
0018-9162/99/$10.00 © 1999 IEEE58 Computer

Co
ve

r F
ea

tu
re

Unix and
Beyond: An
Interview
with Ken Thompson

K
en Thompson needs no introduction: the
co-creator of the Unix operating system as
well as the Plan 9 and Inferno distributed
operating systems; creator, along with
Joseph Condon, of Belle, a world champion

chess computer; 1998 US National Medal of
Technology winner, along with Dennis Ritchie, for
their role in developing the Unix system and C.

On the occasion of the presentation of the
Computer Society’s and Hitachi’s inaugural Tsutomu
Kanai Award for distributed computing, Computer
visited recipient Ken Thompson at Lucent’s Bell
Labs. We were interested in learning about
Thompson’s early work on Unix and his more recent
work in distributed computing. We were especially
interested in learning about the creative process
within Bell Labs and his sense of where computer
science is heading.

CREATIVITY AND SOFTWARE DEVELOPMENT
Computer: Your nominators and endorsers for the
Kanai Award consistently characterized your work as
simple yet powerful. How do you discover such pow-
erful abstractions?
Thompson: It is the way I think. I am a very bottom-
up thinker. If you give me the right kind of Tinker Toys,
I can imagine the building. I can sit there and see prim-
itives and recognize their power to build structures a
half mile high, if only I had just one more to make it
functionally complete. I can see those kinds of things.

The converse is true, too, I think. I can’t—from the
building—imagine the Tinker Toys. When I see a top-
down description of a system or language that has infi-
nite libraries described by layers and layers, all I just see
is a morass. I can’t get a feel for it. I can’t understand
how the pieces fit; I can’t understand something pre-
sented to me that’s very complex. Maybe I do what I
do because if I built anything more complicated, I
couldn’t understand it. I really must break it down into
little pieces.
Computer: In your group you probably have both the
bottom-up thinker and the top-down thinker. How do
you interact with both?

Computer recently visited Ken Thompson at Lucent’s Bell Labs to learn
about Thompson’s early work on Unix and his more recent research in
distributed computing.

Daniel Cooke
Texas Tech
University

Joseph Urban
Arizona State
University

Scott
Hamilton
Computer

Kanai Award
For more information on the Kanai Award, see

“With Two New Awards, We Honor Unix, RISC
Innovators,” pp. 11-13.

Thompson: I think there’s room for both, but it makes
for some interesting conversations, where two people
think they are talking to each other but they’re not.
They just miss, like two ships in the night, except that
they are using words, and the words mean different
things to both sides. I don’t know how to answer that,
really. It takes both; it takes all kinds.

Occasionally—maybe once every five years—I will
read a paper and I’ll say, “Boy, this person just doesn’t
think like normal people. This person thinks at an
orthogonal angle.” When I see people like that, my
impulse is to try to meet them, read their work, hire
them. It’s always good to take an orthogonal view of
something. It develops ideas.

I think that computer science in its middle age has
become incestuous: People are trained by people who
think one way. As a result, these so-called orthogonal
thinkers are becoming rarer and rarer. Of course,
many of their ideas have become mainstream—like
message passing, which I thought was something
interesting when I first saw it. But occasionally you
still see some very strange stuff.

Software development paradigms
Computer: What makes Plan 9 and the Inferno net-
work operating system very striking is the consistent
and aggressive use of a small number of abstractions.
It seems clear that there’s a coherent vision and team
assembled here working on these projects. Could you
give us further insight into how the process works?
Thompson: The aggressive use of a small number of
abstractions is, I think, the direct result of a very small
number of people who interact closely during the
implementation. It’s not a committee where everyone
is trying to introduce their favorite thing. Essentially,
if you have a technical argument or question, you have
to sway two or three other people who are very savvy.
They know what is going on, and you can’t put any-
thing over on them.

As for the process, it’s hard to describe. It’s chaotic,
but somehow something comes out of it. There is a
structure that comes out of it. I am a member of the
Computing Sciences Research Center, which consists
of a bunch of individuals—no teams, no leaders. It’s
the old Bell Labs model of research; these people just
interact every day.

At different times you have nothing to do. You’ve
stopped working for some reason—you finished a pro-
ject or got tired of it—and you sit around and look
for something to do. You latch on to somebody else,
almost like water molecules interacting.

