
1

Name:____________________________________ SID: _______________________

CSCE 351: Operating System Kernels

Lab 2 – User-Level Thread Management (20 pts)
Must be graded by the TA at the beginning of the lab period on Oct 4, 2006.

Basic Setup:

• Accessibility to a Linux workstation
• Copy jumplab.tar from ~witty/share/csce351/ directory

Objectives:
The objectives of this lab are as follows:

• Familiarize students with siglongjmp and sigsetjmp.
• Expose students to the basic debugging process with GDB.
• Expose students to the timer signal in Linux
• Lay ground work for programming assignment 1

Estimated Lab Time: 75 minutes

Introduction

The objective of this exercise is to familiarize students with two standard C library
functions sigsetjmp and siglongjmp. Function sigsetjmp can be used to save the context of
the processor (e.g. registers) and stack environment into a buffer. This context can then
be retrieved using siglongjmp. The first time that sigsetjmp is called, it will return 0.
However, if it is returning from siglongjmp, it would return non-zero value. For more
information about these functions, check the UNIX/Linux man page.

Activity 1: Introduction to sigsetjmp and siglongjmp

For this activity, you will need to log-in to osage.unl.edu. You can use your CSE
username and password to log-in to osage. Once log-in, obtain the program from
/home/fac/witty/share/csce351/jumplab.tar. You can copy this file directly to your
directory. Once in your directory, execute tar –xvf jumplab.tar and you should have a
folder called jumplab in your directory. In jumplab directory, we will examine program
jump.c (listed below)

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>

2

#include <string.h>

int main(void)
{
 sigjmp_buf buf_ptr;
 int retval;
 sigset_t sigmask;
 int testval = 100;
 char message[] = "Original Message";
 if (sigsetjmp(buf_ptr,1) == 0)
 {
 fprintf (stderr,"1. message = %s, testval = %d\n",

message, testval);
 strcpy (message, "New Message");
 testval = 1000;
 fprintf (stderr,"2. message = %s, testval = %d\n",

message, testval);
 } else {
 fprintf (stderr,"3. message = %s, testval = %d\n",

message, testval);
 strcpy (message, "Newest Message");
 testval = 10000;
 fprintf (stderr,"4. message = %s, testval = %d\n",

message, testval);
 return;
 }
 siglongjmp(buf_ptr, 1);
}

By inspecting the code, what do you think will be the output of this program?

Don’t worry about the correctness of your answer to the question above. If you are not
sure, just provide your best guess as the answer.

Next, compile this program (using gcc jump.c –o jump) and run this program (using
./jump). Is the output similar to your answer above? Also specify the rationales for your
provided answer.

3

To really understand how this program works, we will need to use debugging tools to
monitor each step of execution. We will use GNU Debugger (GDB) to perform step-by-
step execution. If you have never used GDB, a how-to document is provided in our class
website under How-to page. As you are stepping through the program, pay special
attention to register EIP (program counter) and ESP (stack pointer) especially around
sigsetjump and siglongjump statements.

Explain the execution path of the program. The first time when sigsetjmp is executed,
does it go through the “if” or the “else” block? Why?

What happen after siglongjmp is executed? To be more specific, what happen to the EIP
and ESP registers?

The second time when sigsetjmp is executed, does it go through the “if” or the “else”
block? Why?

In the man page for sigsetjmp, the API for the sigsetjmp is provided as follows:

int sigsetjmp(sigjmp_buf env, int savemask);

The description of the function is stated as:
“The sigsetjmp() function saves the calling process's registers and stack environment see
sigaltstack(2)) in env for later use by siglongjmp().”

Do you think that the term “stack environment” include the entire stack space? In other
words, is the entire stack saved when sigsetjmp is called?

4

Examine jump2.c in your jumplab directory. The program is also listed below:

#include <stdlib.h>
#include <stdio.h>
#include <signal.h>
#include <setjmp.h>
#include <string.h>

void proc1(char*);
sigjmp_buf buf_ptr1;

int main(void)
{
 int retval;
 int count = 0;
 sigset_t sigmask;
 char message[] = "Original Message";
 sigsetjmp(buf_ptr1,1);
 fprintf (stderr,"1. message = %s\n", message);
 if (count >= 4)
 return;
 count++;
 proc1(message);
}
void proc1(char* message)
{
 strcpy (message, "New Message");
 siglongjmp(buf_ptr1, 1);
}

The differences between this program and the previous program are as follows:

1. buf_ptr1 is a global variable which means that it is visible across function calls.
2. siglongjmp is called from a function outside of main.
3. we do not care about the return value of sigsetjmp.

