Witawas Srisa-an CSCE 351: Operating System Kernels

Lecture 7: Deadlock and Starvation
Summary

1. Computer system overview (Chapter 1)

2. Basic of virtual memory; i.e. segmentation and paging (Chapter 7 and part of §)
3. Process (Chapter 3)

4. Mutual Exclusion and Synchronization (Chapter 5 section 1-4)

e Conditions for race avoidance.

Strict alternation.

Semaphores.

Producers and Consumers problem.

Hardware support for mutual exclusion.

e Monitors.

5. Threading (user mode and kernel mode).

Deadlock

1. Deadlock: Permanent blocking of a set of processes that either compete for system resources or
communicate with each other.

e A set of processes is deadlocked when each process in the set is blocked awaiting an event
that can only be triggered by another blocked process in the set.

— Permanent.
— No efficient solution.

2. Examples:

o Traffic deadlock (see figure 6.1 in the book)
e Processes and computing resources (see joint progress diagrams, Figure 6.2 and Figure 6.3).

3. Reusable resources: Used by one process at a time and not depleted by that use. Processes obtain
resources that they later release for reuse by other processes.

e Examples: CPUs, printers, I/O channels, main and secondary memory, files, databases, and
semaphores (see Figure 6.4).
e Embedded systems example (see Figure 6.5):
4. Consumable resources: Created (produced) and destroyed (consumed) by a process (see Figure
6.6).
e Examples: Interrupts, signals, messages, and information in I/O buffers.
e Deadlock may occur if a Receive message is blocking.

e May take a rare combination of events to cause deadlock.

University of Nebraska-Lincoln Lecture 7 -1 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Assume 200KB of available physical memory.

Request 80K bytes;

Request 60K bytes;

Request 70K bytes;

Request 80K bytes;

Figure 6.5: Deadlock in a memory constrained device.

Assume 200KB of available physical memory.

Receive (P2);

Figure 6.6: Deadlock with blocking I/O.

5. Conditions for Deadlock (all for must be present for deadlock to occur):

e Mutual Exclusion.
e Hold and Wait.
e No preemption.

e Circular wait.
6. Deadlock prevention: tries to prevent any of the four conditions from occurring.

7. Deadlock avoidance: dynamically decides whether the current resource allocation request will, if
granted, potentially lead to a deadlock.

e Do not start a process if its demands might lead to deadlock.

University of Nebraska-Lincoln Lecture 7 -2 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Know the total amount of resources.

Know the amount of available resources.

Know the exact amount of needed resources by a process.

A process is only started if the maximum claim of all current processes plus those of the
new process can be met.

e Do not grant an incremental resource request to a process if this allocation might lead to
deadlock.

— Banker’s algorithm: assume fixed number of processes and fixed number of resources
(see accompanying slides).
% State: claim matrix, allocation matrix, resource vector, available vector.

+ Safe state: there is at least one sequence of resource allocations to processes that
does not result in a deadlock.

+ Unsafe state: a state that can would lead to deadlock if the request is granted.

e Restrictions for deadlock avoidance:

Maximum resource requirement must be stated in advance.

Processes under consideration must be independent; no synchronization requirements.
There must be a fixed number of resources to allocate.

No process may exit while holding resources.

8. Deadlock detection: use existing allocation matrix (A), resource vector, available vector and the
new request metrix (Q) (see accompanying slides).

9. Recovering from Deadlock

e Abort all deadlocked processes.

e Back up each deadlocked process to some previously defined checkpoint, and restart all
processes (original deadlock may occur).

e Successively abort deadlocked processes until deadlock no longer exists.

e Successively preempt resources until deadlock no longer exists.
10. Dining philosophers (see Figure 6.11).

e Come up with some solutions.

University of Nebraska-Lincoln Lecture 7 -3 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

(a) Deadlock possible (b) Deadlock

Figure 6.1 Illustration of Deadlock

Progress
of Q
Al 42
Release
A
Pand Q
want A
A. Release /
Required B
Get A
3
deadlock Pand Q:
B _» N an
Required inevitable want B

A 5 -

Get B 7 >

6
>
. Progress
¥ of P

Get A Get B Release A Release B

k_A/—Y\J
= both P and Q want resource B Required k—/—Y\J

D = deadlock-inevitable region B Required

_> = possible progress path of P and Q.
Horizontal portion of path indicates P is executing and Q is waiting.
Vertical portion of path indicates Q is executing and P is waiting.

,A = both P and Q want resource A

Figure 6.2 Example of Deadlock

University of Nebraska-Lincoln Lecture 7 —4 Computer Science and Engineering

Witawas Srisa-an

CSCE 351: Operating System Kernels

A
Required

B
Required

Progress
of Q
A
Al 42 A3
Release
A
4
>
Release P and Q;
B want A
P and Q.
GetA want B
5
Get B >
6 |-
»
. Progress
GetA ReleaseA GetB Release B of P

=both P and Q want resource A

N — a a &
Q = both P and Q want resource B

Y~

A Required

B Required

_> = possible progress path of P and Q.

Horizontal portion of path indicates P is executing and Q is waiting.
Vertical portion of path indicates Q is executing and P is waiting.

Figure 6.3 Example of No Deadlock [BACO03]

Process P Process Q
Step Action Step Action
Po Request (D) do Request (T)
P, Lock (D) q, Lock (T)
P, Request (T) q, Request (D)
Ps Lock (T) q; Lock (D)
P4 Perform function q4 Perform function
Ps Unlock (D) qs Unlock (T)
P Unlock (T) de Unlock (D)

Figure 6.4 Example of Two Processes Competing for Reusable Resources

University of Nebraska-Lincoln

Lecture 7 -5

Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Figure 6.11 Dining Arrangement for Philosophers

University of Nebraska-Lincoln Lecture 7-6 Computer Science and Engineering

