
Witawas Srisa-an CSCE 351: Operating System Kernels

Extra credit: Buffer Overflow Vulnerability
(2 additional points to the final grade)

Firm Deadline: October 9th, 2006 by 11:59 pm. No extension will be granted.

1 Buffer overflow vulnerability

In this problem, you will attack buffer overflow vulnerability of the following program:

#include <s t d i o . h>
#include <uni s td . h>
void buf copy (char ∗ ) ;
int main ( int argc , char ∗∗ argv )
{

int r e t v a l ;
i f ( argc < 2)
{

f p r i n t f ( s tde r r , ” usage : a . out message\n” ) ;
e x i t ( 1 ) ;

}
buf copy ( argv [ 1 ] ) ;

}
void buf copy (char ∗ bu f f )
{

char bu f f e r 1 [ 1 2 8 ] ;
s t r cpy ( bu f f e r1 , bu f f ) ;

}

You will create an input string that once entered, calculates a factorial of the sum of the last
two digits of your social security number. The C code for the factorial procedure is as follows:

int f a c t o r i a l ( int num)
{

int f a c t ;
i f (num == 0) return 1 ; /∗ the terminat ion cond i t i on ∗/
f a c t = f a c t o r i a l (num−1) ∗ num; /∗ r e cu r s i v e c a l l ∗/
return ( f a c t ) ;

}

The result of the factorial is to be stored in the variable retval in the main function. You
will need to use a Linux box running X86 compatible processor (try osage.unl.edu). Follow
the following hints to get start.

1. Create a sample C program that can utilize the factorial routine. Then compile the
program using gcc -S flag. You will get a X86 assembly file in your directory (with .S
extension). Examine the assembly instructions that perform factorial.

2. Create an assembly file or a mixture of C and assembly file that can calculate the factorial
by itself (hardcode in the factorial value). You will need to readjust the assembly portion

University of Nebraska-Lincoln Extra - 1 Computer Science and Engineering



Witawas Srisa-an CSCE 351: Operating System Kernels

of factorial so that it becomes the main function. The program appeared below illustrates
how to mix assembly program with C program directly. More help can also be found from:

http://www.ibiblio.org/gferg/ldp/GCC-Inline-Assembly-HOWTO.html#s3:

#include <s t d i o . h>

int main (void )
{

int x = 5 , y = 6 ;
a sm v o l a t i l e ( ” addl %%ebx,%%eax”

: ”=a” (x )
: ”a” (x ) , ”b” (y )

) ;
p r i n t f ( ”x+y=%d\n” , x ) ;
return 0 ;

}

3. Try debugging this new assembly program using GDB. GDB can decode each instruction
into hexadecimal equivalence by using x/bx command.

4. Create a string of instructions that comprises of the hexadecimal equivalence. See if there
are any NULL values (0x00) in your string. If there are, you must rewrite the instructions
so that all NULL values are completely eliminated.

5. Test your string by hardcoding it into the test program. Check to see if the factorial result
is written in retval variable.

6. If your factorial routine is executed, the next step is to take our hardcoded string and feed
it into the vulnerable program. You also need to replace the return address on the stack so
that your factorial routine is executed right after buf copy. Refer to the following website
for more information: http://www.infosecwriters.com/texts.php?op=display&id=134.

Some GDB commands you may need:
disassemble function
run
break function or line number
x/bx info frame
info args
info locals
backtrace

University of Nebraska-Lincoln Extra - 2 Computer Science and Engineering


