Altera Debug Client

This tutorial presents an introduction to the Altera Debug Client, which can be used to compile, assemble,
download and debug programs for Altera’s Nios II processor. The tutorial gives step-by-step instructions that
illustrate the features of the Altera Debug Client.

The process of downloading and debugging a Nios II application requires the presence of an actual FPGA
device to implement the Nios II processor. For the purposes of this tutorial, it is assumed that the user has access
to the Altera DE2 Development and Education board connected to a computer that has Quartus II (version 5.1 or
higher) and Nios II software installed.

The screen captures in the tutorial were obtained using version 2.2 of the Altera Debug Client; if other versions
of the software are used, some of the images may be slightly different.

Who should use the Altera Debug Client

The Altera Debug Client is intended to be used in an educational environment by professors and students. For
commercial system and application development, Altera’s Nios II Integrated Development Environment should be
used.

Contents

o

10

11

12

13

14

15

Installing the Altera Debug Client
Starting the Altera Debug Client
Configuring a Nios IT System
Configuring a Nios II Program
Compiling and Loading the Program
Running the Program

Using the Disassembly Window

Single step

Using Breakpoints

Examining and Changing Register Values
Examining and Changing Memory Contents
Setting a Watch Expression

Examining the Instruction Trace

Using Configuration Files

Using the Terminal

10

12

12

14

15

17

19

23

24

26

27

Introduction

The Altera Debug Client is a software application that runs on a host PC connected to a Nios II System. It allows
the user to compile or assemble Nios II applications, download the application to the Nios II system and then
debug the running application. The Debug Client provides functionality that allows the user to:

Examine and modify register and memory contents.
Disassemble the machine code present in any memory region.
Single step through each assembly language instruction in the program.

Set breakpoints that stop the execution of a program when certain instructions are reached or when certain
data addresses are accessed.

Set watch expressions and watch their values at different points in the execution of the program.
Examine a graphical view of an instruction trace that records the set of recently executed instructions.

Perform terminal input/output via the JTAG UART component.

1 Installing the Altera Debug Client

To install the Altera Debug Client, proceed as follows:

1.

Use Microsoft Windows Explorer to open the folder Altera_Debug_Client on the DE2 CD-ROM. As
shown in Figure 1, the folder will contain a single executable file named setup.exe.

_J Altera_Debug_Client g@
T

File Edit Yiew Favorites Tools Help o\

3

? p. ! Search

- address |23 Diyalkera_Debug_client v a Go

&

sebup.exe

S - 4

1 objects 1.80 ME _J My Computer

Figure 1. Altera Debug Client installer on DE2 System CD.

Double-click on this sefup.exe executable file. This will bring up the first screen of the installer as illustrated
in Figure 2. Click on the Next button and proceed to the next step.

The installer will display the License Agreement; click I Agree to continue.

On the next screen, you can choose which components to install, as shown in Figure 3. Leave both compo-
nents checked to install the Debug Client program files along with the tutorial and sample files needed for
this tutorial. Click Next to continue.

The next screen will allow you to select a destination folder into which the installer will copy the Debug
Client tutorial and its sample files. Click Browse to select a directory in your system. The directory that you
specify in this step will be referred to as <TUTORIAL_FILES> throughout the remainder of this tutorial.
For example, in Figure 4, the installation directory is d:\Debug_Client_Tutorial. Note that you do not
have the option of specifying the location where the Debug Client program files are stored; this location is
displayed in the window of Figure 4, and is determined by the installation setup for the Nios II Embedded
Design Suite. Click Next to proceed to the next step.

%4 Altera Debug Client Setup g =

Welcome to the Altera Debug Client
¥2.1 Setup Wizard

This wizard will guide you through the installation of the
Alkera Debug Client, Please note that you must have
previously installed a version of Altera's Quartus II software
{wersion 5.1 or above) along with Alkera's Mios 11 Embedded
Design Suite, Evaluation Edition {version 5.1 or above),

[Mext =] [Cancel]

Figure 2. Altera Debug Client Install Wizard.

§ Attera Debug Client Setup E] =

Choose Components

Choose which Features of altera Debug Client you want to install,

Check the components you want to install and uncheck the components you don't want to
install, Click Mext ko continue.

Select components to install: Altera Debug Client
Tukarial Files

Diescripkion
Space required: 4.0ME Position your mouse aver a component bo see jts
description,
Mullsaft Install System w2, 18
[< Back ” Mext =] [Cancel]

Figure 3. Choosing which components to install.

6. The installer is now ready to begin copying files. Click Install to install the Debug Client. During the
installation process, you will be asked if you would like a shortcut to the Altera Debug Client to be placed
on your Windows Desktop. Answering yes will install an icon similar to the one shown in Figure 5 on your
desktop.

7. Assuming that the install was successful, the screen shown in Figure 6 will be displayed. Click on the
Finish button to complete the installation. Should an error occur, a window will suggest the appropriate
action. Errors include:

e Quartus II Software is not installed or the Quartus II version is too old.

e Nios II SDK Software is not installed or the version is too old.

% Altera Debug Client Setup g O E

Choose Install Location
Choose the Folder in which ko install the tutorial and sample files,

The Altera Debug Client program Files will be installed into d:4alteratkitsiniosz_a0hbintmonitor,
The installation location of the tutorial and sample files can be specified below,

Destination Folder

di\Debug_Client_Tutorial

Space required: 4,3MB
Space available: 4.6GE

Tullsaft Install Systen w2, 18

[< Back ” Mext =] [Cancel]

Figure 4. Specifying the installation location of the tutorial and sample files.

o

Alkera Debug
Client

Figure 5. Altera Debug Client desktop icon.

§ Attera Debug Client Setup g = ﬁ

Completing the Altera Debug Client
Setup Wizard

Alkera Debug Client has been installed on your computer,

Click Finish ta close this wizard.

Wisit Altera's University Program page.

< Back Canicel

Figure 6. Altera Debug Client installation finished.

2 Starting the Altera Debug Client

Before starting the Altera Debug Client, a Nios II system has to be downloaded onto the DE2 Development
and Education board using the Quartus II software. This tutorial assumes that the Nios II system located at
<TUTORIAL_FILES>\example\hw\example.sof is downloaded.

The tutorial called Introduction to the Quartus Il Software explains how to download a circuit onto the FPGA
on the DE2 board and the tutorial called Introduction to the SOPC Builder tool shows you how to create Nios II
systems. These tutorials are provided on the DE2 System CD and in the University Program section of Altera’s
web site and must be completed before using this tutorial.

If you have chosen to install a Windows Desktop Shortcut, you can start the Altera Debug Client by double
clicking on the desktop icon. The Debug Client can also be started from the Windows Start Menu by following
the links from Altera > Altera Debug Client > Altera Debug Client.

Another method to start the Debug Client is to use the Nios II Command Shell. Start the Nios II Command
Shell from the Windows Start Menu by following the links from Altera > Nios IT EDS 6.0 > Nios II Command
Shell and enter the command altera-debug-client.

After startup, the Debug Client will appear as shown in Figure 7.

4w Altera Debug Client [Nios 11] =)<
Monitor MiosII Actions Windows Help

S E B SEB Dl ¢

Disassembly - ® | Registers - X

| [Fice || [Reslvalue

[»]

[4]

[[v]
Disassembly),r Breakpoints)'{ Memory }'f \Watches)'{ Trace /[

Terminal — ¥ | Info & Errors -
Info & Errors | GDE server |

Figure 7. The Altera Debug Client at startup.

3 Configuring a Nios II System

Nios II systems have a user-configurable architecture. The designer may choose from a variety of peripherals and
memory options in Altera’s SOPC Builder. The Altera Debug Client needs information describing the Nios II
system that is being targeted in order to compile and load programs for the system. Systems created by Altera’s
SOPC Builder are described by a .ptf file located in the Quartus II project’s main directory. This file contains
information about all the peripherals connected to the Nios II processor, including the system memory map.