Using GDB, monitor the execution of this program. Again pay special attention to EIP
and ESP registers.

Based on your observation of this program (jump2.c), do you think that the term “stack
environment” include the entire stack space? In other words, is the entire stack saved
when sigsetjmp is called?

5

What do you think the term “stack environment” include?

Activity 2: Creating user’s level threads

You have already seen that sigsetjmp can be used to create an execution entry point. That
is when sigsetjmp is called, the processor’s context and stack environment are saved and
siglongjmp can be used to restart a program at this exact same point in execution. Our
next task is to create necessary components that would allow multiple execution contexts.
As stated in the lecture, each thread has its own text section and stack space. Executed
code can be the same or different among all threads.

Inside jumplab directory, examine and execute jump3.c. From the execution, it should be
apparent that this program is not correct. Based on your experience with sigsetjmp and
siglongjmp, explain why this program stays in an infinite loop?

There are two functions that have been created in this program, insert() and delete().
These two functions operate on a global variable i. We have already invoked two
sigsetjmp at the beginning of the program. These two sigsetjmp calls will serve as two
different execution contexts. However, these two contexts execute exactly the same code
and also share the same stack space. Our goal is to create two different stack spaces for
these two execution contexts and then map one context to insert() and another to delete().

Step 1: you will need to create two stack spaces for each of your execution context. You
can use malloc or calloc routine to do this. I have already declared the variable for your
stacks (stack1 and stack2). Let’s set the initial stack size to 4096 bytes.

Step 2: The definition of sigjmp_buf is available in /usr/include/bits/setjmp.h. For x86,
sigjmp_buf has the size of 24 bytes. Accessing to the data in stored in a variable of type
sigjmp_buf can be easily done by dereferencing into the buffer. For example, to access
the value of the stack pointer stored in buf1 (from our example), you would use:

buf1->__jmpbuf[JB_SP]

Step 3: Overwrite the current values of:

buf1->__jmpbuf[JB_SP],
buf1->__jmpbuf[JB_PC],
buf2->__jmpbuf[JB_SP], and

6

buf1->__jmpbuf[JB_PC]

with the new stack addresses and the starting address of insert() and delete(). Notice that
stacks do grow downward in Linux/X86 system. Function such as malloc or calloc
returns the starting address, and as more data is stored, the space would go upward. Thus,
you want to provide the ending address of your stack and not the starting address so that
the stack can grow downward without memory access violation. If you are successful in
modifying jump3i.c, you should be able to compile and get the following output after
execution:

Main: Jumping to insert
Insert an item
Done inserting! i = 1
Main: Jumping to delete
Delete an item
Done deleting! i = 0
Main thread --- all done

At this point, you have created two different execution tasks. Each task has its own stack
space. In effect these two tasks are your threads of execution.

Activity 3: Timer event

In this activity, we will examine the code to create a timer that can be used to trigger
events (e.g. scheduling) after a specific interval.

#include <unistd.h>
#include <signal.h>
#include <stdlib.h>
#include <stdio.h>
#include <setjmp.h>
#include <string.h>
#include <time.h>
#include <sys/time.h>

#define INTERVAL 600000

struct itimerval clocktimer;
struct itimerval oldclocktimer;

void producer(void);
void signal_processor(int signal);
int main(void)
{
 /* initialize timer to send signal every 300 ms */
 clocktimer.it_value.tv_sec = 0;
 clocktimer.it_value.tv_usec = INTERVAL;
 clocktimer.it_interval.tv_sec = 0;

7

 clocktimer.it_interval.tv_usec = INTERVAL;
 setitimer (ITIMER_REAL, &clocktimer, &oldclocktimer);
 sigset (SIGALRM, signal_processor);
 producer();
}

void signal_processor(int signal)
{
 printf ("get a signal\n");
}
void producer()
{
 int i;
 while(1){
 for (i = 0; i < 1000000; i++);
 printf ("Producer\n");
 }
}

Step 1: Compile timer.c (available in jumplab directory).
Step 2: Execute the binary of timer.c.
Step 3: Examine the execution and the output.

End of In-Lab Exercise