You get together and say, “I have an idea for a lan-
guage,” and somebody gets interested. Somebody else
asks how we put networking in it. Well, so-and-so has
a model for networking, and somebody else comes in.
So you have these teams that rarely get above five or

six, and usually hover around two or three. They each
bring in whatever they did previously.

So that’s the way it works. There are no projects
per se in the Computing Sciences Research Center.
There are projects near it of various sorts that will
draw on our research as a resource. But they have to
deal with our style. If people get stuck, they come to
us but usually don’t want to deal with the manage-
ment style—which means none—that comes along
with it.
Computer: You mentioned technical arguments and
how you build your case. How are technical argu-
ments resolved?
Thompson: When you know something is systemi-
cally wrong despite all the parts being correct, you say
there has to be something bet-
ter. You argue back and forth.
You may sway or not sway, but
mostly what you do is come up
with an alternative. Try it.
Many of the arguments end up
that way.

You say, “I am right, the hell
with you.” And, of course the
person who has been “to helled
with” wants to prove his point,
and so he goes off and does it.
That’s ultimately the way you
prove a point. So that is the
way most of the arguments are
done—simply by trying them.

I don’t think there are many
people up in research who have
strong ideas about things that
they haven’t really had experi-
ence with. They won’t argue
about the theory of something
that’s never been done. Instead,
they’ll say, “Let’s try this.”
Also, there’s not that much ego up there either, so if it’s
a failure you come back and say, “Do you have
another idea? That one didn’t work.” I have certainly
generated as many bad ideas as I have good ones.
Computer: What advice do you have for developers
who are out there now to improve their designs so
that they could be viewed as producing simple yet
powerful systems?
Thompson: That is very hard; that is a very difficult
question. There are very few people in my position
who can really do a design and implement it. Most
people are a smaller peg in a big organization where
the design is done, or they do the design but can’t
implement it, or they don’t understand the entire sys-
tem. They are just part of a design team. There are
very few people I could give advice to.

It’s hard to give advice in a product kind of world

May 1999 59

Ph
ot

os
 o

f t
he

 “
U

ni
x

R
oo

m
”

at
 B

el
l L

ab
s

co
ur

te
sy

 o
f L

uc
en

t T
ec

hn
ol

og
ie

s.

60 Computer

when what I do, I guess, is some form of computer
Darwinism: Try it, and if it doesn’t work throw it out
and do it again. You just can’t do that in a product-
development environment.

Plus I am not sure there are real principles involved
as opposed to serendipity: You happened to require
this as a function before someone else saw the need
for it. The way you happen upon what you think
about is just very lucky. My advice to you is just be
lucky. Go out there and buy low and sell high, and
everything will be fine.

UNIX
Computer: In an earlier interview you were asked
what you might do differently if you had to do Unix
over again, and you said that you would add an “e”
to the creat system call. Seriously, in hindsight, can
you give us an assessment of the problems you over-
came, the elegant solutions, and the things you would
have done differently.

Thompson: I think the major
good idea in Unix was its clean
and simple interface: open,
close, read, and write. This
enabled the implementation of
the shell as well as Unix’s
portability. In earlier systems,
I/O had different entry points,
but with Unix you could
abstract them away: You open
a file, and if the file happens to
be a tape, you could write to it.
Pipes allowed tools and filters

that could accommodate classical monster programs
like sort.

Probably the glaring error in Unix was that it under-
evaluated the concept of remoteness. The open-close-
read-write interface should have been encapsulated
together as something for remoteness; something that
brought a group of interfaces together as a single
thing—a remote file system as opposed to a local file
system.

Unix lacked that concept; there was just one group
of open-close-read-write interfaces. It was a glaring
omission and was the reason that some of the awful
things came into Unix like ptrace and some of the
system calls. Every time I looked at later versions of
Unix there were 15 new system calls, which tells you
something’s wrong. I just didn’t see it at the time. This
was fixed in a fairly nice way in Plan 9.
Computer: Going back a little bit further, what were
the good and not so good aspects of Multics that were
the major drivers in the Unix design rationale?
Thompson: The one thing I stole was the hierarchical
file system because it was a really good idea—the dif-
ference being that Multics was a virtual memory sys-

tem, and these “files” weren’t files but naming con-
ventions for segments. After you walk one of these
hierarchical name spaces, which were tacked onto the
side and weren’t really part of the system, you touch
it and it would be part of your address space and then
you use machine instructions to store the data in that
segment. I just plain lifted this.

