
Witawas Srisa-an CSCE 351: Operating System Kernels

Lecture 4: Process Management

Process Revisited

1. What do we know so far about Linux on X-86?

• X-86 architecture supports both segmentation and paging.

– 48-bit logical address goes through the segmentation unit to create
– 32-bit linear address that goes through the paging unit to create
– 32-bit physical address.
– logical address has 16-bit segment selector (13-bit to represent segment and 3 bit to

represent priority and location) and 32-bit offset.
– paging is done using two-level page table (10-bit directory, 10-bit page, 12 bit offset).

• There are 12 segments reserved for kernel use.

• There can be at most 4090 processes in X-86 Linux (32-bit version).

• Each process can have its own Local descriptor (not commonly used) and Task-state segment
(TSS).

• Support four level of privileges (0 to 3).

– Level 0 is for kernel use.
– Level 3 is for user.

• A task struct is used to represent a process in the kernel.

• At least, there are two process states: running and blocking. Additional states include ready,
new, exit, and suspend.

2. Process control

3. Revisit proc.c.

4. Process life-cycle: Assume that you start a text editor in Linux, what happen at the process level?

University of Nebraska-Lincoln Lecture 4 – 1 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

Race

1. Key terms

• Critical section. A section of code within a process that requires access to share resources
and that may not be executed while another process is in a corresponding section of the code.

• Race condition. A situation in which multiple processes or threads read and write a shared
data item and the final result depends on the relative timing of their execution (see Figure 1).

• Mutual exclusion. The requirement that when one process is in a critical section, no other
process may be in a critical section and access any of those shared resources.

2. Conditions for race avoidance

(a) Only one process is allowed to enter a critical section at a time.

(b) It must not be possible for a process requiring access to a critical section to be delayed
indefinitely: no deadlock or starvation.

(c) When no process is in a critical section, any process that requests entry to its critical section
must be permitted to enter without delay.

(d) No assumptions are made about relative process speeds or number of processors.

3. Example: strict alternation (see Figure 2)

4. Semaphore

• A variable type containing integer counter and a blocking queue

• Two operations: down and up (see Figure 3)

– Down: if value = 0, the process goes to sleep without completing the down. If value
> 0, the operation decrements the value by one and continues. The operation is done
atomically.

– UP: the operation increments the value by one. If there are processes waiting to complete
earlier down operations, a process is randomly picked to complete the down operation.
The steps to wake up a process and increment the semaphore is also done atomically.

5. Test-Set-Lock (TSL) (e.g. TSL RX, LOCK)

• TSL copies the content of LOCK to RX and then set LOCK to a non-zero value (see
Figure 4).

University of Nebraska-Lincoln Lecture 4 – 2 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <p t h r e a d . h>

d e f i n e NUMBER OF PROCS 2
d e f i n e MAX COUNT 1000000

i n t s h a r e d C o u n t e r =0;

void MyCounterPlus ()
{

i n t i ;
f o r (i = 0 ; i < MAX COUNT; i ++)

s h a r e d C o u n t e r ++;
}
void MyCounterMinus ()
{

i n t i ;
f o r (i = 0 ; i < MAX COUNT; i ++)

s h a r e d C o u n t e r −−;
}
i n t main (void)
{

i n t i ;
p t h r e a d t t h r e a d [NUMBER OF PROCS] ;
f o r (i = 0 ; i < NUMBER OF PROCS ; i ++) {

i f ((i % 2) == 0) {
p t h r e a d c r e a t e (& t h r e a d [i] , NULL, (void ∗) MyCounterPlus , NULL) ;

}
e l s e {

p t h r e a d c r e a t e (& t h r e a d [i] , NULL, (void ∗) MyCounterMinus , NULL) ;
}

}
f o r (i = 0 ; i < NUMBER OF PROCS ; i ++)

p t h r e a d j o i n (t h r e a d [i] , NULL) ;
f p r i n t f (s t d o u t , ” s h a r e d C o u n t e r = %d\n ” , s h a r e d C o u n t e r) ;
re turn 0 ;

}

Figure 1: An Example of Race Condition using Pthread.

