
CSCE 351: Operating System Kernel Lab 2: Introduction to Windows CE .NET 4.2

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 1

Name:____________________________________ SID: _______________________

CSCE 351: Operating System Kernels

Lab 4 – Remote Viewer Tools and Kernel Debugging

Basic Setup:

• Windows 2000/XP workstation with Windows CE .Net 4.2 installed.

Objectives:
The objectives of this lab are as follows:

• Discover how to insert debugging statements in the kernel source
• Explore the process and thread structures
• Utilizing the Platform Builder remote viewing tool to monitor threads and processes

Estimated Lab Time: 75 minutes

Introduction

This is an excerpt from http://www.microsoft.com/technet/prodtechnol/wce/plan/chapt1.mspx.

“As a multitasking operating system, Windows CE can support up to 32 simultaneous processes,
each process being a single instance of an application. In addition, multithreading support allows
each process to create multiple threads of execution. A thread is a part of a process that runs
concurrently with other parts. Threads operate independently, but each one belongs to a particular
process and shares the same memory space. The total number of threads is limited only by
available physical memory.”

In this exercise, we will briefly look at the process structure and thread structure. For every process
created in the system, a process structure is created to represent that particular process in the
kernel. The process structure contains all the necessary information to facilitate management of
that process. The more information about the process structure is provided below.

Process Structure
The following is the process structure defined in kernel.h
(C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\INC):
struct Process {
 BYTE procnum; /* 00: ID of this process [ie: it's slot number] */
 BYTE DbgActive; /* 01: ID of process currently DebugActiveProcess'ing
this process */
 BYTE bChainDebug; /* 02: Did the creator want to debug child processes? */
 BYTE bTrustLevel; /* 03: level of trust of this exe */
#define OFFSET_TRUSTLVL 3 // offset of the bTrustLevel member in Process structure
 LPPROXY pProxList; /* 04: list of proxies to threads blocked on this process
*/
 HANDLE hProc; /* 08: handle for this process, needed only for
SC_GetProcFromPtr */
 DWORD dwVMBase; /* 0C: base of process's memory section, or 0 if not in
use */

CSCE 351: Operating System Kernel Lab 2: Introduction to Windows CE .NET 4.2

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 2

 PTHREAD pTh; /* 10: first thread in this process */
 ACCESSKEY aky; /* 14: default address space key for process's threads */
 LPVOID BasePtr; /* 18: Base pointer of exe load */
 HANDLE hDbgrThrd; /* 1C: handle of thread debugging this process, if any */
 LPWSTR lpszProcName; /* 20: name of process */
 DWORD tlsLowUsed; /* 24: TLS in use bitmask (first 32 slots) */
 DWORD tlsHighUsed; /* 28: TLS in use bitmask (second 32 slots) */
 PEXCEPTION_ROUTINE pfnEH; /* 2C: process exception handler */
 LPDBGPARAM ZonePtr; /* 30: Debug zone pointer */
 PTHREAD pMainTh; /* 34 primary thread in this process*/
 PMODULE pmodResource; /* 38: module that contains the resources */
 LPName pStdNames[3]; /* 3C: Pointer to names for stdio */
 LPCWSTR pcmdline; /* 48: Pointer to command line */
 DWORD dwDyingThreads; /* 4C: number of pending dying threads */
 openexe_t oe; /* 50: Pointer to executable file handle */
 e32_lite e32; /* ??: structure containing exe header */
 o32_lite *o32_ptr; /* ??: o32 array pointer for exe */
 LPVOID pExtPdata; /* ??: extend pdata */
 BYTE bPrio; /* ??: highest priority of all threads of the process */
 BYTE fNoDebug; /* ??: this process cannot be debugged */
 WORD wPad; /* padding */
 PGPOOL_Q pgqueue; /* ??: list of the page owned by the process */
#if HARDWARE_PT_PER_PROC
 ulong pPTBL[HARDWARE_PT_PER_PROC]; /* hardware page tables */
#endif

}; /* Process */

As stated in the excerpt, Windows CE only allows the maximum of 32 processes. This is very small
compare to other operating systems that allows hundreds of process. For illustration, please log in to
your CSE account and find out the number of processes currently existing on the system. Write
your answer in the space below:

What was the command you used? ________________________

Number of processes on CSE: __________________________

Also find the number of processes existing on your PC right now.

What was the program that you used? ______________________

Number of processes on your PC: ________________________

Since each process can have multiple threads, you can have more than just 32 paths of execution.
For each thread created, a structure is used to contain information related to that particular thread.
More information about the thread structure is given below.