By the same token, Multics was a virtual memory
system with page faults, and it didn’t differentiate
between data and programs. You’d jump to a segment
as it was faulted in, whether it was faulted in as data
or instructions. There were no files to read or write—
nothing you could remote—which I thought was a
bad idea. This huge virtual memory space was the uni-
fying concept behind Multics—and it had to be tried
in an era when everyone was looking for the grand
unification theory of programming—but I thought it
was a big mistake.

I wanted to separate data from programs, because
data and instructions are very different. When you’re
reading a file, you’re almost always certain that the
data will be read sequentially, and you’re not surprised
when you fault a and read a + 1. Moreover, it’s much
harder to excise instructions from caches than to
excise data. So I added the exec system call that says
“invoke this thing as a program,” whereas in Multics
you would fault in an instruction and jump to it.

Development history
Computer: What about the development history of
Unix?
Thompson: The early versions were essentially me
experimenting with some Multics concepts on a PDP-
7 after that project disbanded, which is about as small
a team as you can imagine. I then picked up a couple
of users, Doug McIlroy and Dennis Ritchie, who were
interested in languages. Their criticism, which was
very expert and very harsh, led to a couple of rewrites
in PDP-7 assembly.

At one point, I took BCPL from Martin Richards
at MIT and converted it into what I thought was a
fairly straight translation, but it turned out to be a dif-
ferent language so I called it B, and then Dennis took
it and added types and called it C.

We bought a PDP-11—one of the very first—and I
rewrote Unix in PDP-11 assembly and got it running.
That was exported to several internal Bell telephone
applications, to gather trouble reports and monitor var-
ious things like rerouted cables. Those applications,
independent of what we were doing, started political
pressure to get support for the operating system; they
demanded service. So Bell Labs started the Unix
Support Group, whose purpose was to serve as the
interface to us, to take our modifications and interface
them with the applications in the field, which demanded
a more stable environment. They didn’t like surprises.

could go through it line by line and understand exactly
how it worked. That was the origin of the so-called
Unix culture.
Computer: In a sense, Linux is following in this tra-
dition. Any thoughts on this phenomenon?
Thompson: I view Linux as something that’s not
Microsoft—a backlash against Microsoft, no more
and no less. I don’t think it will be very successful in
the long run. I’ve looked at the source, and there are
pieces that are good and pieces that are not. A whole
bunch of random people have contributed to this
source, and the quality varies drastically.

My experience and some of my friends’ experience
is that Linux is quite unreliable. Microsoft is really
unreliable but Linux is worse. In a non-PC environ-
ment, it just won’t hold up. If you’re using it on a sin-
gle box, that’s one thing. But if you want to use Linux
in firewalls, gateways, embedded systems, and so on,
it has a long way to go.

DISTRIBUTED COMPUTING: NETWORK
OPERATING SYSTEMS AND LANGUAGES
Computer: How does your work on Plan 9 and
Inferno derive from your earlier work on Unix? What
are some of the new ideas arising out of this work that
could and should apply to distributed operating sys-
tems in general?
Thompson: Saying these ideas haven’t been applied
before is tough because, if you look closely, every-
thing is reinvented, nothing’s new. There are good
ideas and bad ideas in Unix. You can’t escape your
history. What you think today is not much different
from what you thought yesterday. And, by induction,
it is not that different from what you thought twenty
years ago.

May 1999 61

This grew over time into the commercial version from
AT&T and the more autonomous version from USL.

Independently, we went on and tried to rewrite Unix
in this higher level language that was evolving simul-
taneously. It’s hard to say who was pushing whom—
whether Unix was pushing C or C was pushing Unix.
These rewrites failed twice in the space of six months,
I believe, because of problems with the language.
There would be a major change in the language and
we’d rewrite Unix.

The third rewrite—I took the OS proper, the ker-
nel, and Dennis took the block I/O, the disk—was
successful; it turned into version 5 in the labs and ver-
sion 6 that got out to universities. Then there was a
version 7 that was mostly a repartitioning of the sys-
tem in preparation for Steve Johnson and Dennis
Ritchie making the first port to an Interdata 832.
Unknown to us, there was a similar port going on in
Australia.

