Witawas Srisa-an CSCE 351: Operating System Kernels

Lecture 5: Synchronization and Mutual Exclusion
Summary

1. Computer system overview (Chapter 1).

2. Basic of virtual memory; i.e. segmentation and paging (Chapter 7 and part of 8).
3. Process (Chapter 3).

4. Mutual Exclusion and Synchronization (Chapter 5 section 1 and 3).

e Conditions for race avoidance.
e Strict alternation.
e Semaphores (see Figure 3).

e Producers and Consumers problem.

Concurrency (continued)

1. Key terms:
e Deadlock. A situation in which two or more processes are unable to proceed because each is
waiting for one of the others to do something.

e Livelock. A situation in which two or more processes continuously change their state in
response to changes in the other processes without doing any useful work.

e Starvation. A situation in which a runnable process is overlooked indefinitely by the sched-
uler; although it is able to proceed, it is never chosen.

2. Hardware support for mutual exclusion.

e Disabling interrupt (see Figure 1).
o Test-Set-Lock (TSL) (e.g. TSL RX, LOCK).

— TSL copies the content of LOC'K to RX and then set LOC'K to a non-zero value (see
Figure 4).

e Exchange Instruction (see Figure 2).
Monitor (Chapter 5.4)

1. Monitor: A software module consisting of one or more procedures, and initialization sequence,
and local data (see Figure 5).

2. Main characteristics of a monitor are the following:
(a) The local data variables are accessible only by the monitor’s procedures and not by any
external procedure.

(b) A process enters the monitor by invoking one of its procedures.

(c) Only one process may be executing in the monitor at a time; any other process that has
invoked the monitor is blocked, waiting for the monitor to become available.

University of Nebraska-Lincoln Lecture 5 — 1 Computer Science and Engineering



Witawas Srisa-an CSCE 351: Operating System Kernels

e Two or more calls to two different procedures in the monitor? NO!
e Two or more calls to the same proceduresin the monitor? NO!

3. Condition variables: Special data type contained in the monitor and accessible only within the
monitor. The variable is operated on by two functions:

e cwait(cv): Suspend execution of the calling process or thread on condition variable cv. The
monitor is now available for use by another process.

e csignal(cv): Resume execution of some process blocked after a cwait on the same condition
variable (cv). If there are several such processes or threads, choose one of them; if there are
no waiting processes, do nothing (note that this is different than semaphore).

4. Signaling disciplines (see Figure 6).
e Signal and continue: signalers continues and the signaled process or thread go to entry queue
(non-premptive).

e Signal and wait: signalers goes to the entry queue and the signaled process or thread executes
now (preemptive).

5. Solving producer/consumer problem with monitors (see Figure 7).

while (1)

{
__asm__ __volatile__ (7cli”); /% disabling interrupt x/
/x critical section x/
__asm__ __volatile__ (”sti”); /% enabling interrupt x/

/% remainder x/

Figure 1: Enabling and Disabling Interrupt in X-86 Processors.

University of Nebraska-Lincoln Lecture 5 —2 Computer Science and Engineering



Witawas Srisa-an CSCE 351: Operating System Kernels

/* Mutual exclusion with XCHG instruction */
#define N 4

int const n = N /x number of processes or threads x/
int bolt;

void P(int i)
{
int keyi = 1;
while (1)
{
do exchange(keyi, bolt)
while (keyi != 0)
/x critical section x/;
exchange (keyi, bolt);
/* non—critical section x/

}

void main ()
{
bolt = 0;
parbegin(P(1), P(2), ..., P(n));

}

void exchange (int key, int lock)
{

int temp;

temp = lock;

lock = key;

key = temp;

Figure 2: Exchange instruction in X-86 Processors.

University of Nebraska-Lincoln Lecture 5 -3 Computer Science and Engineering



Witawas Srisa-an CSCE 351: Operating System Kernels

/+x From Andrew Tanenbaum’s Modern Operating Systems, 2nd Edition x/

#define N 10000 /% Buffer size x/

typedef int semaphore;

semaphore mutex = 1; /* Access to critical section x/
semaphore empty = N; /% count available slots x/
semaphore full = O; /* count occupied slots x*/

void producer(void)
{
int item;
while (1)
{
item = produce_item ();
down(&empty );
down(&mutex );
insert_item (item );
up(&mutex );
up(&full);

}

void consumer (void)
{
int item;
while (1)
{
down(& full );
down(&mutex );
item = remove_item ();
up(&mutex );
up(&empty );
consume_item (item );

Figure 3: Solving Producer and Consumer Problem with Semaphores.

University of Nebraska-Lincoln Lecture 5 — 4 Computer Science and Engineering



Witawas Srisa-an CSCE 351: Operating System Kernels

; From Andrew Tanenbaum’s Modern Operating Systems, 2nd Edition

enter_region:
TSL RX, LOCK
CMP RX, RO ; assume RO always contains ZERO
JNE enter_region
RET ; return to caller once critical region is entered

leave_region:
SW RO, MUTEX
RET

; the following code can be used to make MUTEX for user level thread package
; From Andrew Tanenbaum’s Modern Operating Systems, 2nd Edition

mutex_ lock:

TSL RX, MUTEX

CMP RX, RO

JZE ok

CALL thread_yield

JMP mutex_lock
ok:

RET

mutex_unlock:

SW RO,MUTEX
RET

Figure 4: Examples of using TSL.

University of Nebraska-Lincoln Lecture 5 -5 Computer Science and Engineering



Witawas Srisa-an CSCE 351: Operating System Kernels

e sl
enlerim
prrosesses
s for seaiiime suren Entrance
-
MONITOR
woamd it e 1 k@l data

cwallicl) [
ciomdition variabkes

Procedure |

cond ke e .
“wallicn)
= . Priwwclure k
argenl queie
cxhanm |
(] imitia lization codde

EILE:
Exit

Figure 5: Monitor’s Structure.

University of Nebraska-Lincoln Lecture 5 -6 Computer Science and Engineering



Witawas Srisa-an CSCE 351: Operating System Kernels

Executing
In monitor

Entry queue

Monitor free

call return

SW

From G. Andrews, “Foundation of Multithreaded, Parallel, and Distributed
Programming”, Addison Wesley, 2000

Figure 6: Two Signaling Discipline for Monitors.

char buffer [n]; int nextin, nextout; int count; int notfull, notempty;
nextin = 0; nextout = 0; count = 0;

void append (char x)
{ void take (char x)
if (count ==n) {
cwait (notfull); if (count == 0)
buffer[nextin] = x; cwait (notempty);
nextin = (nextin + 1) % n; x = buffer[nextout];
count ++; nextout = (nextout + 1)%n;
csignal (notempty); count --;
} csignal (notfull);
}
void producer ()
char x; void consumer ()
{ char x;
while (true) {
{ while (true)
produce (x); {
append (x); take (x);
} consume (X);
} }
}

e

Figure 7: A Solution to the Producer/Consumer Problem Using Monitor.

University of Nebraska-Lincoln Lecture 5 —7 Computer Science and Engineering