University of Nebraska-Lincoln Lecture 4 – 3 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

i n c l u d e <s t d i o . h>
i n c l u d e < s t d l i b . h>
i n c l u d e <p t h r e a d . h>

d e f i n e NUMBER OF PROCS 2
d e f i n e MAX COUNT 10000
i n t s h a r e d C o u n t e r = 0 ;
i n t t u r n = 0 ;

void MyCounterPlus ()
{

i n t i ;
f o r (i = 0 ; i < MAX COUNT; i ++)
{

whi le (t u r n != 0) ;
s h a r e d C o u n t e r ++;
t u r n = 1 ;

}
}
void MyCounterMinus ()
{

i n t i ;
f o r (i = 0 ; i < MAX COUNT; i ++)
{

whi le (t u r n != 1) ;
s h a r e d C o u n t e r −−;
t u r n = 0 ;

}
}
i n t main (void)
{

i n t i ;
p t h r e a d t t h r e a d [NUMBER OF PROCS] ;
f o r (i = 0 ; i < NUMBER OF PROCS ; i ++) {

i f ((i % 2) == 0) {
p t h r e a d c r e a t e (& t h r e a d [i] , NULL, (void ∗) MyCounterPlus , NULL) ;

}
e l s e {

p t h r e a d c r e a t e (& t h r e a d [i] , NULL, (void ∗) MyCounterMinus , NULL) ;
}

}
f o r (i = 0 ; i < NUMBER OF PROCS ; i ++)

p t h r e a d j o i n (t h r e a d [i] , NULL) ;
f p r i n t f (s t d o u t , ” s h a r e d C o u n t e r = %d\n ” , s h a r e d C o u n t e r) ;
re turn 0 ;

}

Figure 2: Providing Mutual Exclusion with Strict Alternation.

University of Nebraska-Lincoln Lecture 4 – 4 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

/∗ From Andrew Tanenbaum ’ s Modern O p e r a t i n g Sys tems , 2nd E d i t i o n ∗ /
d e f i n e N 10000 /∗ B u f f e r s i z e ∗ /
t y p e d e f i n t semaphore ;
semaphore mutex = 1 ; /∗ A cc es s t o c r i t i c a l s e c t i o n ∗ /
semaphore empty = N; /∗ c o u n t a v a i l a b l e s l o t s ∗ /
semaphore f u l l = 0 ; /∗ c o u n t o c c u p i e d s l o t s ∗ /

void p r o d u c e r (void)
{

i n t i t em ;
whi le (1)
{

i t em = p r o d u c e i t e m () ;
down(&empty) ;
down(&mutex) ;
i n s e r t i t e m (i t em) ;
up(&mutex) ;
up(& f u l l) ;

}
}

void consumer (void)
{

i n t i t em ;
whi le (1)
{

down(& f u l l) ;
down(&mutex) ;
i t em = remove i t em () ;
up(&mutex) ;
up(&empty) ;
consume i tem (i t em) ;

}
}

Figure 3: Solving Producer and Consumer Problem with Semaphores.

University of Nebraska-Lincoln Lecture 4 – 5 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

; From Andrew Tanenbaum’s Modern Operating Systems, 2nd Edition

enter_region:
TSL RX, LOCK
CMP RX, R0 ; assume R0 always contains ZERO
JNE enter_region
RET ; return to caller once critical region is entered

leave_region:
SW R0, MUTEX
RET

================

; the following code can be used to make MUTEX for user level thread package
; From Andrew Tanenbaum’s Modern Operating Systems, 2nd Edition

mutex_lock:
TSL RX, MUTEX
CMP RX, R0
JZE ok
CALL thread_yield
JMP mutex_lock

ok:
RET

mutex_unlock:
SW R0,MUTEX
RET

Figure 4: Examples of using TSL.

University of Nebraska-Lincoln Lecture 4 – 6 Computer Science and Engineering