Around version 6, ARPA [Advanced Research
Projects Agency] adopted it as the standard operating
system for the Arpanet community. Berkeley was con-
tracted to maintain and distribute the system. Their
major contributions were to adapt the University of
Illinois TCP/IP stack and to add virtual memory to
Bell Lab’s port to the VAX.

There’s a nice history of Unix written by Dennis
that’s available on his home page [ed.—“The Evolution
of the Unix Time-Sharing System,” http://cm.belllabs.
com/cm/cs/who/dmr/hist.html].
Computer: What accounted for the success of Unix,
ultimately?
Thompson: I mostly view it as serendipitous. It was a
massive change in the way people used computers,
from mainframes to minis; we crossed a monetary
threshold where computers became cheaper. People
used them in smaller groups, and it was the beginning
of the demise of the monster comp center, where the
bureaucracy hidden behind the guise of a multimillion-
dollar machine would dictate the way computing ran.
People rejected the idea of accepting the OS from the
manufacturer and these machines would never talk to
anything but the manufacturer’s machine.

I view the fact that we were caught up in that—
where we were glommed onto as the only solution to
maintaining open computing—as the main driving
force for the revolution in the way computers were
used at the time.

There were other, smaller things. Unix was a very
small, understandable OS, so people could change it
at their will. It would run itself—you could type “go”
and in a few minutes it would recompile itself. You
had total control over the whole system. So it was very
beneficial to a lot of people, especially at universities,
because it was very hard to teach computing from an
IBM end-user point of view. Unix was small, and you

62 Computer

In Plan 9 and Inferno, the key ideas are the proto-
col for communicating between components and the
simplification and extension of particular concepts. In
Plan 9, the key abstraction is the file system—anything
you can read and write and select by names in a hier-
archy—and the protocol exports that abstraction to
remote channels to enable distribution. Inferno works
similarly, but it has a layer of language interaction
above it through the Limbo language interface—
which is like Java, but cleaner, I think.

Limbo
Computer: How would you characterize Limbo as a
language?
Thompson: First, I have to say that the language itself
is almost exclusively the work of Sean Dorward, and
in my talking about it I don’t want to imply I had
much to do with it.

I think it’s a good language. In
a pragmatic sense, it’s a simplifi-
cation of the larger languages
like C++ and Java. The inheri-
tance rules are much simpler, it’s
easier to use, and the restrictions
there for simplicity don’t seem
to impair its functionality.

In C++ and Java I experience
a certain amount of angst when
you ask how to do this and they
say, “Well, you do it like this or
you could do it like that.”

There are obviously too many features if you can do
something that many ways—and they are more or less
equivalent. I think there are smaller concepts that fit
better in Inferno.
Computer: We know that Plan 9 was done in C. It
would almost seem that the group needed Limbo to
develop Inferno. Do we need new types of languages
to build distributed systems?
Thompson: The language, I think, doesn’t matter per
se. The language’s actual size and features are almost
separate issues from the distribution of the language.
It shouldn’t be too large or too small; it should be
some nice language that you can live with. The idea,
though, is that it is dynamically loadable so that you
can replace little modules. And through some other
mechanisms like encryption you can validate those
modules, and when they are loaded you have some
confidence that it’s the module you wanted and that
someone hasn’t spoofed you.

There are certain features you must have—some
form of object orientation, for example. You could
replace Limbo with Java—I wouldn’t want to—and
not change Inferno’s basic principles other than the
way it meets system requirements. Sean decided the
whole system had to have a garbage-collected lan-

guage at a much higher level in that it’s not separate
interacting processes maintaining their own addresses,
with some being garbage-collected and some not.

The language and the system are all garbage-col-
lected together. Whatever protection mechanisms you
have for the language apply all the way down through
the system. For example, if you open a file, you don’t
have to close it. If you stop using it, just return from
the function and it will be garbage-collected and the
file will be closed. So the system and the language are
part of the same ball of wax.

In addition, the language implementation—and
again I don’t want to take any credit—doesn’t have
big mark-and-sweep type garbage collection. It has
reference counting: If you open something and then
return, it’s gone by reference count. Thus, you don’t
have high and low watermarks because 99 percent of
the garbage goes away as soon as it is dereferenced. If
you store a null in a pointer, it chases the pointer and
all that stuff goes.