To describe the Nios II system to the Debug Client, click the Nios II > Configure system... menu item or click

the = toolbar button. The Nios IT System Configuration window will appear, similar to Figure 8. Proceed with
the steps below to configure the example system.

“w Mios Il System Configuration
Cable
|lUsB-Blaster [USB-0] ~| [Refresh |
System description file {PTF)
text section
Memory device:
Start offset in device (hex):
.data section
Memary device:
Start offset in device (hex):
Terminal device

Figure 8. Initial Nios II System Configuration window.

1. Select the cable from the Cable drop-down list that corresponds to the DE2 board. The DE2 board is
connected via a USB-Blaster cable.

2. Click Browse... to display a window similar to Figure 9. Navigate to
<TUTORIAL_FILES>\ example\ hw\system.ptf, which is the system description file for the example sys-
tem. Select system.ptf and click Load.

i Select system description file
Look In: |EI by v| @
(£ hex_display_comp

B svstem.ptf

File Mame: |system.ptf |

Files of Type: |System description File {*.ptf) v|

Figure 9. Select system description file window.

3. In the System Configuration window in Figure 8, click Load. The fields in the .text section and .data
section will now be enabled.

4. Nios II programs are compiled into an Executable and Linking Format (ELF) file. This format supports
sections, which can be used to divide a program into multiple parts, such as an executable code section
and a data section. Each section has its own set of attributes, including memory location, alignment, and
size. The partitioning of a program into different sections is performed by the linker, which receives this
information via either a linker script or linker invocation arguments. The Altera Debug Client allows the
user to specify the linker arguments for two sections of the program, as described below. Each section
will be placed at the address value of base address of memory device + start offset. If a start offset is not
specified, its default value will be zero.

The .text section contains the program machine code. The .text section of the System Configuration
window is used to place the machine code at different memory locations. Use the following settings:

e Memory device: memory/sl (0Oh - 7fffh), corresponding to the on-chip memory of the Nios
II system (this is the default and only choice in the example system.ptf that we are using)

e Start offset in device: 1000, corresponding to a 4096-byte offset into the on-chip memory to start the
.text section

The . data section contains program data, such as variables or constants. The .data section of the System
Configuration window is used to place the data at different memory locations. Use the following settings:

e Memory device: memory/sl (0Oh - 7fffh), corresponding to the on-chip memory of the Nios
II system (this is the default and only choice in the example system.ptf that we are using)

e Start offset in device: 1000, corresponding to a 4096-byte offset into the on-chip memory to start
the .data section. Note that the .text and .data offsets are the same, which would lead to
an overlap of the two sections in memory. However, because the two offsets are exactly the same,
the linker script used to produce the program executable will instead automatically place the .data
section immediately after the . text section.

5. If there is more than one terminal device available in the system, one can be chosen from the Terminal
device list to be connected to the terminal in the Debug Client. In this example, jtag_uart is the only
terminal device present.

6. Your system configuration should appear as shown in Figure 10. Click OK to save the system configuration.

“w Mios Il System Configuration
Cable
|lUsB-Blaster [USB-0] ~| [Refresh |

System description file {PTF)

D:iDebug_Client_Tutorialiexamplethwisystem, ptf

text section

Memory device: |mem0ry,|’sl (0h - FFFFh) v|
Start offset in device (hex): | IDDD|
.data section

Memory device: |memory,|’sl (0h - 7FFfh) v|
Start offset in device (hex): | IDDD|

Terminal device

jtag_uart v|

Figure 10. Nios II System Configuration window configured for the example system.

4 Configuring a Nios II Program

Before compiling and loading a program with the Debug Client, the desired source files must be specified. To
configure the program source files for this part of the tutorial, click the Nios II > Configure program... menu

item or click the = toolbar button. The Nios II Program Configuration window will appear, similar to Figure 11.

“w Nios Il Program Configuration

Program type
|Assembly v|
Files
First source file is used to determine ELF and SREC File name.

add...

Coown
Options
Start symbal: |_start |

Figure 11. Initial Nios I Program Configuration window.
Proceed with the following steps to configure the program:

1. For this example, the Program type will be Assembly, so the field can be left at its default value. The
Debug Client also supports C programs and programs already compiled in ELF or SREC formats.

2. Click Add... to display a window similar to Figure 12. The source file for this part of the tutorial is located at
<TUTORIAL_FILES>\example\ sw\main_tutorial_src\main_tutorial.s. Choose that file and click Select.

i Select source files

Loak In: |EI main_tukarial_src v| @

B main_tutorial.s

File Mame: |main_tut0ria|.s |

Files of Type: | Assembly files (*.5) v|

Figure 12. Select source files window.

3. The start symbol of an assembly-language program identifies the label that corresponds to the first in-
struction of the program. The default start symbol is _start and this is the symbol that is used in
main_tutorial.s.

4. Your program configuration should appear as depicted in Figure 13. Click OK to save the program config-
uration.

“# Nios Il Program Configuration

Program type

|Assembly

Files
First source file is used to determine ELF and SREC file name,

[:\Debug_Client_Tutoriallexampleiswimain_tutorial _srchmain_tutorial, d

Remove

|: Lﬂ

| | » Down

4

DOptions

:

Start symbal: |_start

Figure 13. Nios II Program Configuration window configured for the example program.

5 Compiling and Loading the Program

After successfully configuring the system and program, the program can be compiled and downloaded onto the
DE2 board. There are three different commands that can be used to compile and/or load a program:

e Actions > Compile menu item or 1% toolbar button:
Compiles the source files into an ELF and SREC file. Build warnings and errors will show up in the Info &
Errors window. The generated ELF and SREC files are placed in the same directory as the first source file.

e Actions > Load menu item or # toolbar button:
Loads the compiled SREC file onto the board and begins a debugging session in the Debug Client. Loading
progress messages are displayed in the Info & Errors window.

e Actions > Compile & Load menu item or ¥ toolbar button:
Performs the operations of both compilation and loading.

In this example, the program has not yet been compiled, so it cannot be loaded (the Load option is disabled).

Click the Actions > Compile & Load menu item or click the &% toolbar button to begin the compilation and
loading process. Throughout the process, messages are displayed in the Info & Errors window. The messages
should resemble those shown in Figure 15.

After successfully completing this step, your Debug Client display should look similar to Figure 16. At this
point, the program is paused at its first instruction.

Info & Errors

Cowpiling source files...
nioszZ-elf-as --gstabs -I d:/falteras/kits/niosz_t0/components/altera niosifsdk/inc D:/Debug Client Tutorial/examp::
D:/Debug Client Tutorial/example/ssws/main_ tutorial srcs/main_tutorial.s:35: Error: unrecogniszed instruction mova -
Compilation stopped.

<]

| [»]

Figure 14. A compiler error message.

Compilation errors

During the process of developing software, you will likely encounter compilation errors. Error messages from the
Nios II assembler or from the C compiler are displayed in the Info & Errors window. An example of a compiler
error message is shown in Figure 14. The file name and the line number corresponding to the source of the error
are displayed, in addition to an indication of the cause of the error. You may be able to deduce the real cause of
the error from the message or you may need to do some additional searching.

10

Info & Errors

Compiling source files...
niosi-elf-as --gstabs -I d:/falteraskits/niosZ_60/components/saltera niosi/sdk/ine D:/Debug Client Tutorial/examnt
Linkineg...

niosi-elf-1d --defsym nasys_program mem=0x1000 --defsym nasys_data mem=0x1000 --section-start .exceptions=0xz0
ELF generated at D:%Debug Client Tutorial’example’swhmain tutorial srchmain tutorial.elf.

niosiZ-elf-objcopy -0 srec D:/Debug Client Tutorial/example/sw/main tutorial sroc/main tutorial.elf D:/Debug_Clig
SREC generated at D:3yDebug Client Tutorialbexample)swhimain tutorial srchmain tutorial.srec.
Using cable "UZE-Blaster [U3E-0]", dewice 1, instance 0Ox00

Rezetting and pausing target processor: 0E

Reading Systen ID at address 0x000058520: werified

Initializing CFU cache (if present)

0K

Downloading 00000000 | 0%)
Downloading 00000020 | 0%)
Downloading 00001000 | 1%)
Dowmloaded 1EE in 0.0s

Verifying 00000000 | 0%)

Verifying 00000020 | 0%)

Verifying 00001000 | 1%)

Verified 0K

Connection established to GDE serwer at localhost:Z2399
Symbols loaded. |
Source code loaded.
4]

[4]

| [»

Figure 15. Compilation and loading messages (the Info & Errors window has been maximized).

