
Altera Corporation   8–1
October 2007  

8. Exception Handling

Introduction This chapter discusses how to write programs to handle exceptions in the 
Nios® II processor architecture. Emphasis is placed on how to process 
hardware interrupt requests by registering a user-defined interrupt 
service routine (ISR) with the hardware abstraction layer (HAL). 

This chapter contains the following sections: 

■ “Introduction” on page 8–1
■ “Nios II Exceptions Overview” on page 8–1

● “Exception Handling Concepts”
● “How the Hardware Works”

■ “ISRs” on page 8–3
● “HAL API for ISRs”
● “Writing an ISR”
● “Registering an ISR”
● “Enabling and Disabling ISRs”
● “C Example”

■ “ISR Performance Data” on page 8–8
■ “Improving ISR Performance” on page 8–9

● “Software Performance Improvements”
● “Hardware Performance Improvements”

■ “Debugging ISRs” on page 8–14
■ “Summary of Guidelines for Writing ISRs” on page 8–15
■ “HAL Exception Handler Implementation” on page 8–15

● “Exception Handler Structure”
● “Top-Level Exception Handler”
● “Hardware Interrupt Handler”
● “Software Exception Handler”
● “Invalid Instructions”
● “HAL Exception Handler Files”

f For low-level details of handling exceptions and interrupts on the Nios II 
architecture, see the Programming Model chapter of the Nios II Processor 
Reference Handbook.

Nios II 
Exceptions 
Overview

Nios II exception handling is implemented in classic RISC fashion, i.e., all 
exception types are handled by a single exception handler. As such, all 
exceptions (hardware and software) are handled by code residing at a 
single location called the “exception address”.

NII52006-7.2.0
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Nios II Exceptions Overview

The Nios II processor provides the following exception types:

■ Hardware interrupts
■ Software exceptions, which fall into the following categories:

● Unimplemented instructions
● Software traps
● Other exceptions

Exception Handling Concepts

The following list outlines basic exception handling concepts, with the 
HAL terms used for each one:

■ application context — the status of the Nios II processor and the 
HAL during normal program execution, outside of the exception 
handler.

■ context switch — the process of saving the Nios II processor’s 
registers on an exception, and restoring them on return from the 
interrupt service routine.

■ exception — any condition or signal that interrupts normal program 
execution.

■ exception handler — the complete system of software routines, 
which service all exceptions and pass control to ISRs as necessary.

■ exception overhead — additional processing required by exception 
processing. The exception overhead for a program is the sum of all 
the time occupied by all context switches.

■ hardware interrupt — an exception caused by a signal from a 
hardware device.

■ implementation-dependent instruction — a Nios II processor 
instruction that is not supported on all implementations of the 
Nios II core. For example, the mul and div instructions are 
implementation-dependent, because they are not supported on the 
Nios II/e core.

■ interrupt context — the status of the Nios II processor and the HAL 
when the exception handler is executing.

■ interrupt request (IRQ) — a signal from a peripheral requesting a 
hardware interrupt.

■ interrupt service routine (ISR) — a software routine that handles an 
individual hardware interrupt.

■ invalid instruction — an instruction that is not defined for any 
implementation of the Nios II processor.

■ software exception — an exception caused by a software condition. 
This includes unimplemented instructions and trap instructions.

■ unimplemented instruction — an implementation-dependent 
instruction that is not supported on the particular Nios II core 
implementation that is in your system. For example, in the Nios II/e 
core, mul and div are unimplemented.
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■ other exception — an exception which is not a hardware interrupt 
nor a trap.

How the Hardware Works

The Nios II processor can respond to software exceptions and hardware 
interrupts. Thirty-two independent hardware interrupt signals are 
available. These interrupt signals allow software to prioritize interrupts, 
although the interrupt signals themselves have no inherent priority.

When the Nios II processor responds to an exception, it does the 
following things:

1. Saves the status register in estatus. This means that if hardware 
interrupts are enabled, the EPIE bit of estatus is set.

2. Disables hardware interrupts.

3. Saves the next execution address in ea (r29).

4. Transfers control to the Nios II processor exception address.

1 Nios II exceptions and interrupts are not vectored. Therefore, 
the same exception address receives control for all types of 
interrupts and exceptions. The exception handler at that address 
must determine the type of exception or interrupt.

f For details about the Nios II processor exception and interrupt controller, 
see the Processor Architecture chapter of the Nios II Processor Reference 
Handbook.