If you make cycles, there is a background distrib-
uted mark-and-sweep algorithm that just colors the
next step a little bit at a time. It doesn’t have to be very
aggressive because there is not much garbage around
in most applications: People really don’t leave dan-
gling loop structures that require this kind of algo-
rithm. So you can devote just one percent of your time
in the background looking for garbage without these
monster mark-and-sweep things.

So, again, it’s pragmatic. It’s not the theoretical top-
of-the-line garbage collection paper. It’s just a way of
doing it that seems to be very, very effective.

CURRENT WORK
Computer: What are you working on now?
Thompson: A few of us in research were tapped by a
newly formed development organization within
Lucent to work on a product called the PathStar
Access Server. It’s essentially a central office switch
and router for IP phone and data services. It’s strictly
IP-based. You pick up the phone, dial it, and make
conference calls.

I think packet switching will replace circuit switch-
ing in the phone system and will invert the hierarchy.
Whereas data is currently carried in the leftover space
of a circuit-switched network, eventually the back-
bone will be a packet-switched network with the
phone implemented under it. You don’t have to go out
on a limb to say this—probably 90 percent of the peo-
ple believe that now. But this project is “put up or shut
up.” We are actually inverting the phone system to
run across a pretty classical packet-switched router.

In this kind of application what you need to pay atten-
tion to is maintenance and configuration, which is where
Inferno comes in. All of the configuration code is Inferno
and Limbo. You have to pay attention to quality of ser-

vice so that you can raise the loading above minimal
and still get real-time voice, in this particular case.

There were some fun parts: The actual call pro-
cessing, which is typically done by a huge finite state
machine, was fun to do. We did it by making a finite-
state-machine-generation language. The object of the
language is a finite state machine, but the source is
not. The actual phone conversation or feature is a
group of interacting finite state machines, almost like
processes. And, of course, they have to be distributed
because you make calls to other phones.
Computer: So this language generates the finite state
machines. Did you create the language to allow for
experimentation to come up with different finite state
machines?
Thompson: Well, at first we thought it was simple:
You just write a finite state machine for this phone
system. And at first it was simple. You just say, “Well
if you’re here do this, and if you’re there do that, and
just manually lay out these finite state machines.” And
that works just beautifully for the very first imple-
mentation, which is just picking up a phone, dialing
a number, calling another phone, picking that phone
up, conversing, and hanging up. You can just picture
those states laying out.

But when you get to some of the simple features—
three-way calls, for example—what happens when
caller ID or call waiting comes in on a three-way call?
The classical phone just says busy because it can’t han-
dle more than three phones.

So you build a model, which was initially a finite-
state-machine model, and then you slowly add the fea-
tures you need until the model breaks. It breaks pretty
quickly, so you build a second one until it breaks, and
so on. You just do it by exhaustion. So that’s how the
FSM-generation language came about; it wasn’t “let’s
sit down and do everything at once.” I think that’s
probably the way computer languages were built.

Interestingly, this work was extended further by
Gerard Holzmann, someone in our area who has been
into state verification—running exhaustive studies
finding error states in the finite state system. He was
just delighted with this little FSM-generation language
because now he could build his models, and he
inverted it. He took it the way it is, which is to build
finite state machines, but he also took it to build dri-
vers. So he has my model, which runs the phones on
the inside, but then he needed telephones to drive his
model. So he can now build another finite state
machine to model the telephone and do not only the
synthesis but the analysis.

Jukebox music collection
Computer: You’re also collecting music?
Thompson: It’s kind of a personal/research hobby/pro-
ject. Let me explain it from an external point of view.

Basically, I’m just collecting music. I’m getting lists
from various sources—top 10s, top 50s—and I try to
collect the music.

Right now, my list has around 35,000 songs, of
which I’ve collected around 20,000. I compress the
songs with a Bell-Labs-invented algorithm called PAC
[Perceptual Audio Coding] and store them on a juke-
box storage system. I started this before MP3 was heard
of on the network. PAC is vastly superior to MP3.

My collection is not generally available because of
the legal aspects. I went to legal
and told them I was collecting
a lot of music, but I don’t think
they realized what I meant by
“a lot.” Anyway, they said that
in the case of research there’s
something similar to fair use
and that they’d back me, but
wouldn’t go to jail for me. So I
can’t release it generally. But it’s
pretty impressive. It’s split-
screen like a Web browser; you
can walk down lists, years, or
weeks.
Computer. It’s a personal
hobby.
Thompson: It’s hard to differ-
entiate since, if you haven’t
noticed, almost everything I’ve
done is personal interest. Al-
most everything I’ve done has
been supported and I’m al-
lowed to do it, but it’s always
been on the edge of what’s
acceptable for computer science at the time. Even Unix
was right on the edge of what was acceptable at Bell
Labs at the time. That’s almost been my history.