“w Altera Debug Client [Nios 1] - main_tutorial.srec [Paused] [-_HE]W

Monitor MiosII Actions Windows Help

HE G ¢EF @0mk &$

Disassembly - ® | Registers - X
Goto instruction | Address (hex) ar symbal name: |_st,art, Reg M
pc Ox00001000 |-
i |~ |z2ero 0x00000000
.global _start rl Ox00000000
_start: A% gtart function 7 ra Ox00000000
/% set up sp and fp */ r3 Ox000o0oo0
movia zp, OxE000 /% stack starts from top o rd 0x000a0000
_start: s 0x00000000
000001000 06c00034 orhi sp, zero, Ox0 ré 0x00000000
0x00001004 dee000ld ori sp, sp, 0xB000 7 0x00000000
- fp, op rd Ox00000000
r9 Ox00000000
000001008 d53955353a add fp, sp, zero rl0 000000000
rll Ox00000000
/% this program scrolls the digits "dei” on the hex displs rlz 0x00000000
* going from left to right, then right to left, ad infini rla 0x00000000
s rl4 0x00000000
rls Ox00000000
/% initialize buffer (DEZ just before being wisible on lef—|| |rl6 Ox00000000
motria r1f EIFFFR L™ 17 0x00000000
Kl | T | 0x00000000
Disassembly),r Ereakpoints)'{ Memory }'f Watches)'{ Trace | rla 0x00000000 |+
Info & Errors =
Verifying 00001000 | 1%)
Verified 0K
Connection established to GDE serwer at localhost:Z2399
Symbols loaded.
dource code loaded.

il

Info & Errars [GDE server [

[»]

Figure 16. The Altera Debug Client window after loading the example program.

11

6 Running the Program

As mentioned at the end of the previous section, the program is paused at its first instruction after it has been

loaded. To run the program, click the Actions > Continue menu item or click the UB toolbar button. The sample
program will continuously scroll the digits dE2 across the 7-segment displays on the DE2 board.
The Continue command runs the program until something halts the processor’s execution, such as a breakpoint

or a forced user halt. To force the program to halt, click the Actions > Stop menu item or click the LU toolbar
button; the processor will stop at the instruction to be executed next.

When the program is stopped, all debugging windows are updated with new data. As seen in Figure 17, the
Disassembly window highlights the next instruction to be executed in yellow and the Registers window highlights
register values that have changed since the last program stoppage in red. The other windows in the Debug Client
are also updated, which will be shown in later parts of this tutorial.

“w Altera Debug Client [Nios 1] - main_tutorial.srec [Paused] E]@

Monitor MiosII Actions Windows Help

HME &+t E @mnmlk pt§

Disassembly — ¥ | Registers - X
. - " Reg Value
Goto instruction | Address (hex) or symbol name: | start |-§0 -Hlde

SRR = -_ pc 0x00001034 [«

do_display: | =|| |=exo O0x00000000

0x00001028 call Ox0000046c (0x000011b0: TPDATE HEX DISPLAY) rl Ox00000000

rz Ox00000001

/% delay loop of approximately 1/4 second r3 000000000

* since two instructions are executed in the loop, and as rd Ox000a0004a

r5 Ox00000000

* cycle per instruction and a clock frecuency of 50 MH=z,

* uze a value of 50000000/4/2 6 000000000

Ox00000000

i

movia rlé, 500000007472 gigggggggg

Ox0000102c orhi rle, zZero, Ox5E 000000000

0x00001030 ori rle, rlé, Ox5el0 0x00000000

Ox00000000

delay loop: 000000000

subi rlé, rla, 1 Ox00000000

delay loop: 0x00000000

Ox00001034 addi rlé, rléa, -0Oxl | |rla Ox00lccdss

e rle ern delsw loon =l r17 Ox00000dez

[4] D] f1s 0x00000000
Disassembly / Ereakpoints)'r Mernary }r Watches)'r Trace | rls 000000000 |
Info & Errors - X

Verified 0K

Connection established to GDE serwer at localhost:2399
Symbols loaded.

Source code loaded.

Program stopped [@ 000001034

<]

Info & Errars [GDE server [”

Figure 17. Disassembly window after the program has been stopped.

7 Using the Disassembly Window

The Disassembly window displays human-readable machine code by interpreting the memory values as encoded
instructions. As shown in Figure 17, there are three columns in the window. The left-most column gives the
memory address corresponding to the instruction displayed on that line. The middle column displays the 32-
bit instruction word corresponding to the machine encoding of the instruction. The right-most column displays
the human-readable instruction along with the corresponding source code. For example, in Figure 17, the four
instructions located at memory addresses 0x00001028, 0x0000102¢c, 0x00001030, and 0x00001034
have been disassembled.

The Disassembly window can be configured to display less information on the screen, such as not showing the
source code from the .s assembly language file or not showing the machine encoding of the instructions. These

12

settings can be changed by right-clicking on the window and selecting the appropriate menu item, as shown in
Figure 18. The display in the window also uses a color-coded scheme, as detailed in Table 1.

000001038 o 1 4

v Show instruction words

0x0000103c
0x00001040

Goko inskruckion. .

Figure 18. Pop-up menu to configure the display of the Disassembly window.

Color Description

Brown Source code
Green Disassembled instruction name
Blue Registers
Orange | Immediate & offset values
Dark blue | Address values & labels
Purple Clickable link
Gray Machine encoding of the instruction

Table 1. Disassembly window color-coded scheme.

By scrolling using the vertical scrollbar on the right side of the Disassembly window or by using a mouse scroll
wheel, different regions of memory can be disassembled and displayed. It is also possible to scroll to a memory
address or an instruction symbol directly by using the Goto instruction panel in the Disassembly window. Access
this panel through the Actions > Goto instruction... menu item and enter a symbol name or an instruction address
in hexadecimal format. The instruction address must be a multiple of 4 because every instruction address is aligned
on a 32-bit word boundary. For example, enter _start or 1000 and press Go. The Disassembly window will
show the 0x00001000 address as its first instruction, as shown in Figure 19, which also corresponds to the
_start symbol. Also note that the instruction is highlighted with a pink background.

Disassembly

Goto instruction | Address (hex) or symbol name:
*,"l T
.global _start
_start: % gtart function */
/% set up sp and fp */
wmovia sp, 08000 /% stack starts from top o
_start:
0x00001000 orhi sp, zero, Ox0
Ox00001004 ori sp, sp, Ox8000 L
mow fp, sp)
000001008 add fp, sp, zero

/% this program scrolls the digits "dez" on the hex displs
* going from left to right, then right to left, ad infini
w

A% initialize buffer (DEZ just before being visible on leff
£ RITFFER

[«

motris

4]
Disassembly / Breakpaints)'{ Memory)'{ \Watches)'{ Trace |

Figure 19. Goto instruction panel in the Disassembly window.

Register and memory values can be examined in the Disassembly window while the program is in a Paused
state. This is done by hovering your mouse over a register or a register + offset in the window, as shown in
Figure 20.

The Disassembly window also produces special clickable links in its display of branch instructions. Clicking
one of these links will display the instruction that the processor would jump to if the branch was taken. Figure 21
shows one example of a link associated with a call instruction.

13

0x00001018 stw rl7, O{rlea
stw zero, 4

Ox0000101c stw zero, 4U:J_DXDDDDIIFS: 0x00000de2

Figure 20. Examining a memory value in the Disassembly window.

display:
call UPDATE_HEX DISPLAY
display:
0x00001028 call Ox0000046c @xﬂﬂﬂﬂllhﬂ: UPDATE_HEX DISPLAY)

delay loop of appJGoto instruction label 'UPDATE_HEX_DISPLAY' (0x00001 1b0

Figure 21. A clickable link in the Disassembly window.