ISRs Software often communicates with peripheral devices using interrupts. 
When a peripheral asserts its IRQ, it causes an exception to the 
processor’s normal execution flow. When such an IRQ occurs, an 
appropriate ISR must handle this interrupt and return the processor to its 
pre-interrupt state upon completion. 

When you use the Nios II IDE to create a system library project, the IDE 
includes all needed ISRs. You do not need to write HAL ISRs unless you 
are interfacing to a custom peripheral. For reference purposes, this section 
describes the framework provided by the HAL system library for 
handling hardware interrupts. 

You can also look at existing handlers for Altera® SOPC Builder 
components for examples of how to write HAL ISRs. 
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f For more details about the Altera-provided HAL handlers, see the 
Developing Programs using the HAL chapter of the Nios II Software 
Developer’s Handbook.

HAL API for ISRs

The HAL system library provides an API to help ease the creation and 
maintenance of ISRs. This API also applies to programs based on a real-
time operating system (RTOS) such as MicroC/OS-II, because the full 
HAL API is available to RTOS-based programs. The HAL API defines the 
following functions to manage hardware interrupt processing:

■ alt_irq_register()
■ alt_irq_disable()
■ alt_irq_enable()
■ alt_irq_disable_all()
■ alt_irq_enable_all()
■ alt_irq_interruptible()
■ alt_irq_non_interruptible()
■ alt_irq_enabled()

f For details on these functions, see the HAL API Reference chapter of the 
Nios II Software Developer’s Handbook.

Using the HAL API to implement ISRs entails the following steps:

1. Write your ISR that handles interrupts for a specific device. 

2. Your program must register the ISR with the HAL by calling the 
alt_irq_register() function. alt_irq_register() enables 
interrupts for you, by calling alt_irq_enable_all().

Writing an ISR

The ISR you write must match the prototype that 
alt_irq_register() expects to see. The prototype for your ISR 
function must match the prototype: 

void isr (void* context, alt_u32 id)

The parameter definitions of context and id are the same as for the 
alt_irq_register() function. 

From the point of view of the HAL exception handling system, the most 
important function of an ISR is to clear the associated peripheral’s 
interrupt condition. The procedure for clearing an interrupt condition is 
specific to the peripheral. 
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f For details, see the relevant chapter in the Quartus® II Handbook, Volume 
5: Altera Embedded Peripherals. 

When the ISR has finished servicing the interrupt, it must return to the 
HAL exception handler.

1 If you write your ISR in assembly language, use ret to return. 
The HAL exception handler issues an eret after restoring the 
application context.

Restricted Environment

ISRs run in a restricted environment. A large number of the HAL API 
calls are not available from ISRs. For example, accesses to the HAL file 
system are not permitted. As a general rule, when writing your own ISR, 
never include function calls that can block waiting for an interrupt.

f The HAL API Reference chapter of the Nios II Software Developer’s 
Handbook identifies those API functions that are not available to ISRs.

Be careful when calling ANSI C standard library functions inside of an 
ISR. Avoid using the C standard library I/O API, because calling these 
functions can result in deadlock within the system, i.e., the system can 
become permanently blocked within the ISR. 

In particular, do not call printf() from within an ISR unless you are 
certain that stdout is mapped to a non-interrupt-based device driver. 
Otherwise, printf() can deadlock the system, waiting for an interrupt 
that never occurs because interrupts are disabled. 

Registering an ISR

Before the software can use an ISR, you must register it by calling 
alt_irq_register(). The prototype for alt_irq_register() is:

int alt_irq_register (alt_u32 id, 
                      void*   context, 
                      void (*isr)(void*, alt_u32));
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The prototype has the following parameters:

■ id is the hardware interrupt number for the device, as defined in 
system.h. Interrupt priority corresponds inversely to the IRQ 
number. Therefore, IRQ0 represents the highest priority interrupt 
and IRQ31 is the lowest.

■ context is a pointer used to pass context-specific information to the 
ISR, and can point to any ISR-specific information. The context value 
is opaque to the HAL; it is provided entirely for the benefit of the 
user-defined ISR.