Thread Structure
Scheduler operates on threads based on their priorities. The following is the thread structure defined
in kernel.h (C:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\INC):

struct Thread {
 WORD wInfo; /* 00: various info about thread, see above */
 BYTE bSuspendCnt;/* 02: thread suspend count */
 BYTE bWaitState; /* 03: state of waiting loop */
 LPPROXY pProxList; /* 04: list of proxies to threads blocked on this thread */
 PTHREAD pNextInProc;/* 08: next thread in this process */

CSCE 351: Operating System Kernel Lab 2: Introduction to Windows CE .NET 4.2

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 3

 PPROCESS pProc; /* 0C: pointer to current process */
 PPROCESS pOwnerProc; /* 10: pointer to owner process */
 ACCESSKEY aky; /* 14: keys used by thread to access memory & handles */
 PCALLSTACK pcstkTop; /* 18: current api call info */
 DWORD dwOrigBase; /* 1C: Original stack base */
 DWORD dwOrigStkSize; /* 20: Size of the original thread stack */
 LPDWORD tlsPtr; /* 24: tls pointer */
 DWORD dwWakeupTime; /* 28: sleep count, also pending sleepcnt on waitmult */
 LPDWORD tlsSecure; /* 2c: TLS for secure stack */
 LPDWORD tlsNonSecure; /* 30: TLS for non-secure stack */
 LPPROXY lpProxy; /* 34: first proxy this thread is blocked on */
 DWORD dwLastError;/* 38: last error */
 HANDLE hTh; /* 3C: Handle to this thread, needed by NextThread */
 BYTE bBPrio; /* 40: base priority */
 BYTE bCPrio; /* 41: curr priority */
 WORD wCount; /* 42: nonce for blocking lists */
 PTHREAD pPrevInProc;/* 44: previous thread in this process */
 LPTHRDDBG pThrdDbg; /* 48: pointer to thread debug structure, if any */
 LPBYTE pSwapStack; /* 4c */
 FILETIME ftCreate; /* 50: time thread is created */
 CLEANEVENT *lpce; /* 58: cleanevent for unqueueing blocking lists */
 DWORD dwStartAddr; /* 5c: thread PC at creation, used to get thread name */
 CPUCONTEXT ctx; /* 60: thread's cpu context information */
 PTHREAD pNextSleepRun; /* ??: next sleeping thread, if sleeping, else next on
runq if runnable */
 PTHREAD pPrevSleepRun; /* ??: back pointer if sleeping or runnable */
 PTHREAD pUpRun; /* ??: up run pointer (circulaar) */
 PTHREAD pDownRun; /* ??: down run pointer (circular) */
 PTHREAD pUpSleep; /* ??: up sleep pointer (null terminated) */
 PTHREAD pDownSleep; /* ??: down sleep pointer (null terminated) */
 LPCRIT pOwnedList; /* ??: list of crits and mutexes for priority inversion */
 LPCRIT pOwnedHash[PRIORITY_LEVELS_HASHSIZE];
 DWORD dwQuantum; /* ??: thread quantum */
 DWORD dwQuantLeft;/* ??: quantum left */
 LPPROXY lpCritProxy;/* ??: proxy from last critical section block, in case stolen
back */
 LPPROXY lpPendProxy;/* ??: pending proxies for queueing */
 DWORD dwPendReturn;/* ??: return value from pended wait */
 DWORD dwPendTime; /* ??: timeout value of wait operation */
 PTHREAD pCrabPth;
 WORD wCrabCount;
 WORD wCrabDir;
 DWORD dwPendWakeup;/* ??: pending timeout */
 WORD wCount2; /* ??: nonce for SleepList */
 BYTE bPendSusp; /* ??: pending suspend count */
 BYTE bDbgCnt; /* ??: recurse level in debug message */
 HANDLE hLastCrit; /* ??: Last crit taken, cleared by nextthread */
 //DWORD dwCrabTime;
 CALLSTACK IntrStk;
 DWORD dwKernTime; /* ??: elapsed kernel time */
 DWORD dwUserTime; /* ??: elapsed user time */
}; /* Thread */

Activity 1: Using remote viewing tools

1. Create a new platform with the following specification:

• Platform name: lastname_kernel (e.g. shen_kernel)
• Use c:\csce351_lab for the path of your project.
• In step 3 of the “New Platform Wizard” choose “Internet Appliance”.
• In step 4 choose only Internet Explorer.
• In step 5 choose the default setting.