Assembly Language and Machine Instructions

The Disassembly window is a good place to examine what machine instructions are produced by the compiler from
your assembly-language instructions or C code. The translation from assembly-language instructions to machine
instructions is handled by the Nios II assembler and it is a transparent process to the programmer. However, it is
beneficial to examine the disassembled code and compare it with the source code. This is readily done because the
Debug Client displays both the source statements and the disassembled code in different colors. Observe that pseu-
doinstructions are implemented as different machine instructions. For example, the movia pseudoinstruction is
implemented by the two instructions orhi and ori, as shown at the address values 0000102c and 00001030,
respectively, in Figure 17.

8 Single step

Before discussing the single step action, it is convenient (for demonstration purposes) to restart execution of the

program from the beginning. Click the Actions > Restart menu item or click the Y% toolbar button to restart
the program. Notice that the pc register value displayed in the Registers window is 0x00001000 and the
Disassembly window is highlighting that instruction.

The Debug Client has the ability to perform single step actions. Each single step consists of executing a single
machine instruction and returning control to the Debug Client. Note that if the program being debugged was
written in C, each individual single step will still correspond to one assembly language instruction generated from
the C code. The ability to step through statements in the high-level source code is not supported by the Debug
Client; however, Altera’s Nios II Integrated Development Environment supports this advanced feature.

The single step action is invoked by clicking on the Actions > Single step menu item or by clicking on the

‘=% toolbar button. The instruction that is executed by the processor is the one highlighted by the Disassembly
window before the single step.

Since the first step in this section was to restart the program, the first single step will execute the instruction at
0x1000, which will zero out the upper-16-bits of the sp register. Subsequent single steps will continue to execute
one instruction at a time, in sequential order. Single stepping at a branch instruction may jump to a non-sequential
instruction address if the branch is taken. You can observe this behavior by single stepping to 0x00001028,
which is a call instruction. Single stepping at this instruction will set the pc value to 0x000011b0, which is
the location of the UPDATE_HEX_DISPLAY label.

14

9 Using Breakpoints

Breakpoints are special conditions that are checked by dedicated hardware in the Nios II processor as the applica-
tion is running in real-time. Breakpoints can be triggered in four different ways:

1. Program execution has reached a particular address
2. A read operation has been performed on a particular address
3. A write operation has been performed on a particular address

4. The processor has accessed the memory at a particular address

This section of the tutorial will cover the process of setting an instruction breakpoint (trigger type 1). There
are two ways to set an instruction breakpoint. The first method can be used to set a simple instruction breakpoint
as follows:

1. Switch to the Disassembly window.

2. Navigate to the instruction address that will have the breakpoint. For this example, display the check_shift
instruction label.

3. Click on the gray bar to the left of the address 00001 03¢ (address value of the check_shift label) to
set an instruction breakpoint at this location. See Figure 22 for an illustration of what a breakpoint in the
Disassembly window looks like. Clicking the same location again will remove the breakpoint.

check_shift:
A% check if the shift direction should be reversed #/
call SHOULD _REVERSE_SHIFT

check_shift:

@0x0000103c call 000000455 (0x00001154: SHOULD FEVERIE _SHIFT)
heqg r3, zero, do_shift
Q00001040 heqg r3, zero, Oxd (0x00001045: do_shift)

Figure 22. Setting a simple instruction breakpoint in the Disassembly window.

Once the instruction breakpoint has been set, run the program and the breakpoint should trigger when the pc
register value equals 0x0000103c. The Debug Client will look similar to Figure 23; notice the message in the
Info & Errors window indicating that an instruction breakpoint has been triggered.

The second method of setting a breakpoint can be used for all four trigger types as follows:

1. Switch to the Breakpoints window, which is shown in Figure 24.

2. The breakpoint that was set earlier in the Disassembly window also appears in this window. The check mark
beside the breakpoint can be used to enable or disable it. In this case, leave the check mark as it is.

3. Right-click on the header corresponding to the breakpoint type you want to add. For example, to set a
breakpoint that triggers when the processor writes to a particular address, right-click on the write watch-
points table, as shown in Figure 25.

4. Click Add. A new entry will appear in the corresponding table. Enter the desired breakpoint address.

The Debug Client also supports a more advanced form of a breakpoint, called a conditional breakpoint. A con-
ditional breakpoint is an instruction breakpoint that only triggers when the usual instruction breakpoint condition
is met and an additional user-specified condition is met. For this example, you will use the same breakpoint from
before but with the condition r2 == 0, which in this program’s context is when the scroll direction is to the left.
The process to set this conditional breakpoint is as follows:

1. Switch to the Breakpoints window.

2. For the breakpoint at 00001 03¢, double-click on the table cell under the Condition column.

15

“w Altera Debug Client [Nios II] - main_tutorial.srec [Paused] g@

Monitor MiosII Actions Windows Help

HE &¢+¢E 200K i@

Disassembly - ® | Registers - X
. - , Req Yalue

Goto |nstruct|on|Address {hex) or symbol name: |_st,art, | bc 0x0000103¢ |~

bne rle, zero, delay_loop | =|| |=exo Ox00000000

0x00001038 bne rle, zero, -0x& (0x00001034: delay loop) rl Ox00000000

rz Ox00000001

r3 Ox00000000
check shift: rd 000000000 |-

/% check if the shift direction should be rewversed */ L5 0x00000000

call SHOULD_REVERSE_SHIFT r6 Dx00000000

check_shift: | r; gxgggggggg

e X

@ 0x0000103c call Ox00000455 (DxDDDDJ..lSIL: SHOULD REVERSE_SHIFT) it o 0%00000000

beq ri, Zero, do_shift rlo 0%00000000

O0x00001040 heq r3, zero, Oxd [(0x00001045: do_shift) rll 0x00000000

rlz Ox00000000

rli Ox00000000

do_reverse_shift: rld 0x00000000

xori ré, rz, 1 A% toggle shift direg rls 0x00000000

do_reverse_shift: | |tl& O 00ooooon

(e 10001 044 ori r vl Bt T Ox00000dez

L4 [|l1s 0x00000000
Disassembly),r Breakpoints)'{ Mernory }'f ‘Watches)'{ Trace | rle 0x00000000 |
Info & Errors -

Connection established to GDE serwer at localhost:239%9
Symbols loaded.

Source code loaded.

Program stopped [@ 000001034

EFEAK: Program break @ 0x0000103c

<]

Info & Errors | GDB server /

| [»]

Figure 23. The Debug Client after the breakpoint has been triggered.

Breakpoints o 2

— Instruction breakpoint :
| Address | Instruction |C0nditi0n|
0x0000103ccall 0x00000455 (0<00001154: 3SHOULD FEVERSE SHIFT)

— Read watchpoint:

J Address

— Write watchpoint:

J Address

— Access watchpoint:

J Address

— Run until:

Condition
Run

Disassembly , Breakpoints)" Memory | Watches [Trace |

Figure 24. Breakpoints window.

3. The window in Figure 26 will appear. This window contains information about the syntax used to describe
a condition. For this example type r2 == 0.

4. Press Ok. The Condition field for the breakpoint will now show the condition you entered.

The conditional breakpoint is now set. Run the program and as the dE2 digits on the hexadecimal display
disappear and the program begins to shift the digits to the left, the breakpoint will trigger. The Info & Errors

16

— ‘Write watchpoint:
| ad
— Ao

Figure 25. Adding a breakpoint, in this case a write watchpoint, in the Breakpoints window.

Edit breakpoint condition

Synkax
Register values:
pc, rl,r2, .

MNumber Formats:
decimal: ##4
hexadecimal: Dudd#
octal; O###
binary: Ob###

Operatars:
===, <, = <=, == 8, ||
M %

ACcessing memory:
mem3(address): byte value at address
meml6; address)i half-word value at address
mem32; address): word value at address

ré == 0

Figure 26. Edit breakpoint condition window.

window will again have a message about the cause of the breakpoint, including the trigger condition that was
satisfied, as shown in Figure 27.