■ isr is a pointer to the function that is called in response to IRQ 
number id. The two input arguments provided to this function are 
the context pointer and id. Registering a null pointer for isr 
results in the interrupt being disabled.

The HAL registers the ISR by the storing the function pointer, isr, in a 
lookup table. The return code from alt_irq_register() is zero if the 
function succeeded, and nonzero if it failed.

If the HAL registers your ISR successfully, the associated Nios II interrupt 
(as defined by id) is enabled on return from alt_irq_register(). 

1 Hardware-specific initialization might also be required. 

When a specific IRQ occurs, the HAL looks up the IRQ in the lookup table 
and dispatches the registered ISR.

f For details of interrupt initialization specific to your peripheral, see the 
relevant chapter in the Quartus II Handbook, Volume 5: Altera Embedded 
Peripherals. For details on alt_irq_register(), see the HAL API 
Reference chapter of the Nios II Software Developer’s Handbook.

Enabling and Disabling ISRs

The HAL provides the functions alt_irq_disable(), 
alt_irq_enable(), alt_irq_disable_all(), 
alt_irq_enable_all(), and alt_irq_enabled() to allow a 
program to disable interrupts for certain sections of code, and re-enable 
them later. alt_irq_disable() and alt_irq_enable() allow you 
to disable and enable individual interrupts. alt_irq_disable_all() 
disables all interrupts, and returns a context value. To re-enable 
interrupts, you call alt_irq_enable_all() and pass in the context 
parameter. In this way, interrupts are returned to their state prior to the 
call to alt_irq_disable_all(). alt_irq_enabled() returns non-
zero if interrupts are enabled, allowing a program to check on the status 
of interrupts.
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1 Disable interrupts for as short a time as possible. Maximum 
interrupt latency increases with the amount of time interrupts 
are disabled. For more information about disabled interrupts, 
see “Keep Interrupts Enabled” on page 8–11.

f For details on these functions, see the HAL API Reference chapter of the 
Nios II Software Developer’s Handbook.

C Example

The following code illustrates an ISR that services an interrupt from a 
button PIO. This example is based on a Nios II system with a 4-bit PIO 
peripheral connected to push-buttons. An IRQ is generated any time a 
button is pushed. The ISR code reads the PIO peripheral’s edge-capture 
register and stores the value to a global variable. The address of the global 
variable is passed to the ISR via the context pointer. 

Example: An ISR to Service a Button PIO IRQ
#include "system.h"
#include "altera_avalon_pio_regs.h"
#include "alt_types.h"

static void handle_button_interrupts(void* context, alt_u32 id)
{
/* cast the context pointer to an integer pointer. */
volatile int* edge_capture_ptr = (volatile int*) context;

/*
* Read the edge capture register on the button PIO.
* Store value.
*/
*edge_capture_ptr =
IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE);

/* Write to the edge capture register to reset it. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0);

/* reset interrupt capability for the Button PIO. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);

}

The following code shows an example of the code for the main program 
that registers the ISR with the HAL.

Example: Registering the Button PIO ISR with the HAL 
#include "sys/alt_irq.h"
#include "system.h"

...
/* Declare a global variable to hold the edge capture value. */
volatile int edge_capture;
...
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/* Initialize the button_pio. */
static void init_button_pio()
{

/* Recast the edge_capture pointer to match the 
alt_irq_register() function prototype. */

void* edge_capture_ptr = (void*) &edge_capture;

/* Enable all 4 button interrupts. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);

/* Reset the edge capture register. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0x0);

/* Register the ISR. */
alt_irq_register( BUTTON_PIO_IRQ, 

edge_capture_ptr, 
handle_button_interrupts ); 

}

Based on this code, the following execution flow is possible:

1. Button is pressed, generating an IRQ.

2. The HAL exception handler is invoked and dispatches the 
handle_button_interrupts() ISR.

3. handle_button_interrupts() services the interrupt and 
returns.

4. Normal program operation continues with an updated value of 
edge_capture.

f Further software examples that demonstrate implementing ISRs are 
installed with the Nios II Embedded Design Suite (EDS), such as the 
count_binary example project template.

ISR 
Performance 
Data

This section provides performance data related to ISR processing on the 
Nios II processor. The following three key metrics determine ISR 
performance:

■ Interrupt latency—the time from when an interrupt is first generated 
to when the processor runs the first instruction at the exception 
address.

