
Programming Assignment II

(Due date: See course’s website)

In this project, you will be implementing a per-thread cycle accurate timer as a new system
call in Windows CE .Net. This is slightly different than the existing system call
SC_GetThreadTimes because the existing system call returns time in 100 nanoSeconds
increment whereas the new system call returns the number of cycles. The new system call
will work exclusively with Intel Performance Counter available in x686 or higher (PII and up
or K6 and up). This special instruction is available as part of the Simulator provided by the
platform builder in CE. You will need to revise Windows CE source code. You will also need
to rely on OEMIoControl to create the new System Call, which is similar to the process in lab
5. Please refer to the manual of lab 5 on how to create a system call. The system call is
specified as follows:

 The system call, SC_GetThreadTickCount is used to obtain the number of cycles
that each process has been executing. This execution time must not include the time
that a thread is block state. The interface can be as follows:

SC_GetThreadTickCount(HANDLE hThread, __int64 *myTickCount)
 User KernelIoControl as an interface of the system call,

KernelIoControl(-3366, (LPVOID)hid, 0, (LPVOID)(&count), 0, 0), where -3366 is a
user defined number as an entry in OEMIoControl, hid (HANDLE) is the thread
handler of the thread, count (unsigned __int64) is used to store the number of cycles
that this thread has been executed.

You will need to use rdtsc in assembly language to obtain the number of cycles. More

information about rdtsc instruction is provided as a separate document. You will need to add
two additional fields in the thread structure: one for recording the thread starting_time and the
other for recording the accumulated_time. By time, we mean the time in terms of the number
of cycles. After you create these two fields, you will need to:

 Assign zero to these two fields when initializing the thread structure.
 Add a function in schedule.c which returns the total number of cycles that this

thread has been used in its running state.
 Sum up the accumulated number of cycles when the thread is swapped out from

running state. This requires a careful reading and analysis of the source code
(schedule.c).

 You also need to make certain that this function should return the accumulated time
(up to the last time the thread was swapped out) and the number of cycles in the
current turn on the processor.

Some hints
 Data type: You need to use unsigned __int64 as the storage of the number of cycles.
 Assembly in C language: You need to use assembly in C function to obtain the

number of rdtsc cycles. The basic format is:

asm { assembly instruction }

Submission Procedure:
 Lab demo (will take place on the due date).

1. We will provide a sample test program.
2. Before the end of execution of thread, call the system call to get the thread

execution cycles and print it out
 Your documentation should include.

 Source files
1. All modified source files and header files

 Project report that include:
1. Difficulties encountered
2. Workload distribution
3. Your approach to the problem
4. Number of hours spent on the project
5. All the necessary steps to complet the project

NOTICE: I will not take late submission.