Info & Errors #
Connection established to GDE serwer at localhost:Z23939
Symbols loaded.

Source code loaded.

EFEAK: Program break @ 0x0000103c

EREAF: Program break B 0x0000103c (Condition 'rZ == 0' met.)

4]

| [»]

Figure 27. Message displayed in the Info & Errors window due to a triggered conditional breakpoint.

10 Examining and Changing Register Values

The Registers window displays the value of each register in the Nios II processor and allows the user to change
most of the register values. The number format of the register values can be changed by right-clicking in the
Registers window, as shown in Figure 28. You can choose among binary, octal, decimal, and hexadecimal repre-
sentations in both signed and unsigned versions.

Every time program execution is stopped, the debugger updates all of the register values and highlights any
changes in red. The user can also change the register values while the program is stopped.

As a demostration of changing a register value, this section of the tutorial will set a breakpoint to halt the
program when the hexadecimal display is showingdE2. (. represents a blank) and the scroll direction is
to the right. When the breakpoint is triggered, you will toggle the shift direction via the Registers window and
then resume program execution. The detailed steps are as follows:

17

Registers - X

Reg Value
yile} 0200001030 |-~
ZEro O0x00000000
rl 0x00000000
rz Ox00000000
r3 Ox00000001
rd Ox00000000
x5 Ox00000000

Binary
Octal
Decimal

Signed representation

riz fix00000000
rla 0x00000000
rls 000000000
rl6 0x00000000
rl7 0x00000de2
rls 0x00000000
rlg 0x00000000 [+|

Figure 28. Changing the number format of the register values in the Registers window.

1. Switch to the Breakpoints window.

2. For the breakpoint at 00001 03¢, change the condition string to mem32 (0x11fc) == 0x0000de20
&& r2 == 1. The mem32 syntax is used to read a 32-bit value from memory at the specified address.
In this program, the 32-bit value at the address 0x11fc contains the value to be displayed that will be
transferred to the hexadecimal display.

3. Resume program execution and wait for the breakpoint to trigger.

4. The Registers window should look similar to the left image of Figure 29. To edit the value of the r2 register,
which controls the scroll direction, double click on its value in the window. This will bring up a text box, as
shown in the right image of Figure 29, and you can put in its new value of 0.

Registers - Registers - X
Reg Value Reg Value

po 0x0000103c |- | po 0x0000103c |- |

ZEro O0x00000000 ZEro O0x00000000

rl Ox00000000 rl 000000000

rz Ox00000001 rz

r3 Ox00000000 r3 Ox00000000

rd Ox00000000 rd 000000000 |-

r5 Ox00000000 r5 000000000 |:

ré Ox00000000 ré 000000000

r7 Ox00000000 r7 000000000

rd Ox00000000 rd 000000000

r9 Ox00000000 r9 000000000

rlo Ox00000000 [| rlo 0x00000000 ||

rll Ox00000000 rll 000000000

rlz Ox00000000 rlz 000000000

rli Ox00000000 rli 000000000

rld Ox00000000 rld 000000000

rls Ox00000000 rls 000000000

rlea Ox00000000 rlea 000000000

rl7 Ox00000dez rl7 Ox00000dez

rls Ox00000000 rls 000000000

rlg 000000000 [+ rlg 000000000 [+ |

Figure 29. Register values after the breakpoint trigger; editing the value of the r2 register.
5. Press Enter or click away from the text box to apply the change.

6. Resume the execution of the program and you should see that the value on the hexadecimal display is
scrolling left now.

18

7. Eventually the conditional breakpoint that was set in step 2 will trigger again. Continue on to the next
section of the tutorial when this occurs.

11 Examining and Changing Memory Contents

The Memory window displays the contents of the system’s memory space and allows the user to edit its values.
The memory display will look similar to Figure 30, with hexadecimal addresses in the left-most column and
consecutive values displayed horizontally. The numbers at the top of the window represent hexadecimal address
offsets from the corresponding address in the left-most column. For example, referring to Figure 30, the address

of the last word in the second row is 0x00000010 + Oxc = 0x0000001c.

Memory -

Goto memory address | Address (hex): l:l
[a]

Ox00000000 oo0s£Loe noooooao ooooooog noooooao

Ox00000010 gooooooo ooooooog oooooooa ooooooog

Ox00000020 e800083a noooooao ooooooog noooooao

000000030 gooooooo ooooooog oooooooa ooooooog

000000040 gooooooo ooooooog oooooooa ooooooog

Ox00000050 gooooooo ooooooog oooooooa ooooooog

Ox00000060 gooooooo ooooooog oooooooa ooooooog

000000070 gooooooo ooooooog oooooooa ooooooog

000000080 gooooooo ooooooog oooooooa ooooooog

Ox00000090 gooooooo ooooooog oooooooa ooooooog

Ox000000a0 gooooooo ooooooog oooooooa ooooooog

0x000000b0 gooooooo ooooooog oooooooa ooooooog

Ox000000c0 gooooooo ooooooog oooooooa ooooooog

Ox000000d40 ooooooog noooooao ooooooog noooooao

Ox000000e0 gooooooo ooooooog oooooooa ooooooog —

|n AOOOAAFR ANAADOO0 AO0O00060 OO00A06060 (0000000 I =

] »|

Disassembly)'{ Breakpoints , Memary / Watches)'{ Trace |

Figure 30. Example Memory window.

The display is configurable by a number of parameters:

e Memory element size: the display can format the memory contents as bytes, half-words (2-bytes), or words
(4-bytes). This can be configured from the context menu accessible by right-clicking on the Memory
window, as shown in Figure 31.

Ox 00000000
Ox00000010
Ox00000020
Ox00000030
Ox 00000040
Ox00000050
Ox 00000060
Ox00000070
000000080
Ox00000050
Ox000000an
O0x000000b0
Ox000000e0

Mumber Format

Display order

Mumber of words per line

Byte (1-byte)
Half-word {2-bytes)
® iord (4-b

aoaooooo

Switch ko characker mode

oooooooo
oooooooo

Show equivalent ASCII

noooooan
noooooan

characters

Gobo memory address.,
Mernary Fill.. .

Load File into memary, ..

noooooan
noooooan
noooooan
noooooan

Figure 31. View as menu used to select the memory element size in the Memory window.

e Number of words per line: the number of words per line can be configured to make it easier to find memory
addresses. This can be configured from the context menu accessible by right-clicking on the Memory
window, as shown in Figure 32.

e Number format: this is similar to the number format option in the Register window. This can also be
configured from the context menu accessible by right-clicking on the Memory window.

19

Ox00000000 oooooooo

0x00000010 Yiew as L IS
0%00000020 Murnber of words per ling » 1
0x00000030 Murnber format 4 2
0x00000040 Display order] m
0=00000050 3
0%00000060 Switch ko character mode IE,
000000070 Show equivalent ASCII characters 3z
000000080 =
000000090 Gobo memory address. .. o
0=000000a0 Memary fill.. Auto
0=000000k0 Load file into memory. .. [
0=000000c0 gooooooo

Figure 32. Number of words per line menu in the Memory window.

e Display order: the display can display addresses increasing from left-to-right or right-to-left. Configure this
option by right-clicking on the Memory window, as shown in Figure 33.

Ox00000000 - ooooooog
View as]
000000010 ooooooog
0x00000020 Mumber of words per line] 00000000
0x00000030 Humber Format * | nnnnnnon
Ox00000040 3
Ezgggggggg Switch ko character mode Bight-to-left
Ox000a0074a Show equivalent ASCII characters oaoooaon
0x00000050 noooooao
000000090 Goko memary address... ooooooog
Ox000000a0 Memary Fill... ooooooog
0x000000b0 Load file inta memary. .. ooooooog
Ox000000c0 ooooooog

Figure 33. Display order menu in the Memory window.