■ Interrupt response time—the time from when an interrupt is first 
generated to when the processor runs the first instruction in the ISR.

■ Interrupt recovery time—the time taken from the last instruction in 
the ISR to return to normal processing.
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Because the Nios II processor is highly configurable, there is no single 
typical number for each metric. This section provides data points for each 
of the Nios II cores under the following assumptions:

■ All code and data is stored in on-chip memory.
■ The ISR code does not reside in the instruction cache.
■ The software under test is based on the Altera-provided HAL 

exception handler system.
■ The code is compiled using compiler optimization level "–O3", or 

high optimization.

Table 8–1 lists the interrupt latency, response time, and recovery time for 
each Nios II core. 

The results you experience in a specific application can vary significantly 
based on several factors discussed in the next section.

Improving ISR 
Performance

If your software uses interrupts extensively, the performance of ISRs is 
probably the most critical determinant of your overall software 
performance. This section discusses both hardware and software 
strategies to improve ISR performance. 

Software Performance Improvements

In improving your ISR performance, you probably consider software 
changes first. However, in some cases it might require less effort to 
implement hardware design changes that increase system efficiency. For 
a discussion of hardware optimizations, see “Hardware Performance 
Improvements” on page 8–13.

The following sections describe changes you can make in the software 
design to improve ISR performance.

Table 8–1. Interrupt Performance Data (1) 

Core Latency Response Time Recovery Time

Nios II/f 10 105 62

Nios II/s 10 128 130

Nios II/e 15 485 222

Note to Table 8–1:
(1) The numbers indicate time measured in CPU clock cycles.
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Move Lengthy Processing to Application Context

ISRs provide rapid, low latency response to changes in the state of 
hardware. They do the minimum necessary work to clear the interrupt 
condition and then return. If your ISR performs lengthy, noncritical 
processing, it interferes with more critical tasks in the system.

If lengthy processing is needed, design your software to perform this 
processing outside of the interrupt context. The ISR can use a message-
passing mechanism to notify the application code to perform the lengthy 
processing tasks.

Deferring a task is simple in systems based on an RTOS such as 
MicroC/OS-II. In this case, you can create a thread to handle the 
processor-intensive operation, and the ISR can communicate with this 
thread using any of the RTOS communication mechanisms, such as event 
flags or message queues.

You can emulate this approach in a single-threaded HAL-based system. 
The main program polls a global variable managed by the ISR to 
determine whether it needs to perform the processor-intensive operation. 

Move Lengthy Processes to Hardware

Processor-intensive tasks must often transfer large amounts of data to 
and from peripherals. A general-purpose CPU such as the Nios II 
processor is not the most efficient way to do this.

Use Direct Memory Access (DMA) hardware if it is available.

f For information about programming with DMA hardware, refer to the 
Using DMA Devices section of the Developing Programs using the HAL 
chapter of the Nios II Software Developer’s Handbook.

Increase Buffer Size

If you are using DMA to transfer large data buffers, the buffer size can 
affect performance. Small buffers imply frequent IRQs, which lead to 
high overhead.

Increase the size of the transaction data buffer(s). 

Use Double Buffering

Using DMA to transfer large data buffers might not provide a large 
performance increase if the Nios II processor must wait for DMA 
transactions to complete before it can perform the next task.
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Double buffering allows the Nios II processor to process one data buffer 
while the hardware is transferring data to or from another.

Keep Interrupts Enabled

When interrupts are disabled, the Nios II processor cannot respond 
quickly to hardware events. Buffers and queues can fill or overflow. Even 
in the absence of overflow, maximum interrupt processing time can 
increase after interrupts are disabled, because the ISRs must process data 
backlogs.

Disable interrupts as little as possible, and for the briefest time possible.

Instead of disabling all interrupts, call alt_irq_disable() and 
alt_irq_enable() to enable and disable individual IRQs.

To protect shared data structures, use RTOS structures such as 
semaphores.

Disable all interrupts only during critical system operations. In the code 
where interrupts are disabled, perform only the bare minimum of critical 
operations, and re-enable interrupts immediately.

Use Fast Memory

ISR performance depends upon memory speed.

Place the ISRs and the stack in the fastest available memory. 

For best performance, place the stack in on-chip memory, preferably 
tightly-coupled memory, if available.

