
Witawas Srisa-an CSCE 351: Operating System Kernels

Lecture 5: Synchronization and Mutual Exclusion

Summary

1. Computer system overview (Chapter 1).

2. Basic of virtual memory; i.e. segmentation and paging (Chapter 7 and part of 8).

3. Process (Chapter 3).

4. Mutual Exclusion and Synchronization (Chapter 5 section 1 and 3).

• Conditions for race avoidance.

• Strict alternation.

• Semaphores (see Figure 3).

• Producers and Consumers problem.

Concurrency (continued)

1. Key terms:

• Deadlock. A situation in which two or more processes are unable to proceed because each is
waiting for one of the others to do something.

• Livelock. A situation in which two or more processes continuously change their state in
response to changes in the other processes without doing any useful work.

• Starvation. A situation in which a runnable process is overlooked indefinitely by the sched-
uler; although it is able to proceed, it is never chosen.

2. Hardware support for mutual exclusion.

• Disabling interrupt (see Figure 1).

• Test-Set-Lock (TSL) (e.g. TSL RX, LOCK).

– TSL copies the content of LOCK to RX and then set LOCK to a non-zero value (see
Figure 4).

• Exchange Instruction (see Figure 2).

Monitor (Chapter 5.4)

1. Monitor: A software module consisting of one or more procedures, and initialization sequence,
and local data (see Figure 5).

2. Main characteristics of a monitor are the following:

(a) The local data variables are accessible only by the monitor’s procedures and not by any
external procedure.

(b) A process enters the monitor by invoking one of its procedures.

(c) Only one process may be executing in the monitor at a time; any other process that has
invoked the monitor is blocked, waiting for the monitor to become available.

University of Nebraska-Lincoln Lecture 5 – 1 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

• Two or more calls to two different procedures in the monitor? NO!
• Two or more calls to the same proceduresin the monitor? NO!

3. Condition variables: Special data type contained in the monitor and accessible only within the
monitor. The variable is operated on by two functions:

• cwait(cv): Suspend execution of the calling process or thread on condition variable cv. The
monitor is now available for use by another process.

• csignal(cv): Resume execution of some process blocked after a cwait on the same condition
variable (cv). If there are several such processes or threads, choose one of them; if there are
no waiting processes, do nothing (note that this is different than semaphore).

4. Signaling disciplines (see Figure 6).

• Signal and continue: signalers continues and the signaled process or thread go to entry queue
(non-premptive).

• Signal and wait: signalers goes to the entry queue and the signaled process or thread executes
now (preemptive).

5. Solving producer/consumer problem with monitors (see Figure 7).

whi le (1)
{

a s m v o l a t i l e (” c l i ”) ; /∗ d i s a b l i n g i n t e r r u p t ∗ /
/∗ c r i t i c a l s e c t i o n ∗ /

a s m v o l a t i l e (” s t i ”) ; /∗ e n a b l i n g i n t e r r u p t ∗ /
/∗ rema inder ∗ /

}

Figure 1: Enabling and Disabling Interrupt in X-86 Processors.

University of Nebraska-Lincoln Lecture 5 – 2 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

/∗ Mutual e x c l u s i o n w i t h XCHG i n s t r u c t i o n ∗ /
d e f i n e N 4

i n t c o n s t n = N /∗ number o f p r o c e s s e s or t h r e a d s ∗ /
i n t b o l t ;

void P (i n t i)
{

i n t k e y i = 1 ;
whi le (1)
{

do exchange (key i , b o l t)
whi le (k e y i != 0)
/∗ c r i t i c a l s e c t i o n ∗ / ;
exchange (key i , b o l t) ;
/∗ non−c r i t i c a l s e c t i o n ∗ /

}
}

void main ()
{

b o l t = 0 ;
p a r b e g i n (P (1) , P (2) , . . . , P (n)) ;

}

void exchange (i n t key , i n t l o c k)
{

i n t temp ;
temp = l o c k ;
l o c k = key ;
key = temp ;

}

Figure 2: Exchange instruction in X-86 Processors.

University of Nebraska-Lincoln Lecture 5 – 3 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

/∗ From Andrew Tanenbaum ’ s Modern O p e r a t i n g Sys tems , 2nd E d i t i o n ∗ /
d e f i n e N 10000 /∗ B u f f e r s i z e ∗ /
t y p e d e f i n t semaphore ;
semaphore mutex = 1 ; /∗ A cc es s t o c r i t i c a l s e c t i o n ∗ /
semaphore empty = N; /∗ c o u n t a v a i l a b l e s l o t s ∗ /
semaphore f u l l = 0 ; /∗ c o u n t o c c u p i e d s l o t s ∗ /

void p r o d u c e r (void)
{

i n t i t em ;
whi le (1)
{

i t em = p r o d u c e i t e m () ;
down(&empty) ;
down(&mutex) ;
i n s e r t i t e m (i t em) ;
up(&mutex) ;
up(& f u l l) ;

}
}

void consumer (void)
{

i n t i t em ;
whi le (1)
{

down(& f u l l) ;
down(&mutex) ;
i t em = remove i t em () ;
up(&mutex) ;
up(&empty) ;
consume i tem (i t em) ;

}
}

Figure 3: Solving Producer and Consumer Problem with Semaphores.

University of Nebraska-Lincoln Lecture 5 – 4 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

; From Andrew Tanenbaum’s Modern Operating Systems, 2nd Edition

enter_region:
TSL RX, LOCK
CMP RX, R0 ; assume R0 always contains ZERO
JNE enter_region
RET ; return to caller once critical region is entered

leave_region:
SW R0, MUTEX
RET

================

; the following code can be used to make MUTEX for user level thread package
; From Andrew Tanenbaum’s Modern Operating Systems, 2nd Edition

mutex_lock:
TSL RX, MUTEX
CMP RX, R0
JZE ok
CALL thread_yield
JMP mutex_lock

ok:
RET

mutex_unlock:
SW R0,MUTEX
RET

Figure 4: Examples of using TSL.

University of Nebraska-Lincoln Lecture 5 – 5 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Figure 5: Monitor’s Structure.

University of Nebraska-Lincoln Lecture 5 – 6 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Figure 6: Two Signaling Discipline for Monitors.

Wednesday,
September 10, 2003 38!"#$"#%&'()#*+,,(-.

!"#$%&'"()#*+%,'"-.#/%01#*-%+1*2-3#*10#"

void take (char x)
{

if (count == 0)
cwait (notempty);

x = buffer[nextout];
nextout = (nextout + 1)%n;
count --;
csignal (notfull);

}

void consumer ()
char x;
{

while (true)
{

take (x);
consume (x);

}
}

char buffer [n]; int nextin, nextout; int count; int notfull, notempty;
nextin = 0; nextout = 0; count = 0;

void append (char x)
{

if (count ==n)
cwait (notfull);

buffer[nextin] = x;
nextin = (nextin + 1) % n;
count ++;
csignal (notempty);

}

void producer ()
char x;
{

while (true)
{

produce (x);
append (x);

}
}

Figure 7: A Solution to the Producer/Consumer Problem Using Monitor.

University of Nebraska-Lincoln Lecture 5 – 7 Computer Science and Engineering