Similar to the Disassembly window, you can view different memory regions by scrolling using the vertical
scroll bar on the right or by using a mouse scroll wheel. There is also a Goto memory address panel in the
Memory window analagous to the Goto instruction window. Click the Actions > Goto memory address...
menu item to display the Goto memory address panel. As shown in Figure 34, you can enter any address in
hexadecimal, press Go, and the Memory window will display that address. In this example, display the 11£8
address, which is where the buffer used by the program is stored.

Memory - X

Goto memory address | Address (hex):

Ox000011£0 dfffffl7 £500283a 00000000 00o0dezo
Ox00001200 oooooooo ooooooao oooooooo ooooooao
Ox00001210 oooooooo ooooooao oooooooo ooooooao
000001220 ooooooon nooooooo noooooon nooooooo
Ox00001230 oooooooo ooooooao oooooooo ooooooao
Ox00001Z240 ooooooan nooooooo noooooon nooooooo
Ox00001250 oooooooo ooooooao oooooooo ooooooao
000001260 ooooooan nooooooo noooooon nooooooo |
Ox00001270 oooooooo ooooooao oooooooo ooooooao
Ox00001250 ooooooan nooooooo noooooon nooooooo
Ox00001250 oooooooo ooooooao oooooooo ooooooao
O0x000012a0 oooooooo ooooooao oooooooo ooooooao
O0x00001Eb0 oooooooo ooooooao oooooooo ooooooao
Ox00001&c0 oooooooo ooooooao oooooooo ooooooao
Ox000012d0 oooooooo ooooooao oooooooo ooooooao
At Talaluh ReT O0NA0000 afaltatalulalal ONNA0000 OA00NA00 | |
1 »

Disassembly)'f Breakpoints , Memory / Watches)'f Trace |

[»]

[«]

Figure 34. Goto Memory Address window.

Since the program reads from this buffer and passes the value to the hexadecimal display, the value shown on
the hexadecimal display can be changed by changing the memory value. Proceed as follows:

20

1. In the row starting at the address 000011 £0, double-click the word under the +0xc column. This will
bring up a text box to edit the word value at the address 000011 fc.

2. Type in abcd, as in Figure 35.

Memory -
Goto memory address | Address (hex): 11£8
OXDOODLLED dEEEEELT £8002E3a 0OODODOO
0x00001200 DODODDOD 0O0DODOD 0DODO0OO 0DODODOO

Figure 35. Editing the value at the 000011 fc memory address.

3. Press Enter or click away from the text box to apply the memory change.

Upon resuming program execution, you will see that the hexadecimal display is now scrolling abCd.

Character display

The Memory window can also be configured to interpret memory byte values as ASCII characters. This can
be done by checking the Show equivalent ASCII characters menu item, accessible by right-clicking on the
Memory window, as shown in Figure 36.

000001200 00000000 | OOOO0 OOO0 OO00 0000
0x00001210 Hiewt as * |oooooooo | ODOO ODOD OOOD OOOD
0x00001220 Humber of wards per line b |O0DOODOO | OODO0 OO00 OOO0 0000
0x00001230 Mumber Farmat » (00000000 | OOOO OOO0 OOO0 0000
0x00001240 Display arder , |0000000D | OOOD OOOD OOOO 0000
000001250 00000000 | OOOO0 OOO0 0000 0000
0x00001260 Switch to character mode 00000000 | OOO0 0000 0O00 0000
000001270 - - — 00000000 | OOOO0 OOO0 0000 0000
0x00001280 ey el A st 00000000 | OOO0 OOO0 OOO0 0000
000001290 Gota memary address... 00000000 | OOO0 0000 0O00 0000
0x000012a0 wemory fil.. 00000000 | OOO0 0000 0O00 0000
0x000012h0 00000000 | OOO0 0000 0O00 0000

Load file into memory, ..

0x00001&c0 oooooooo oooo oooo oooo oooo

Figure 36. Checking the Show equivalent ASCII characters menu item.

The right side of the figure shows a sample ASCII character display. Usually, it is more convenient to view the
memory in bytes and characters simultaneously so that the characters appear in the correct sequence. This can be
accomplished by clicking the Switch to character mode menu item, which can be seen in Figure 36. A sample
character display in the character mode is shown in Figure 37.

You can return to the previous memory view mode by right-clicking and clicking the Revert to previous mode
menu item.

Memory fill

Memory fills can be performed in the Memory window. Click the Actions > Memory fill... menu item or right-
click on the Memory window and click the Memory fill... menu item. The Memory fill panel will appear on
the left-side of the Memory window. Simply fill in the desired values and click Fill. An example memory fill is
shown in Figure 38, which starts at address 0x2000 and ends at 0x2020. The fill value is 2-bytes in length and
has a value of Oxabcd.

Load file data into memory

File data can also be loaded into the memory using the Debug Client. This can be useful for providing different
data sets to a program. To use this functionality, click the Actions > Load file into memory... menu item or
right-click on the Memory window and click the Load file into memory... menu item. The Load file panel will
appear on the left-side of the Memory window. Click Browse to select the file to load. There are three types of
files that are supported:

21

Memory -
Goto memory address | Address (hex):

[a]
0x00002000 5l 62 63 64 55 66 67 63 69 da gb Gc &d abcd efgh i3kl
Ox00002010 7172 73 74 75076 77 78 79 Fa 00 00 i) qr st u v oW ¥z 00O
Ox00002020 0o oo oo oo 0o oo oo oo oo 0o oo oo i) oooao oooao oooao
Ox00002030 0o oo oo oo 0o oo oo oo oo 0o oo oo i) oooao oooao oooao
Ox00002040 0o oo oo oo 0o oo oo oo oo 0o oo oo i) oooao oooao oooao
Ox00002050 0o oo oo oo 0o oo oo oo oo 0o oo oo i) oooao oooao oooao
Ox00002060 0o oo oo oo 0o oo oo oo oo 0o oo oo i) oooao oooao oooao
Ox00002070 0o oo oo oo 0o oo oo oo oo 0o oo oo i) oooao oooao oooao
Ox00002080 0o oo oo oo 0o oo oo oo oo 0o oo oo i) oooao oooao oooao
000002090 00 o0 00 oo 00 o0 00 o0 oo 0o o0 oo ulu] oooao oooano Oooaoao
Ox000020a0 0o oo oo oo 0o oo oo oo oo 0o oo oo i) oooao oooao oooao
0x0000Z0b0 oo o0 o0 oo o0 o0 00 oo oo oo oo oo ula] oooao oooao Ooa0oao
Ox000020c0 0o oo oo oo 0o oo oo oo oo 0o oo oo i) oooao oooao oooao
Ox00002040 oo o0 o0 oo o0 o0 00 oo oo oo oo oo ula] oooao oooao Ooa0oao
Ox000020e0 0o oo oo oo 0o oo oo oo oo 0o oo oo i) oooao oooao [g
C(OONZ0F0 A0 00 00 00 00 00 00 060 f_00 00 nn o nnnano |'|r|r||'||r|r|r||r|:
] »|

Disassembly)'{ Breakpoints , Memary)" Watches)'{ Trace |

Figure 37. Character mode display.

Memory
Goto memory address | Address (hex): Z000

eyl 0x00002000 sbcdabcd sbcdabod abodabed abodabed
Specify addresses in hexadecimal. |0x00002010 abecdabeod abecdabed abcdabed abcdabcd
Start address: 0x00002020 00000000 0OO0O00O0 00000000 00000000
0x00002030 00000000 0OO0O00O0 00000000 00000000

® End address: 0x00002040 00000000 0OO0O00O0 0OO0O000 00000000
& oabuelies 0x00002050 00000000 0OO0O00O0 0OO0O000 00000000
0x00002060 00000000 0OO0O00O0 0OOOO0O0 00000000

Size: 0=x00002070 aooooooo ooooooog oooooooo aooooooo
Value: 0=x00002050 aooooooo ooooooog oooooooo aooooooo
0x000020590 ooooooog noooooao ooooooog ooooooog

Format: Unsigned hexadecimal 0x000020a0 aooooooo ooooooog oooooooo aooooooo
Right-click on box to change farmat, [X000020b0 00000000 00000000 00000000 0000000Q
0=x000020c0 aooooooo ooooooog oooooooo aooooooo

000002040 ooooooog noooooao ooooooog ooooooog
0x000020e0 aooooooo ooooooog oooooooo aooooooo
0 MO0 ANAAAANA AAAAAAAN AAAAAAAN (600066 I
] b

Disassembly)'{ Breakpoints , Memary)" ‘Watches)'{ Trace |

[«]

Figure 38. Memory fill panel being used to perform a memory fill.