If it is not possible to place the main stack in fast memory, you can use a 
private exception stack, mapped to a fast memory section. However, the 
private exception stack entails some additional context switch overhead, 
so use it only if you are able to place it in significantly faster memory. You 
can specify a private exception stack on the System properties page of the 
Nios II IDE.

f For more information about mapping memory, see the “Memory Usage” 
section of the Developing Programs using the HAL chapter of the Nios II 
Software Developer’s Handbook. For more information on tightly-coupled 
memory, refer to the Cache and Tightly-Coupled Memory chapter of the 
Nios II Software Developer’s Handbook. 
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Use Nested ISRs

The HAL system library disables interrupts when it dispatches an ISR. 
This means that only one ISR can execute at any time, and ISRs are 
executed on a first-come-first-served basis.This reduces the system 
overhead associated with interrupt processing, and simplifies ISR 
development, because the ISR does not need to be reentrant. 

However, first-come first-served execution means that the HAL interrupt 
priorities only have effect if two IRQs are asserted on the same 
application-level instruction cycle. A low-priority interrupt occurring 
before a higher-priority IRQ can prevent the higher-priority ISR from 
executing. This is a form of priority inversion, and it can have a significant 
impact on ISR performance in systems that generate frequent interrupts. 

A software system can achieve full interrupt prioritization by using 
nested ISRs. With nested ISRs, higher priority interrupts are allowed to 
interrupt lower-priority ISRs.

This technique can improve the interrupt latency of higher priority ISRs. 

1 Nested ISRs increase the processing time for lower priority 
interrupts. 

If your ISR is very short, it might not be worth the overhead to re-enable 
higher-priority interrupts. Enabling nested interrupts in a short ISR can 
actually increase the interrupt latency of higher priority interrupts. 

1 If you use a private exception stack, you cannot nest interrupts. 
For more information about private exception stacks, see “Use 
Fast Memory” on page 8–11.

To implement nested interrupts, use the alt_irq_interruptible() 
and alt_irq_non_interruptible() functions to bracket code 
within a processor-intensive ISR. After the call to 
alt_irq_interruptible(), higher priority IRQs can interrupt the 
running ISR. When your ISR calls alt_irq_non_interruptible(), 
interrupts are disabled as they were before 
alt_irq_interruptible().

1 If your ISR calls alt_irq_interruptible(), it must call 
alt_irq_non_interruptible() before returning. 
Otherwise, the HAL exception handler might lock up.
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Use Compiler Optimization

For the best performance both in exception context and application 
context, use compiler optimization level –O3. Level –O2 also produces 
good results. Removing optimization altogether significantly increases 
interrupt response time. 

f For further information about compiler optimizations, refer to the 
Reducing Code Footprint section in the Developing Programs using the HAL 
chapter of the Nios II Software Developer’s Handbook.

Hardware Performance Improvements

There are several simple hardware changes that can provide a substantial 
improvement in ISR performance. These changes involve editing and 
regenerating the SOPC Builder module, and recompiling the Quartus II 
design.

In some cases, these changes also require changes in the software 
architecture or implementation. For a discussion of these and other 
software optimizations, see “Software Performance Improvements” on 
page 8–9. 

The following sections describe changes you can make in the hardware 
design to improve ISR performance.

Add Fast Memory

Increase the amount of fast on-chip memory available for data buffers. 
Ideally, implement tightly-coupled memory which the software can use 
for buffers.

f For further information about tightly-coupled memory, refer to the Cache 
and Tightly-Coupled Memory chapter in the Nios II Processor Reference 
Handbook, or to the Using Nios II Tightly Coupled Memory Tutorial.

Add a DMA Controller

A DMA controller performs bulk data transfers, reading data from a 
source address range and writing the data to a different address range. 
Add DMA controllers to move large data buffers. This allows the Nios II 
processor to carry out other tasks while data buffers are being transferred. 

f For information about DMA controllers, see the DMA Controller Core 
chapter of the Quartus II Handbook, Volume 5: Embedded Peripherals. 
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Place the Exception Handler Address in Fast Memory

For the fastest execution of exception code, place the exception address in 
a fast memory device. For example, an on-chip RAM with zero waitstates 
is preferable to a slow SDRAM. For best performance, store exception 
handling code and data in tightly-coupled memory. The Nios II EDS 
includes example designs that demonstrate the use of tightly-coupled 
memory for ISRs.

