
Altera Corporation 8–1
October 2007

8. Exception Handling

Introduction This chapter discusses how to write programs to handle exceptions in the
Nios® II processor architecture. Emphasis is placed on how to process
hardware interrupt requests by registering a user-defined interrupt
service routine (ISR) with the hardware abstraction layer (HAL).

This chapter contains the following sections:

■ “Introduction” on page 8–1
■ “Nios II Exceptions Overview” on page 8–1

● “Exception Handling Concepts”
● “How the Hardware Works”

■ “ISRs” on page 8–3
● “HAL API for ISRs”
● “Writing an ISR”
● “Registering an ISR”
● “Enabling and Disabling ISRs”
● “C Example”

■ “ISR Performance Data” on page 8–8
■ “Improving ISR Performance” on page 8–9

● “Software Performance Improvements”
● “Hardware Performance Improvements”

■ “Debugging ISRs” on page 8–14
■ “Summary of Guidelines for Writing ISRs” on page 8–15
■ “HAL Exception Handler Implementation” on page 8–15

● “Exception Handler Structure”
● “Top-Level Exception Handler”
● “Hardware Interrupt Handler”
● “Software Exception Handler”
● “Invalid Instructions”
● “HAL Exception Handler Files”

f For low-level details of handling exceptions and interrupts on the Nios II
architecture, see the Programming Model chapter of the Nios II Processor
Reference Handbook.

Nios II
Exceptions
Overview

Nios II exception handling is implemented in classic RISC fashion, i.e., all
exception types are handled by a single exception handler. As such, all
exceptions (hardware and software) are handled by code residing at a
single location called the “exception address”.

NII52006-7.2.0

8–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Nios II Exceptions Overview

The Nios II processor provides the following exception types:

■ Hardware interrupts
■ Software exceptions, which fall into the following categories:

● Unimplemented instructions
● Software traps
● Other exceptions

Exception Handling Concepts

The following list outlines basic exception handling concepts, with the
HAL terms used for each one:

■ application context — the status of the Nios II processor and the
HAL during normal program execution, outside of the exception
handler.

■ context switch — the process of saving the Nios II processor’s
registers on an exception, and restoring them on return from the
interrupt service routine.

■ exception — any condition or signal that interrupts normal program
execution.

■ exception handler — the complete system of software routines,
which service all exceptions and pass control to ISRs as necessary.

■ exception overhead — additional processing required by exception
processing. The exception overhead for a program is the sum of all
the time occupied by all context switches.

■ hardware interrupt — an exception caused by a signal from a
hardware device.

■ implementation-dependent instruction — a Nios II processor
instruction that is not supported on all implementations of the
Nios II core. For example, the mul and div instructions are
implementation-dependent, because they are not supported on the
Nios II/e core.

■ interrupt context — the status of the Nios II processor and the HAL
when the exception handler is executing.

■ interrupt request (IRQ) — a signal from a peripheral requesting a
hardware interrupt.

■ interrupt service routine (ISR) — a software routine that handles an
individual hardware interrupt.

■ invalid instruction — an instruction that is not defined for any
implementation of the Nios II processor.

■ software exception — an exception caused by a software condition.
This includes unimplemented instructions and trap instructions.

■ unimplemented instruction — an implementation-dependent
instruction that is not supported on the particular Nios II core
implementation that is in your system. For example, in the Nios II/e
core, mul and div are unimplemented.

Altera Corporation 8–3
October 2007 Nios II Software Developer’s Handbook

Exception Handling

■ other exception — an exception which is not a hardware interrupt
nor a trap.

How the Hardware Works

The Nios II processor can respond to software exceptions and hardware
interrupts. Thirty-two independent hardware interrupt signals are
available. These interrupt signals allow software to prioritize interrupts,
although the interrupt signals themselves have no inherent priority.

When the Nios II processor responds to an exception, it does the
following things:

1. Saves the status register in estatus. This means that if hardware
interrupts are enabled, the EPIE bit of estatus is set.

2. Disables hardware interrupts.

3. Saves the next execution address in ea (r29).

4. Transfers control to the Nios II processor exception address.

1 Nios II exceptions and interrupts are not vectored. Therefore,
the same exception address receives control for all types of
interrupts and exceptions. The exception handler at that address
must determine the type of exception or interrupt.

f For details about the Nios II processor exception and interrupt controller,
see the Processor Architecture chapter of the Nios II Processor Reference
Handbook.

ISRs Software often communicates with peripheral devices using interrupts.
When a peripheral asserts its IRQ, it causes an exception to the
processor’s normal execution flow. When such an IRQ occurs, an
appropriate ISR must handle this interrupt and return the processor to its
pre-interrupt state upon completion.