1. Delimited hexadecimal value files: These files are plain ASCII files aimed at loading numerical data into
memory. The file format is defined as follows:
o All memory values are specified as hexadecimal values, with an optional sign in front of the value.
e Individual memory values are separated by a delimiter character.
e There can be multiple lines of delimited values in the file.

For the purpose of this tutorial, select the <TUTORIAL_FILES>\sample.csv file. This file is a comma-
delimited hexadecimal value file.

2. Intel HEX-format files: These files are in another special format aimed at loading numerical data into mem-
ory. You can use the Quartus II software to create Intel HEX-format files. When doing so, ensure that the
word size is set to 8-bits.

3. Binary files: These files are loaded byte-by-byte without any interpretation. This is useful for loading binary
data, such as audio or image files.

22

After selecting a file, a start address needs to be specified to indicate where to start loading the file data. In
this example, specify 2000. In the case of delimited hexadecimal value files, two additional parameters need to
be specified:

1. Delimiter character: This is the character that separate consecutive values in the file. In this example, a
comma (,) separates the values in the file.

2. Value byte size: The byte size of each value element. The Debug Client will truncate values to be within the
specified byte size. Specify a value of 4.

After all the parameters have been specified, click Load and you should see the loaded values in the Memory
window, as shown in Figure 39.

Memory - %
Goto memory address | Address (hex): 000
[a]
Hide —

Eoadifile Ox00002000 aooooooo ooooooll o0o00oza ooo00033

Select a file: Browse.., | 0x00002010 00001044 00002055 00003066 00004077
1 clentimonitor|tutorisampl,csy | X00002020 10000083 20000033 300000aa 400000kb
0x00002030 00000001 FEEEFEEE 00000002 EEEFfffe
File type: Delimited hex value format |0, nnppzo4n abcdlzsa 00000000 0OOOOOOO OOOOOOOO
Delimiter character: 0x00002050 00000000 00000000 OOOODOOD 00000000
O0x00002060 00000000 00000000 OOOODDOD 00000000
000002070 00000000 00000000 OOOODOOD 0000000Q
0x00002080 00000000 00000000 OOOODOOD 0O00OO0OO
0x00002050 00000000 0000000 OOOODOOD 00000000
O0x00002020 00000000 00000000 OOOODOOD 0OOOOOOO
0x000020b0 00000000 00000000 OOOODOOD 0O00OO0OO
0x000020c0 00000000 00000000 OOOODOOD 00000000
0x00002040 00000000 00000000 OOOODOOD 00000000
O0x000020e0 00000000 00000000 OOOOOOOD 00000000
| | N NOO020f£00 AO000nnn fnininininlulintn} fnininininluinin] QOO0 ann |
q »

Disassembly)'f Breakpoints , Memory / Watches)'f Trace |

Walue size (bytes):

Al

Start address (hex): 4

[«]

Figure 39. Load file panel being used to load a delimited hexadecimal value file into memory.

12 Setting a Watch Expression

Watch expressions are simply expressions that are re-evaluated each time program execution is stopped. They pro-
vide a convenient means to keep track of the value of multiple expressions of interest. To add a watch expression:

1. Switch to the Watches window.

2. Right-click on the gray bar, like in Figure 40, and click Add.

Watches - X

Expression Walue

Add

Figure 40. Adding a watch expression via the Add menu item.

3. The Edit Watch Expression window will appear, like in Figure 41. Enter the desired watch expression,
such as mem32 (sp), which will display the full-word value at the current stack pointer address.

4. Click Ok. The watch expression and its current value will show up in the table.

5. The number format of the displayed value can be changed by right-clicking on the row for that value, as
shown in Figure 42.

6. As you repeatedly run the program and stop it at various points, the watch expression will be re-evaluated
each time and its value shown in the table of watch values.

23

Edit watch expression

Synkax
Register values:
pc, rl, k2, .

MNumber formats:
decimal: ##4
hexadecimal: Dudt##
octal: Oa##
binary: Db###

Operatars:
===, =, = <=, == 8, |
M %

AcCCessing memary:
mem3(address): byte value at address
meml6l address) half-word value at address
mem32; address): word value at address

uweni3i (sp)

Figure 41. The Edit Watch Expression window.

Watches - X

Expression Walue

wen32 (sp) add Ox00000020

Remove

Binary
Octal

Decimal

Signed representation

Auko

Figure 42. Changing the number format of a watch value.

13 Examining the Instruction Trace

An instruction trace is a hardware-level mechanism to record a log of all recently executed instructions. The Nios
Il JTAG Debug Module has the instruction trace capability, but only if a Level 3 or higher debugging level is
selected in the SOPC Builder configuration of the JTAG Debug Module'. If the required JTAG Debug Module is
not present, a warning will be shown in the Info & Errors window after loading the program. The warning will
say WARNING: Could not reset trace. Trace is disabled. This warning can be safely ignored if there is no trace
support in the Nios II system.

The example system used in this tutorial has a Level 3 JTAG Debug Module and so it supports the instruction
trace. To demonstrate the Trace window in the Debug Client, follow the steps below:

1. Switch to the Trace window. There is probably already something there because the instruction trace has
been running since the program was loaded.

2. For this part of the tutorial, first clear the trace by right-clicking in the Trace window and clicking Clear
sequences, as shown in Figure 43.

ISee chapter 4 in the Nios II Processor Reference Handbook for more information about the configuration settings of the JTAG Debug
Module. The Handbook can be found in the Nios II Literature section of Altera’s web site.

24

Trace -

CONTTHUE
Show debug events

0x00001034 Disable trace

0x00001038 {0x00001034: delay loop)

Clear trace sequences

KPOINT

Figure 43. Clear the trace sequences.

3. Remove all existing breakpoints and add two new instruction breakpoints at 1030 and 103c. These two
breakpoints will be used to skip the delay_1loop section of the code, which does not produce very inter-
esting results for the instruction trace.

4. Run the program until the breakpoint at 103c is triggered. Your Disassembly window should look similar
to Figure 44 with the breakpoints set and the instruction at 1 03c highlighted.

Disassembly - ¥
Goto instruction | Address (hex) or symbal narme: |_start |
Ox0000102c orhi rl6, zero, OxS5E z
@ 000001030 ori rlé, rl6, OxSel0
delay loop:
subi rla, rla, 1
delay loop:
0x00001034 addi rlé, rlé, -0xl
bhne rle, zero, delay loop |
0x00001038 bhne rlé, zero, -0x& (0x00001034: delay loop) L]

check shift:
/% check if the shift direction should be rewersed */
call SHOULD _REVERRE_SHIFT
check _shift:
.DxDDDDlDSC call 000000455 (0x00001154: 3SHOULD REVERSE SHIFT)

heor ¥ £Yo Ao _=shift

[4] [¥]
Disassembly / Breakpaints)'{ Memory)'{ \Watches)'{ Trace |

[«]

Figure 44. Disassembly window display after setting breakpoints.

5. Continue the program’s execution; it will execute the code to do some checks on the buffer as well as
actually shift the contents of the buffer by one hexadecimal digit. The hexadecimal display will also be
updated by a call to UPDATE_HEX_DISPLAY before the breakpoint at 1030 is triggered.