Use a Fast Nios II Core

For processing in both the interrupt context and the application context, 
the Nios II/f core is the fastest, and the Nios II/e core (designed for small 
size) is the slowest.

Select Interrupt Priorities

When selecting the IRQ for each peripheral, bear in mind that the HAL 
hardware interrupt handler treats IRQ0 as the highest priority. Assign 
each peripheral’s interrupt priority based on its need for fast servicing in 
the overall system. Avoid assigning multiple peripherals to the same IRQ.

Use the Interrupt Vector Custom Instruction

The Nios II processor core offers an interrupt vector custom instruction 
which accelerates interrupt vector dispatch in the Hardware Abstraction 
Layer (HAL). You can choose to include this custom instruction to 
improve your program’s interrupt response time. 

When the interrupt vector custom instruction is present in the Nios II 
processor, the HAL source detects it at compile time and generates code 
using the custom instruction.

f For further information about the interrupt vector custom instruction, 
see the Interrupt Vector Custom Instruction section in the chapter entitled 
Instantiating the Nios II Processor in SOPC Builder in the Nios II Processor 
Reference Handbook.

Debugging ISRs You can debug an ISR with the Nios II IDE by setting breakpoints within 
the ISR. The debugger completely halts the processor upon reaching a 
breakpoint. In the meantime, however, the other hardware in your system 
continues to operate. Therefore, it is inevitable that other IRQs are 
ignored while the processor is halted. You can use the debugger to step 
through the ISR code, but the status of other interrupt-driven device 
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drivers is generally invalid by the time you return the processor to normal 
execution. You have to reset the processor to return the system to a known 
state.

The ipending register (ctl4) is masked to all zeros during single 
stepping. This masking prevents the processor from servicing IRQs that 
are asserted while you single-step through code. As a result, if you try to 
single step through a part of the exception handler code (e.g. 
alt_irq_entry() or alt_irq_handler()) that reads the ipending 
register, the code does not detect any pending IRQs. This issue does not 
affect debugging software exceptions. You can set breakpoints within 
your ISR code (and single step through it), because the exception handler 
has already used ipending to determine which IRQ caused the 
exception. 

Summary of 
Guidelines for 
Writing ISRs

This section summarizes guidelines for writing ISRs for the HAL 
framework:

■ Write your ISR function to match the prototype: void isr (void* 
context, alt_u32 id).

■ Register your ISR using the alt_irq_register() function 
provided by the HAL API.

■ Do not use the C standard library I/O functions, such as printf(), 
inside of an ISR.

HAL Exception 
Handler 
Implementation

This section describes the HAL exception handler implementation. This 
is one of many possible implementations of an exception handler for the 
Nios II processor. Some features of the HAL exception handler are 
constrained by the Nios II hardware, while others are designed to provide 
generally useful services.

This information is for your reference. You can take advantage of the HAL 
exception services without a complete understanding of the HAL 
implementation. For details of how to install ISRs using the HAL 
application programming interface (API), see “ISRs” on page 8–3.

Exception Handler Structure

The exception handling system consists of the following components:

■ The top-level exception handler
■ The hardware interrupt handler
■ The software exception handler
■ An ISR for each peripheral that generates interrupts. 
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When the Nios II processor generates an exception, the top-level 
exception handler receives control. The top-level exception handler 
passes control to either the hardware interrupt handler or the software 
exception handler. The hardware interrupt handler passes control to one 
or more ISRs.

Each time an exception occurs, the exception handler services either a 
software exception or hardware interrupts, with hardware interrupts 
having a higher priority. The HAL does not support nested exceptions, 
but can handle multiple hardware interrupts per context switch. For 
details, see “Hardware Interrupt Handler” on page 8–18.

Top-Level Exception Handler

The top-level exception handler provided with the HAL system library is 
located at the Nios II processor's exception address. When an exception 
occurs and control transfers to the exception handler, it does the 
following:

1. Creates the private exception stack (if specified)

2. Stores register values onto the stack

3. Determines the type of exception, and passes control to the correct 
handler

Figure 8–1 shows the algorithm that HAL top-level exception handler 
uses to distinguish between hardware interrupts and software 
exceptions.
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Figure 8–1. HAL Top-Level Exception Handler 

The top-level exception handler looks at the estatus register to 
determine the interrupt enable status. If the EPIE bit is set, hardware 
interrupts were enabled at the time the exception happened. If so, the 
exception handler looks at the IRQ bits in ipending. If any IRQs are 
asserted, the exception handler calls the hardware interrupt handler. 