When you use the Nios II IDE to create a system library project, the IDE
includes all needed ISRs. You do not need to write HAL ISRs unless you
are interfacing to a custom peripheral. For reference purposes, this section
describes the framework provided by the HAL system library for
handling hardware interrupts.

You can also look at existing handlers for Altera® SOPC Builder
components for examples of how to write HAL ISRs.

8–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

ISRs

f For more details about the Altera-provided HAL handlers, see the
Developing Programs using the HAL chapter of the Nios II Software
Developer’s Handbook.

HAL API for ISRs

The HAL system library provides an API to help ease the creation and
maintenance of ISRs. This API also applies to programs based on a real-
time operating system (RTOS) such as MicroC/OS-II, because the full
HAL API is available to RTOS-based programs. The HAL API defines the
following functions to manage hardware interrupt processing:

■ alt_irq_register()
■ alt_irq_disable()
■ alt_irq_enable()
■ alt_irq_disable_all()
■ alt_irq_enable_all()
■ alt_irq_interruptible()
■ alt_irq_non_interruptible()
■ alt_irq_enabled()

f For details on these functions, see the HAL API Reference chapter of the
Nios II Software Developer’s Handbook.

Using the HAL API to implement ISRs entails the following steps:

1. Write your ISR that handles interrupts for a specific device.

2. Your program must register the ISR with the HAL by calling the
alt_irq_register() function. alt_irq_register() enables
interrupts for you, by calling alt_irq_enable_all().

Writing an ISR

The ISR you write must match the prototype that
alt_irq_register() expects to see. The prototype for your ISR
function must match the prototype:

void isr (void* context, alt_u32 id)

The parameter definitions of context and id are the same as for the
alt_irq_register() function.

From the point of view of the HAL exception handling system, the most
important function of an ISR is to clear the associated peripheral’s
interrupt condition. The procedure for clearing an interrupt condition is
specific to the peripheral.

Altera Corporation 8–5
October 2007 Nios II Software Developer’s Handbook

Exception Handling

f For details, see the relevant chapter in the Quartus® II Handbook, Volume
5: Altera Embedded Peripherals.

When the ISR has finished servicing the interrupt, it must return to the
HAL exception handler.

1 If you write your ISR in assembly language, use ret to return.
The HAL exception handler issues an eret after restoring the
application context.

Restricted Environment

ISRs run in a restricted environment. A large number of the HAL API
calls are not available from ISRs. For example, accesses to the HAL file
system are not permitted. As a general rule, when writing your own ISR,
never include function calls that can block waiting for an interrupt.

f The HAL API Reference chapter of the Nios II Software Developer’s
Handbook identifies those API functions that are not available to ISRs.

Be careful when calling ANSI C standard library functions inside of an
ISR. Avoid using the C standard library I/O API, because calling these
functions can result in deadlock within the system, i.e., the system can
become permanently blocked within the ISR.

In particular, do not call printf() from within an ISR unless you are
certain that stdout is mapped to a non-interrupt-based device driver.
Otherwise, printf() can deadlock the system, waiting for an interrupt
that never occurs because interrupts are disabled.

Registering an ISR

Before the software can use an ISR, you must register it by calling
alt_irq_register(). The prototype for alt_irq_register() is:

int alt_irq_register (alt_u32 id,
 void* context,
 void (*isr)(void*, alt_u32));

8–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

ISRs

The prototype has the following parameters:

■ id is the hardware interrupt number for the device, as defined in
system.h. Interrupt priority corresponds inversely to the IRQ
number. Therefore, IRQ0 represents the highest priority interrupt
and IRQ31 is the lowest.

■ context is a pointer used to pass context-specific information to the
ISR, and can point to any ISR-specific information. The context value
is opaque to the HAL; it is provided entirely for the benefit of the
user-defined ISR.

■ isr is a pointer to the function that is called in response to IRQ
number id. The two input arguments provided to this function are
the context pointer and id. Registering a null pointer for isr
results in the interrupt being disabled.

The HAL registers the ISR by the storing the function pointer, isr, in a
lookup table. The return code from alt_irq_register() is zero if the
function succeeded, and nonzero if it failed.

If the HAL registers your ISR successfully, the associated Nios II interrupt
(as defined by id) is enabled on return from alt_irq_register().

