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Lecture 6: Kernel Structures and Threading

Summary

1. Computer system overview (Chapter 1)

2. Basic of virtual memory; i.e. segmentation and paging (Chapter 7 and part of 8)

3. Process (Chapter 3)

4. Mutual Exclusion and Synchronization (Chapter 5 section 1-4)

• Conditions for race avoidance.

• Strict alternation.

• Semaphores.

• Producers and Consumers problem.

• Hardware support for mutual exclusion.

• Monitors.

User Mode vs. Kernel Mode

1. Kernel architectures

• Monolithic kernel (Unix, Windows 9X, MS-DOS)

• Layered kernel (THE, MULTICS) (see Figure 4.10)

• Microkernel (Symbian, Singularity, Minix)

• Hybrid Kernel (Windows NT kernel)

2. Transition from user mode to kernel mode (see Figure 3.17)

• System calls.

• Exceptions.

• Interrupts.

Threads

1. Processes

• Resource ownership.

• Scheduling/execution.

2. Thread: An execution path within a process (see Figure 4.1)

• MS-DOS (single-process/single-thread) (see Figure 4.2).

• Early flavor of UNIXs (muti-process/single-thread).

• Windows, Solaris (multi-process/multi-thread).

3. Distinguishing between process and thread
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• Process: Unit of resource allocation and protection.

• Thread: Execution unit.

(a) Execution state.
(b) Execution context (PC, stack, per-thread storage for local variable, access to resources).

4. Benefits of Threading

• Foreground/background work.

• Asynchronous processing.

• Speed of execution.

• Modular program structure.

5. Thread states

(a) Spawn.

(b) Block.

(c) Unblock.

(d) Finish.

6. Synchronization and mutual exclusion (same as process)

7. User-level versus kernel-level threads (see Figure 4.6)

• User-level threads: Threads are not recognized by kernel.

– Thread switching requires no kernel intervention.
– Scheduling policy can be application specific.
– Portable, threading library provides as utilities.
– Blocking call in a thread can block all threads in the same processes.
– Multithreaded application cannot take advantage of multiprocessing.

• Kernel-level threads: User-level threads are mapped to kernel threads.

– Support scheduling of threads in the same process in multiprocessor environment.
– A blocked threads does not cause other threads in the same process to block.
– Scheduling is done entirely in the kernel.

• Comparing thread management schemes between Solaris and Linux (see Figure 4.15).
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Figure 3.17   UNIX Process State Transition Diagram

Figure 4.1   Threads and Processes [ANDE97]
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Figure 4.2   Single Threaded and Multithreaded Process Models
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Figure 4.6    User-Level and Kernel-Level Threads
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Figure 4.10   Kernel Architecture
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Figure 4.15   Solaris Multithreaded Architecture Example
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