If hardware interrupts are not enabled at the time of the exception, it is not 
necessary to look at ipending.

If no IRQs are active, there is no hardware interrupt, and the exception is 
a software exception. In this case, the top-level exception handler calls the 
software exception handler. 

All hardware interrupts are higher priority than software exceptions.
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f For details on the Nios II processor estatus and ipending registers, 
see the Programming Model chapter of the Nios II Processor Reference 
Handbook.

Upon return from the hardware interrupt or software exception handler, 
the top-level exception handler does the following:

1. Restores the stack pointer, if a private exception stack is used

2. Restores the registers from the stack

3. Exits by issuing an eret (exception return) instruction

Hardware Interrupt Handler

The Nios II processor supports thirty-two hardware interrupts. In the 
HAL exception handler, hardware interrupt 0 has the highest priority, 
and 31 the lowest. This prioritization is a feature of the HAL exception 
handler, and is not inherent in the Nios II exception and interrupt 
controller.

The hardware interrupt handler calls the user-registered ISRs. It goes 
through the IRQs in ipending starting at 0, and finds the first (highest 
priority) active IRQ. Then it calls the corresponding registered ISR. After 
this ISR executes, the exception handler begins scanning the IRQs again, 
starting at IRQ0. In this way, higher priority exceptions are always 
processed before lower-priority exceptions. When all IRQs are clear, the 
hardware interrupt handler returns to the top level. Figure 8–2 shows a 
flow diagram of the HAL hardware interrupt handler. 

When the interrupt vector custom instruction is present in the Nios II 
processor, the HAL source detects it at compile time and generates code 
using the custom instruction. For further information, see “Use the 
Interrupt Vector Custom Instruction” on page 8–14.
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Figure 8–2. HAL Hardware Interrupt Handler

Software Exception Handler

Software exceptions can include unimplemented instructions, traps, and 
other exceptions.

Software exception handling depends on options selected in the Nios II 
IDE. If you have enabled unimplemented instruction emulation, the 
exception handler first checks to see if an unimplemented instruction 
caused the exception. If so, it emulates the instruction. Otherwise, it 
handles traps and other exceptions.

Unimplemented Instructions

You can include a handler to emulate unimplemented instructions. The 
Nios II processor architecture defines the following implementation-
dependent instructions:

■ mul
■ muli
■ mulxss
■ mulxsu
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■ mulxuu
■ div
■ divu

f For details on unimplemented instructions, see the Processor Architecture 
chapter of the Nios II Processor Reference Handbook.

1 Unimplemented instructions are different from invalid 
instructions, which are described in “Invalid Instructions” on 
page 8–23.

When to Use the Unimplemented Instruction Handler
You do not normally need the unimplemented instruction handler, 
because the Nios II IDE includes software emulation for unimplemented 
instructions from its run-time libraries if you are compiling for a Nios II 
processor that does not support the instructions.

Here are the circumstances under which you might need the 
unimplemented instruction handler:

■ You are running a Nios II program on an implementation of the 
Nios II processor other than the one you compiled for. The best 
solution is to build your program for the correct Nios II processor 
implementation. Only if this is not possible should you resort to the 
unimplemented instruction handler.

■ You have assembly language code that uses an implementation-
dependent instruction.

Figure 8–3 shows a flowchart of the HAL software exception handler, 
including the optional instruction emulation logic. If instruction 
emulation is not enabled, this logic is omitted.
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Figure 8–3. HAL Software Exception Handler

If unimplemented instruction emulation is disabled, but the processor 
encounters an unimplemented instruction, the exception handler treats 
resulting exception as an other exception. Other exceptions are described 
in “Other Exceptions” on page 8–22.

Using the Unimplemented Instruction Handler
The unimplemented instruction handler defines an emulation routine for 
each of the implementation-dependent instructions. In this way, the full 
Nios II instruction set is always supported, even if a particular Nios II 
core does not implement all instructions in hardware. 

