
Witawas Srisa-an CSCE 351: Operating System Kernels

Homework 1: Implementation of Monitors (100 points)
Due: October 11, 2006 by 5:30 pm

1 Producer/Consumer with Semaphores (35 pts)

The goal of this problem is to solve a producer/consumer problem using semaphores. You will use the
pthread package to create 4 producer threads and 4 consumer threads. Each producer thread attempts
to insert character ’X’ into a circular buffer of size 3,000,000 characters. Each consumer thread tries
to removes a character from the buffer. You will perform your work in osage.unl.edu. Use POSIX
semaphore (sem init, sem get, sem post, etc.). The pseudo-code is given in Figure 1.

2 Producer/Consumer with Monitors (65 pts)

The goal of this problem is to create your own high-level library (monitor) to provide synchronization
support. You should leverage on your experience gained during your homework assignment 2 and ques-
tion 1 in which you have used semaphores to prevent race conditions from occurring. You will perform
your work in osage.unl.edu. You will also use the pthread package to solve a producer/consumer prob-
lem. You will create 6 producer threads and 6 consumer threads. Each producer thread attempts to insert
character ’X’ into a circular buffer of size 3,000,000 characters. Each consumer thread tries to remove
a character from the buffer. Refer to Figure 2 for the pseudo-code. Please follow the implementation
guideline below:

1. You will create a new variable type called condition variable(CV). Basically, condition variables
are used to delay processes or threads that cannot continue executing due to specific monitor state
(e.g. full buffer). They are also used to awaken delayed processes or threads when the conditions
are satisfiable. You will create a new structure call cond. The structure consists of an integer
variable that indicates the number of processes blocked on a condition variable and a semaphore
that is used to suspend threads. There are three operations that can be performed on the CV. They
are:

(a) count(cv)—returns the number of processes blocked on the cv.
(b) wait(cv)—suspends a process on the cv. It also causes the process to relinquish exclusive

access to the monitor.
(c) signal(cv)—unblocks one process suspended on the cv.

Notice, you are not allowed to use existing condition variables such as one from pthread library
(pthread cond init).

2. The function to create a monitor will be mon init in which the necessary data structure(s) will
be created in an arena. The function then returns the reference to the arena if successful or zero
if failed. The arena should consist of i) a semaphore to regulate entry and exit to the monitor, ii)
all the necessary condition variables (you will need two in this case, not full and not empty), iii)
a circular buffer needed to store the characters generated by the producers in the arena, and iv)
an integer variable to record the number of items in the buffer. The arena must be created in a
memory area that is visible to all threads.

3. Function mon enter performs the down operation on the semaphore in the arena.

University of Nebraska-Lincoln HW1 - 1 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

4. Function mon exit performs an up operation on the semaphore in the arena.

5. Function wait suspends the executing thread on a specified condition variable.

6. Function signal awakens the blocked thread at the head of the queue of the specified condition
variable.

7. Function mon insert inserts a character into the buffer. If the buffer is full, invoke wait on the
condition variable not full. It also invokes signal on condition variable not empty.

8. Function mon remove removes a character from the buffer. If the buffer is empty, invoke wait
on the condition variable not empty. It also invokes signal on condition variable not full.

All these functions will be implemented in a separate C file. Thus, you should at least have two
C source files, monitor.c and pro con.c. You can compile monitor.c using -c flag (e.g. gcc -c moni-
tor.c). This will give you the object file (monitor.o) that can be linked to your pro con.c (gcc pro con.c
monitor.o).

3 Submission procedure

Create a zip file that has all your solutions and submit through hand-in. The step to create proper directory
structure is as follows:

1. Create a directory called lastname lab2 (replace lastname with your lastname).

2. Create subdirectories: prob1 and prob2 under lastname lab2.

3. Place your solutions in the proper directory. Provide README.txt file for each problem. Each
README file should specify:

• Specific instructions on how to test your solution.

• How much time you spent on that particular problem.

• The level of challenge from 0 to 5 (5 is most difficult).

• How much prior knowledge do you have to attack the problem.

4. Once all solutions are properly stored, zip the folder lastname lab2 and submit the zip file through
handin.

University of Nebraska-Lincoln HW1 - 2 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

d e f i n e N 3000000
semaphore mutex = 1 ;
semaphore empty = N;
semaphore f u l l = 0 ;

void main (void)
{

/ / c r e a t e f o u r p r o d u c e r t h r e a d s
/ / c r e a t e f o u r consumer t h r e a d s

}

void p r o d u c e r (void)
{

whi le (1)
{

down(&empty) ;
down(&mutex) ;
i n s e r t (’X’) ;
up(&mutex) ;
up(& f u l l) ;

}
}

void consumer (void)
{

whi le (1)
{

down(& f u l l) ;
down(&mutex) ;
remove () ;
up(&mutex) ;
up(&empty) ;

}
}

Figure 1: Pseudo-code for producer/consumer problem using semaphores

University of Nebraska-Lincoln HW1 - 3 Computer Science and Engineering

Witawas Srisa-an CSCE 351: Operating System Kernels

d e f i n e N 3000000
/ / arena
semaphore mutex = 1 ;
cond empty ;
cond f u l l ;
i n t c o u n t ;
char buf [N] ;
/ / t h e f i v e v a r i a b l e s above s h o u l d be c r e a t e d as arena i n m o n i n i t
void main (void)
{

/ / c a l l m o n i n i t ()
/ / c r e a t e s i x p r o d u c e r t h r e a d s
/ / c r e a t e s i x consumer t h r e a d s

}
void p r o d u c e r (void)
{

whi le (1) { m o n i n s e r t (’X’) ; }
}
void consumer (void)
{

whi le (1) { mon remove () ; }
}

/ / m o n i t o r . c
void m o n e n t e r ()
{ down(&mutex) ; }
void m o n e x i t ()
{ up(&mutex) ; }
void m o n i n s e r t (char a l p h a)
{

m o n e n t e r () ;
i f (c o u n t == N) w a i t (f u l l) ;
i n s e r t i t e m (a l p h a) ; / / i n s e r t a lpha i n t o b u f
c o u n t = c o u n t + 1 ;
i f (c o u n t == 1) s i g n a l (empty) ;
m o n e x i t () ;

}
void mon remove ()
{

m o n e n t e r () ;
i f (c o u n t == 0) w a i t (empty) ;
r emove i t em () ; / / remove an i t e m from b u f
c o u n t = c o u n t − 1 ;
i f (c o u n t == N − 1) s i g n a l (f u l l) ;
m o n e x i t () ;

}

Figure 2: Pseudo-code for producer/consumer problem using monitors

University of Nebraska-Lincoln HW1 - 4 Computer Science and Engineering