CSCE 351: Operating System Kernel Lab 2: Introduction to Windows CE .NET 4.2

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 4

2. Change from Emulator:X86 Win32 (WCE Emulator) Release to Emulator:X86 Win32 (WCE
Emulator) Debug.
3. Build the platform.
4. Download the image to the emulator (make sure you set system memory in download setting to
64 MB and screen size to 320x240 with 8 bit).
5. Once the emulator is initialized, go to platform builder -> target and choose CE Debug Zone.
6. Once the Debug Zone is initialized, click refresh to get the latest data from module list (see figure
below).

7. Click OK to exit.
8. Go to target->CE Modules and Symbols Viewer and look for nk.exe. This is where you can see
the status of all your modules.

How many modules have been loaded? ______________

9. Close Modules and Symbols viewer and launch the Process Viewer (target->CE processes).

How many processes do you see? _______________

10. Close the Process Viewer and launch the Thread Viewer (target->CE threads).

From the Process drop down menu choose device.exe.

How many threads do you see? __________________________________

11. Close Thread Viewer.

12. From Platform Builder Tools menu, choose Remote Kernel Tracker. You should see a small
window similar to the figure below.

CSCE 351: Operating System Kernel Lab 2: Introduction to Windows CE .NET 4.2

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 5

13. Click Cancel to close the window.
14. From the connection menu (see figure below), choose Configure Windows CE Platform
Manager.

15. Choose properties button and you should see a small configuration window (see figure below).
Make sure your configuration is the same as the figure.

16. Click test to verify the connectivity. If successful, close the Testing Device window by clicking
“OK” then Device Properties window (“OK”) then Platform Manager Configuration window
(“OK”).
17. From tools menu, click Remote Process Viewer. It should connect successfully.

CSCE 351: Operating System Kernel Lab 2: Introduction to Windows CE .NET 4.2

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 6

18. From target menu, select CE Processes. What do you think are some of the differences
between monitoring process, threads, modules using tools from Target menu and remote tools
from Tools menu?

Activity 2: Source Code Revision and fast rebuild
Please use the same workspace from Activity 1. Make sure that you disconnect the simulator and
shut down all remote monitoring tasks you experiment with in Activity 1.

Step 1. Download the script file from the following link:
 cse.unl.edu/~lshen/build_kernel.bat

Step 2. Save the script file to
 C:\Program Files\Windows CE Platform Builder\4.20\cepb\bin

Step 3. Using My Computer go to C:
c:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\KERNEL and copy schedule.c to
C:\csce351_lab directory. IMPORTANT: Do not skip.

Step 4. In the platform builder, click file | open and choose file
c:\WINCE420\PRIVATE\WINCEOS\COREOS\NK\KERNEL\schedule.c

Step 5. Insert one line in function SC_NKTerminateThread(DWORD dwExitCode) to print out debug
message:
DEBUGMSG(1,(L"*** entered SC_NKTerminateThread ***\r\n"));

Step 6. Once launched, you need to create a new platform workspace. To do so, you select:
 Build | Open Build Release Directory.
 go to C:\Program Files\Windows CE Platform Builder\4.20\cepb\bin.
 Type build_kernel at the command line prompt. Notice this is very fast. We are

only building the core image here.
Step 7. Wait until the build process is complete then download the image to emulator.
Step 8. In emulator, open “Recycle Bin” and close it to see your print out message in the

debug screen (see below)

Step 9. Disconnect from the emulator.
Step 10. Repeat the process but this time to print out the process’s name of the thread that has

just been terminated in SC_NKTerminateThread.

CSCE 351: Operating System Kernel Lab 2: Introduction to Windows CE .NET 4.2

UNL - Computer Science and Engineering Written by Lu Shen and W. Srisa-an 7

 Hints:
- pCurThread is the pointer pointed to the thread to be terminated
- pProc is the pointer in the thread structure. It is a pointer to the process of the thread
- lpszProcName is the pointer to the process name in the process structure

Step 11. Reconnect the emulator and launch and terminate Recycle Bin again to check your
correctness.

Step 12. You can save the modified schedule.c for future reference. Once you are done, show
your work with answers to all the questions to the TA. Be sure to replace the modified
schedule.c with the original version. Do not delete the original version from
C:\csce351_lab\schedule.c.

If you cannot finish during the lab period, finish this lab on your own time and show the
result to the TA at the beginning of next week.

End of Lab 2