6. Switch back to the Trace window. The window will now be displaying all the instructions executed starting
from the first breakpoint to the second breakpoint, as indicated in Figure 45. As seen in the figure, the trace
is divided into instruction blocks. Although it is not evident in this trace, the Debug Client will try to find
repeated instruction blocks and common sequences to reduce the length of the trace on the screen.

25

Trace

“

check_shift:

Ox0000103c call 0x00000455 (0x00001154: SHOULD _FEVERIE_SHIFT)
SHOULD _REVERSE_SHIFT:

Ox00001154 stw ra, -4isp)

Ox00001155 stw fp, -8isp

Ox0000115: stw rla, -1Z(sp)

0x00001160 stw £l7, -l6(ap)

Ox00001154 add fp, sp, =zero

0x00001165 addi sp, sp, -0xl0

Ox0000116: orhi rlé, =zero, 0Ox0

Ox00001170 ori rlé, rla, Ox11£d

0x00001174 1w £l7, 4(rle)

0x00001178 CcIRey rl?, rl7, =zerao

Ox0000117c heq rl7, zero, Ox14 (0x00001194: 3R3_done)
SRE_done:

Ox00001194 add r3, rl7, =zero

Ox00001195 addi sp, sp, O0x10

0x000011%: 1w rl7, -l6(sp)

0x000011a0 1w rlé, -1Z{sp)

0x000011a4 1w fp, -&(sp)

Ox000011ad 1dar ra, -4isp)

Ox000011lac ret

Ox00001040 heq r3, zero, Oxd (0x00001045: do_shift)
do_shift:

Ox00001045 heq rZ, zero, Ox& (0x00001054: do_left_shift)
do_right shift:

Ox0000104c call 000000417 (0x0000105c: SHIFT BEUFFER RIGHT)

Disassembly7 Breakpoints .' Memary)lf Watches | Trace /

Figure 45. A partial view of the trace between the two breakpoints.

14 Using Configuration Files

Configuration files store the settings used to configure the system (see Section 3) and to configure the program
(see Section 4). This allows you to easily reload programs that you were working on previously without having
to reconfigure everything each time the Debug Client is started. There are four configuration commands available
under the Monitor menu, as shown in Figure 46:

I@m MiosII Actions Wind

Mew configuration
Load configuration. ..
Save configuration

Save configuration as. ..

Exit

Figure 46. Menu options related to configuration files.

1. New configuration: Clears all the settings in the current configuration.

2. Load configuration: Displays a window to select a Nios II Configuration File (NCF) to load.

3. Save configuration: Saves the current configuration with the same file name that the configuration was last
saved as. If the configuration has not been saved before, then this is equivalent to Save configuration as.

4. Save configuration as: Displays a window to select the name of the Nios II Configuration File, then saves
the current configuration into that file.

The next section of this tutorial demonstrates the functionality of the Terminal window. The section uses a dif-
ferent source file and thus the program needs to be reconfigured. A configuration file is provided to automatically
load the correct configuration settings. To load the configuration file, proceed as follows:

26

1. Click the Actions > Disconnect menu item or click the ¢ toolbar button to end the current GDB debugging
session.

2. Click the Monitor > Load configuration... menu item.
3. Select the file located at <TUTORIAL_FILES>\example\sw\terminal_tutorial.ncf and click Select.

4. This step is not required but it is useful as a demonstration to verify that the correct configuration was loaded.
Open the Nios II Program Configuration window and you should see one source file, similar to Figure 47.
Note that the correct source file paths are listed, no matter where the tutorial files were copied. As long as
the source file paths remain the same relative to the NCF configuration file, the Debug Client will be able to
locate it correctly.

i Nios Il Program Configuration
Program type
|Assembly '|
Files

First source file is used to determine ELF and SREC File name.

[n:\butorialiexamplelswiterminal _tutorial_srciterminal_tutorial. s Add...

Remove

Coown

Options

:

Start symbal: |_start

Figure 47. Nios II Program Configration window for the tutorial on the Terminal window.

15 Using the Terminal

Assuming that the system and program configuration settings have been set correctly (refer to the previous section
of the tutorial for instructions on loading the correct configuration file), this section of the tutorial will demonstrate
the functionality of the Terminal window in the Debug Client.

1. Compile & Load the program.

2. Once the program has been successfully loaded, the Terminal window will indicate that a connection has
been established, similar to Figure 48.

Terminal - X

JTAG UART link established using cable "U3BE-Elaster
[USE-0]", dewvice 1, instance 0x00

Figure 48. The Terminal window after a connection has been established to the JTAG UART on the board.

3. Runthe program. The program will clear the Terminal window and write the string Hello Altera Debug Client,
as shown in Figure 49.

27

Terminal - %

Hello Altera Debug Client!

Figure 49. Output from the terminal tutorial program.

4. At this point of the program’s execution, the program is ready to accept terminal input and echo it back.
Click on the Terminal window and type something; you will see that what you type shows up in the
window. This is done by the code in the program; the Terminal window, by default, does not automatically
echo what is typed.

As mentioned in step 3, the program clears the Terminal window. This is accomplished through a special
character sequence that is interpreted by the Debug Client to be a terminal command. The Debug Client’s Terminal
window supports a subset of the VT 100 terminal commands. The supported commands are listed in Table 2. Note
that <ESC> is actually one character, with the ASCII value 0x1B.

’ Character Sequence \ Description ‘
<ESC>[2J Erases everything in the Terminal window
<ESC>[7h Enable line wrap mode
<ESC>[71 Disable line wrap mode
<ESC>[#A Move cursor up by # rows or by one row if # is not specified
<ESC>[#B Move cursor down by # rows or by one row if # is not specified
<ESC> [#C Move cursor right by # columns or by one column if # is not specified
<ESC>[#D Move cursor left by # columns or by one column if # is not specified

<ESC> [#1; #of Move the cursor to row #; and column #-5

[

[

[

[

[

[

[
<ESC>[H Move the cursor to the home position (row 0 and column 0)
<ESC>[s Save the current cursor position
<ESC>[u Restore the cursor to the previously saved position
<ESC>[7 Same as <ESC>[s
<ESC>[8 Same as <ESC> [u
<ESC>[K Erase from current cursor position to the end of the line
<ESC>[1K Erase from current cursor position to the start of the line
<ESC>[2K Erase entire line
<ESC>[J Erase from current line to the bottom of the screen
<ESC>[2J Erase from current cursor position to the top of the screen
<ESC>[6n Queries the cursor position. A reply is sent back in the format

<ESC> [#1; #2R, corresponding to row #7 and column #-.

Table 2. VT100 commands supported by the Terminal window in the Debug Client.

28

Copyright (©2006 Altera Corporation. All rights reserved. Altera, The Programmable Solutions Company, the
stylized Altera logo, specific device designations, and all other words and logos that are identified as trademarks
and/or service marks are, unless noted otherwise, the trademarks and service marks of Altera Corporation in
the U.S. and other countries. All other product or service names are the property of their respective holders.
Altera products are protected under numerous U.S. and foreign patents and pending applications, mask work
rights, and copyrights. Altera warrants performance of its semiconductor products to current specifications in
accordance with Altera’s standard warranty, but reserves the right to make changes to any products and services at
any time without notice. Altera assumes no responsibility or liability arising out of the application or use of any
information, product, or service described herein except as expressly agreed to in writing by Altera Corporation.
Altera customers are advised to obtain the latest version of device specifications before relying on any published
information and before placing orders for products or services.

This document is being provided on an “as-is” basis and as an accommodation and therefore all warranties, rep-
resentations or guarantees of any kind (whether express, implied or statutory) including, without limitation, war-
ranties of merchantability, non-infringement, or fitness for a particular purpose, are specifically disclaimed.

29

	Installing the Altera Debug Client
	Starting the Altera Debug Client
	Configuring a Nios II System
	Configuring a Nios II Program
	Compiling and Loading the Program
	Running the Program
	Using the Disassembly Window
	Single step
	Using Breakpoints
	Examining and Changing Register Values
	Examining and Changing Memory Contents
	Setting a Watch Expression
	Examining the Instruction Trace
	Using Configuration Files
	Using the Terminal