1 Hardware-specific initialization might also be required.

When a specific IRQ occurs, the HAL looks up the IRQ in the lookup table
and dispatches the registered ISR.

f For details of interrupt initialization specific to your peripheral, see the
relevant chapter in the Quartus II Handbook, Volume 5: Altera Embedded
Peripherals. For details on alt_irq_register(), see the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

Enabling and Disabling ISRs

The HAL provides the functions alt_irq_disable(),
alt_irq_enable(), alt_irq_disable_all(),
alt_irq_enable_all(), and alt_irq_enabled() to allow a
program to disable interrupts for certain sections of code, and re-enable
them later. alt_irq_disable() and alt_irq_enable() allow you
to disable and enable individual interrupts. alt_irq_disable_all()
disables all interrupts, and returns a context value. To re-enable
interrupts, you call alt_irq_enable_all() and pass in the context
parameter. In this way, interrupts are returned to their state prior to the
call to alt_irq_disable_all(). alt_irq_enabled() returns non-
zero if interrupts are enabled, allowing a program to check on the status
of interrupts.

Altera Corporation 8–7
October 2007 Nios II Software Developer’s Handbook

Exception Handling

1 Disable interrupts for as short a time as possible. Maximum
interrupt latency increases with the amount of time interrupts
are disabled. For more information about disabled interrupts,
see “Keep Interrupts Enabled” on page 8–11.

f For details on these functions, see the HAL API Reference chapter of the
Nios II Software Developer’s Handbook.

C Example

The following code illustrates an ISR that services an interrupt from a
button PIO. This example is based on a Nios II system with a 4-bit PIO
peripheral connected to push-buttons. An IRQ is generated any time a
button is pushed. The ISR code reads the PIO peripheral’s edge-capture
register and stores the value to a global variable. The address of the global
variable is passed to the ISR via the context pointer.

Example: An ISR to Service a Button PIO IRQ
#include "system.h"
#include "altera_avalon_pio_regs.h"
#include "alt_types.h"

static void handle_button_interrupts(void* context, alt_u32 id)
{
/* cast the context pointer to an integer pointer. */
volatile int* edge_capture_ptr = (volatile int*) context;

/*
* Read the edge capture register on the button PIO.
* Store value.
*/
*edge_capture_ptr =
IORD_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE);

/* Write to the edge capture register to reset it. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0);

/* reset interrupt capability for the Button PIO. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);

}

The following code shows an example of the code for the main program
that registers the ISR with the HAL.

Example: Registering the Button PIO ISR with the HAL
#include "sys/alt_irq.h"
#include "system.h"

...
/* Declare a global variable to hold the edge capture value. */
volatile int edge_capture;
...

8–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

ISR Performance Data

/* Initialize the button_pio. */
static void init_button_pio()
{

/* Recast the edge_capture pointer to match the
alt_irq_register() function prototype. */

void* edge_capture_ptr = (void*) &edge_capture;

/* Enable all 4 button interrupts. */
IOWR_ALTERA_AVALON_PIO_IRQ_MASK(BUTTON_PIO_BASE, 0xf);

/* Reset the edge capture register. */
IOWR_ALTERA_AVALON_PIO_EDGE_CAP(BUTTON_PIO_BASE, 0x0);

/* Register the ISR. */
alt_irq_register(BUTTON_PIO_IRQ,

edge_capture_ptr,
handle_button_interrupts);

}

Based on this code, the following execution flow is possible:

1. Button is pressed, generating an IRQ.

2. The HAL exception handler is invoked and dispatches the
handle_button_interrupts() ISR.

3. handle_button_interrupts() services the interrupt and
returns.

4. Normal program operation continues with an updated value of
edge_capture.

f Further software examples that demonstrate implementing ISRs are
installed with the Nios II Embedded Design Suite (EDS), such as the
count_binary example project template.

ISR
Performance
Data

This section provides performance data related to ISR processing on the
Nios II processor. The following three key metrics determine ISR
performance:

■ Interrupt latency—the time from when an interrupt is first generated
to when the processor runs the first instruction at the exception
address.

■ Interrupt response time—the time from when an interrupt is first
generated to when the processor runs the first instruction in the ISR.

■ Interrupt recovery time—the time taken from the last instruction in
the ISR to return to normal processing.

Altera Corporation 8–9
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Because the Nios II processor is highly configurable, there is no single
typical number for each metric. This section provides data points for each
of the Nios II cores under the following assumptions:

■ All code and data is stored in on-chip memory.
■ The ISR code does not reside in the instruction cache.
■ The software under test is based on the Altera-provided HAL

exception handler system.
■ The code is compiled using compiler optimization level "–O3", or

high optimization.

Table 8–1 lists the interrupt latency, response time, and recovery time for
each Nios II core.

The results you experience in a specific application can vary significantly
based on several factors discussed in the next section.

Improving ISR
Performance

If your software uses interrupts extensively, the performance of ISRs is
probably the most critical determinant of your overall software
performance. This section discusses both hardware and software
strategies to improve ISR performance.

