P is executing and Q is waiting.

� Vertical portion of path indicates Q is executing and P is waiting.

= both P and Q want resource A

= both P and Q want resource B

Release A

Release

A

Release B

Release

B

1 2 3

4

5

6

Figure 6.3 Example of No Deadlock [BACO03]

P and Q

want A

P and Q

want B

Process P Process Q

Step Action Step Action
p0 Request (D) q0 Request (T)

p1 Lock (D) q1 Lock (T)

p2 Request (T) q2 Request (D)

p3 Lock (T) q3 Lock (D)

p4 Perform function q4 Perform function

p5 Unlock (D) q5 Unlock (T)

p6 Unlock (T) q6 Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

University of Nebraska-Lincoln Lecture 7 – 5 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

P3

Figure 6.11 Dining Arrangement for Philosophers

P0

P2

P4

P1

University of Nebraska-Lincoln Lecture 7 – 6 Computer Science and Engineering

