
Witawas Srisa-an CSCE 351: Operating System Kernels

Lecture 6: Kernel Structures and Threading

Summary

1. Computer system overview (Chapter 1)

2. Basic of virtual memory; i.e. segmentation and paging (Chapter 7 and part of 8)

3. Process (Chapter 3)

4. Mutual Exclusion and Synchronization (Chapter 5 section 1-4)

• Conditions for race avoidance.

• Strict alternation.

• Semaphores.

• Producers and Consumers problem.

• Hardware support for mutual exclusion.

• Monitors.

User Mode vs. Kernel Mode

1. Kernel architectures

• Monolithic kernel (Unix, Windows 9X, MS-DOS)

• Layered kernel (THE, MULTICS) (see Figure 4.10)

• Microkernel (Symbian, Singularity, Minix)

• Hybrid Kernel (Windows NT kernel)

2. Transition from user mode to kernel mode (see Figure 3.17)

• System calls.

• Exceptions.

• Interrupts.

Threads

1. Processes

• Resource ownership.

• Scheduling/execution.

2. Thread: An execution path within a process (see Figure 4.1)

• MS-DOS (single-process/single-thread) (see Figure 4.2).

• Early flavor of UNIXs (muti-process/single-thread).

• Windows, Solaris (multi-process/multi-thread).

3. Distinguishing between process and thread

University of Nebraska-Lincoln Lecture 6 – 1 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

• Process: Unit of resource allocation and protection.

• Thread: Execution unit.

(a) Execution state.
(b) Execution context (PC, stack, per-thread storage for local variable, access to resources).

4. Benefits of Threading

• Foreground/background work.

• Asynchronous processing.

• Speed of execution.

• Modular program structure.

5. Thread states

(a) Spawn.

(b) Block.

(c) Unblock.

(d) Finish.

6. Synchronization and mutual exclusion (same as process)

7. User-level versus kernel-level threads (see Figure 4.6)

• User-level threads: Threads are not recognized by kernel.

– Thread switching requires no kernel intervention.
– Scheduling policy can be application specific.
– Portable, threading library provides as utilities.
– Blocking call in a thread can block all threads in the same processes.
– Multithreaded application cannot take advantage of multiprocessing.

• Kernel-level threads: User-level threads are mapped to kernel threads.

– Support scheduling of threads in the same process in multiprocessor environment.
– A blocked threads does not cause other threads in the same process to block.
– Scheduling is done entirely in the kernel.

• Comparing thread management schemes between Solaris and Linux (see Figure 4.15).

University of Nebraska-Lincoln Lecture 6 – 2 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Created

Sleep,
Swapped

Ready to Run
In Memory

Ready to Run
Swapped

Asleep in
MemoryZombie

Kernel
Running

User
Running

Preempted

fork

not enough memory
(swapping system only)

enough
memory

swap in

swap out

swap out

wakeupwakeupsleep

return

preempt

return
to user

system call,
interrupt

exit

reschedule
process

interrupt,
interrupt return

Figure 3.17 UNIX Process State Transition Diagram

Figure 4.1 Threads and Processes [ANDE97]

one process
one thread

one process
multiple threads

multiple processes
one thread per process

= instruction trace

multiple processes
multiple threads per process

University of Nebraska-Lincoln Lecture 6 – 3 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Single-Threaded
Process Model

Process
Control
Block

User
Address

Space

User
Stack

Kernel
Stack

Multithreaded
Process Model

Process
Control
Block

User
Address

Space

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

User
Stack

Kernel
Stack

Thread
Control
Block

Thread Thread Thread

Figure 4.2 Single Threaded and Multithreaded Process Models

Thread
Control
Block

Thread
Control
Block

Figure 4.6 User-Level and Kernel-Level Threads

P P

User
Space

Threads
Library

Kernel
Space

P

P

User
Space

Kernel
Space

P

User
Space

Threads
Library

Kernel
Space

(c) Combined(b) Pure kernel-level(a) Pure user-level

User-level thread Kernel-level thread Process

University of Nebraska-Lincoln Lecture 6 – 4 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

HARDWAREHARDWARE

Primitive Process Management Microkernel

Virtual Memory

I/O and Device Management

Interprocess Communication

File System

Users

• • •

(a) Layered kernel (b) Microkernel

Figure 4.10 Kernel Architecture

User
Mode

Kernel
Mode

User
Mode

Kernel
Mode

c
l
i
e
n
t

p
r
o
c
e
s
s

d
e
v
i
c
e

d
r
i
v
e
r
s

f
i
l
e

s
e
r
v
e
r

p
r
o
c
e
s
s

s
e
r
v
e
r

v
i
r
t
u
a
l

m
e
m
o
r
y

Figure 4.15 Solaris Multithreaded Architecture Example

User

Kernel

Hardware

Threads

Library

Process 5Process 4Process 3Process 2Process 1

User-level thread Kernel thread Lightweight Process Processor

L L L

L

LLL LLL

PP

P

PPP

University of Nebraska-Lincoln Lecture 6 – 5 Computer Science and Engineering