Exception at
unimplemented

instruction?

Exception
at trap

instruction

Yes

enter

exit

No

Emulate
unimplemented

instruction

Optional
Unimplemented
Instruction
Logic

No

Infinite
loop

Break

Optional
trap logic

Yes



8–22  Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Exception Handler Implementation

To include the unimplemented instruction handler, turn on Emulate 
multiply and divide instructions on the System properties page of the 
Nios II IDE. The emulation routines are small (less than ¾ KBytes of 
memory), so it is usually safe to include them even when targeting a 
Nios II core that does not require them. If a Nios II core implements a 
particular instruction in hardware, its corresponding exception never 
occurs.

1 An exception routine must never execute an unimplemented 
instruction. The HAL exception handling system does not 
support nested software exceptions.

Software Trap Handling

If the cause of the software exception is not an unimplemented 
instruction, the HAL software exception handler checks for a trap 
instruction. The HAL is not designed to handle software traps. If it finds 
one, it executes a break.

If your software is compiled for release, the exception handler makes a 
distinction between traps and other exceptions. If your software is 
compiled for debug, traps and other exceptions are handled identically, 
by executing a break instruction. Figure 8–3 shows a flowchart of the 
HAL software exception handler, including the optional trap logic. If 
your software is compiled for debug, the trap logic is omitted.

In the Nios II IDE, you can select debug or release compilation in the 
Project Properties dialog box, under C/C++ Build.

Other Exceptions

If the exception is not caused by an unimplemented instruction or a trap, 
it is an other exception. In a debugging environment, the processor 
executes a break, allowing the debugger to take control. In a non-
debugging environment, the processor goes into an infinite loop.

f For details about the Nios II processor break instruction, see the 
Programming Model and Instruction Set Reference chapters of the Nios II 
Processor Reference Handbook.

Other exceptions can occur for these reasons:

■ You need to include the unimplemented instruction handler, 
discussed in “Unimplemented Instructions” on page 8–19.
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■ A peripheral is generating spurious interrupts. This is a symptom of 
a serious hardware problem. A peripheral might generate spurious 
hardware interrupts if it deasserts its interrupt output before an ISR 
has explicitly serviced it. 

Invalid Instructions

An invalid instruction word contains invalid codes in the OP or OPX 
field. For normal Nios II core implementations, the result of executing an 
invalid instruction is undefined; processor behavior is dependent on the 
Nios II core.

Therefore, the exception handler cannot detect or respond to an invalid 
instruction.

1 Invalid instructions are different from unimplemented 
instructions, which are described in “Unimplemented 
Instructions” on page 8–19.

f For more information, see the Nios II Core Implementation Details chapter 
of the Nios II Processor Reference Handbook.

HAL Exception Handler Files

The HAL exception handling code is in the following files:

■ Source files:
● alt_exception_entry.S
● alt_exception_muldiv.S
● alt_exception_trap.S
● alt_irq_entry.S
● alt_irq_handler.c
● alt_software_exception.S
● alt_irq_vars.c
● alt_irq_register.c 

■ Header files:
● alt_irq.h
● alt_irq_entry.h
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Table 8–2 shows the revision history for this document.

Table 8–2. Document Revision History

Date & Document 
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v7.2.0

No change from previous release. 
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v7.1.0

● Chapter 7 was formerly chapter 6. 
● Added table of contents to Introduction section.
● Added Referenced Documents section.
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v7.0.0

No change from previous release. 

November 2006
v6.1.0

● Describes support for the interrupt vector custom instruction. Interrupt vector custom 
instruction added.

May 2006
v6.0.0

● Corrected error in alt_irq_enable_all() usage
● Added illustrations
● Revised text on optimizing ISRs
● Expanded and revised text discussing HAL exception handler 

code structure.

October 2005
v5.1.0

● Updated references to HAL exception-handler assembly 
source files in section “HAL Exception Handler Files”.

● Added description of alt_irq_disable() and 
alt_irq_enable() in section “ISRs”.

May 2005
v5.0.0

Added tightly-coupled memory information.

December 2004
v1.2

Corrected the “Registering the Button PIO ISR with the HAL” 
example.

September 2004
v1.1

● Changed examples.
● Added ISR performance data.

May 2004
v1.0

Initial Release.
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