COMPUTER SCIENCE AND THE FUTURE
Computer: You’ve been there through Multics, Unix,
Inferno, and so on. Any thoughts about where com-
puter science is going or should be going?
Thompson: Well, I had to give advice to my son, and
my advice to him—to the next generation—was to get
into biology.

Computer science is coming into its middle age. It’s
turning into a commodity. People don’t know about
Carnot cycles for refrigerators, yet they buy refriger-
ators. It’s happening in computing, too. Who knows
about compilers? They buy computers to play games
and balance their checkbooks. So my advice to my
child was—I am unfortunately talking to Computer
magazine—to go into biology, not classic biology but
gene therapy and things like that.

I think that computing is a finite field and it’s reach-
ing its apex and we will be on a wane after this. I am

May 1999 63

WHAT I DID ON MY WINTER VACATION
Computer: We can’t let you go without asking why on
earth you traveled to Russia to fly a Mig-29?
Thompson: How often does the Soviet Union col-
lapse? It would be just a shame if you couldn’t do
something you have always wanted to do as a result.
They are selling rides in what was once the top fighter.
A mere two years earlier you would only get hints
about its existence in Jane’s books. Now you can get
in, use the laser sights, and go straight up at 600 miles
per hour. Who wouldn’t do that? When things like
that come along, I’ll take them. They’re fun. ❖

Acknowledgments
We thank Patrick Regan of Lucent Technologies for

arranging this interview and Brigitta Hanggi for pro-
viding the photos. Photos of the “Unix Room” in the
Computing Sciences Research Center are courtesy of
Lucent Technologies.

Daniel Cooke is chair of the Computer Science
Department at Texas Tech University.

Joseph Urban is a professor in the Computer Science
and Engineering Department at Arizona State Uni-
versity.

Scott Hamilton is senior acquisitions editor for Com-
puter.

Contact the authors at {d.cooke, j.urban, s.hamilton}@
computer.org.

64 Computer

sorry to say that, but that’s the way I feel. You look at
any aspect of computer science—what’s being taught
today, PhD theses, publications, any metric you can
think of and compare it to history—and you realize
that aspects of computer science are becoming more
specialized.
Computer: Which aspects?
Thompson: Operating systems, in particular, have to
carry so much baggage. Today, if you’re going to do
something that will have any impact, you have to com-
pete with Microsoft, and to do that you have to carry
the weight of all the browsers, Word, Office, and
everything else. Even if you write a better operating
system, nobody who actually uses computers today
knows what an operating system interface is; their
interface is the browser or Office.

You can have the best and most beautiful interface
in the world and the most
extensible operating system
that ports to anything, and
then you have to port on
top of it a thousand staff-
years’ worth of applica-
tions that you can’t obtain
the source for. You have
two choices: Go to Micro-
soft and ask for the source
to Office to port to your
operating system and
they’ll laugh at you; or get
a user’s manual and reengi-
neer the code and they’ll
sue you anyway. Basically,
it’ll never happen because
the entry fee is too high.

Anything new will have
to come along with the
type of revolution that
came along with Unix.
Nothing was going to top-
ple IBM until something

came along that made them irrelevant. I’m sure they
have the mainframe market locked up, but that’s just
irrelevant. And the same thing with Microsoft: Until
something comes along that makes them irrelevant,
the entry fee is too difficult and they won’t be dis-
placed.
Computer: So you’re not precluding the possibility of
a paradigm shift.
Thompson: Absolutely not. Anybody who says there’s
no more innovation in the world is doomed to be
among the last 400 people who have stated this since
the birth of Christ.
Computer: You’re still having fun?
Thompson: Yes, there are still a lot of fun programs
to write.

Stay on Top of
Your Profession
Sign up for the Computer

Society’s electronic newsletter
CS e-News gives you
quick alerts about

• Articles and special issues
• Conference news
• Submission and registration

deadlines
• Interactive forums

Visit
http://computer.org

for more details