Software Performance Improvements

In improving your ISR performance, you probably consider software
changes first. However, in some cases it might require less effort to
implement hardware design changes that increase system efficiency. For
a discussion of hardware optimizations, see “Hardware Performance
Improvements” on page 8–13.

The following sections describe changes you can make in the software
design to improve ISR performance.

Table 8–1. Interrupt Performance Data (1)

Core Latency Response Time Recovery Time

Nios II/f 10 105 62

Nios II/s 10 128 130

Nios II/e 15 485 222

Note to Table 8–1:
(1) The numbers indicate time measured in CPU clock cycles.

8–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Improving ISR Performance

Move Lengthy Processing to Application Context

ISRs provide rapid, low latency response to changes in the state of
hardware. They do the minimum necessary work to clear the interrupt
condition and then return. If your ISR performs lengthy, noncritical
processing, it interferes with more critical tasks in the system.

If lengthy processing is needed, design your software to perform this
processing outside of the interrupt context. The ISR can use a message-
passing mechanism to notify the application code to perform the lengthy
processing tasks.

Deferring a task is simple in systems based on an RTOS such as
MicroC/OS-II. In this case, you can create a thread to handle the
processor-intensive operation, and the ISR can communicate with this
thread using any of the RTOS communication mechanisms, such as event
flags or message queues.

You can emulate this approach in a single-threaded HAL-based system.
The main program polls a global variable managed by the ISR to
determine whether it needs to perform the processor-intensive operation.

Move Lengthy Processes to Hardware

Processor-intensive tasks must often transfer large amounts of data to
and from peripherals. A general-purpose CPU such as the Nios II
processor is not the most efficient way to do this.

Use Direct Memory Access (DMA) hardware if it is available.

f For information about programming with DMA hardware, refer to the
Using DMA Devices section of the Developing Programs using the HAL
chapter of the Nios II Software Developer’s Handbook.

Increase Buffer Size

If you are using DMA to transfer large data buffers, the buffer size can
affect performance. Small buffers imply frequent IRQs, which lead to
high overhead.

Increase the size of the transaction data buffer(s).

Use Double Buffering

Using DMA to transfer large data buffers might not provide a large
performance increase if the Nios II processor must wait for DMA
transactions to complete before it can perform the next task.

Altera Corporation 8–11
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Double buffering allows the Nios II processor to process one data buffer
while the hardware is transferring data to or from another.

Keep Interrupts Enabled

When interrupts are disabled, the Nios II processor cannot respond
quickly to hardware events. Buffers and queues can fill or overflow. Even
in the absence of overflow, maximum interrupt processing time can
increase after interrupts are disabled, because the ISRs must process data
backlogs.

Disable interrupts as little as possible, and for the briefest time possible.

Instead of disabling all interrupts, call alt_irq_disable() and
alt_irq_enable() to enable and disable individual IRQs.

To protect shared data structures, use RTOS structures such as
semaphores.

Disable all interrupts only during critical system operations. In the code
where interrupts are disabled, perform only the bare minimum of critical
operations, and re-enable interrupts immediately.

Use Fast Memory

ISR performance depends upon memory speed.

Place the ISRs and the stack in the fastest available memory.

For best performance, place the stack in on-chip memory, preferably
tightly-coupled memory, if available.

If it is not possible to place the main stack in fast memory, you can use a
private exception stack, mapped to a fast memory section. However, the
private exception stack entails some additional context switch overhead,
so use it only if you are able to place it in significantly faster memory. You
can specify a private exception stack on the System properties page of the
Nios II IDE.

f For more information about mapping memory, see the “Memory Usage”
section of the Developing Programs using the HAL chapter of the Nios II
Software Developer’s Handbook. For more information on tightly-coupled
memory, refer to the Cache and Tightly-Coupled Memory chapter of the
Nios II Software Developer’s Handbook.

8–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Improving ISR Performance

Use Nested ISRs

The HAL system library disables interrupts when it dispatches an ISR.
This means that only one ISR can execute at any time, and ISRs are
executed on a first-come-first-served basis.This reduces the system
overhead associated with interrupt processing, and simplifies ISR
development, because the ISR does not need to be reentrant.

However, first-come first-served execution means that the HAL interrupt
priorities only have effect if two IRQs are asserted on the same
application-level instruction cycle. A low-priority interrupt occurring
before a higher-priority IRQ can prevent the higher-priority ISR from
executing. This is a form of priority inversion, and it can have a significant
impact on ISR performance in systems that generate frequent interrupts.

A software system can achieve full interrupt prioritization by using
nested ISRs. With nested ISRs, higher priority interrupts are allowed to
interrupt lower-priority ISRs.

This technique can improve the interrupt latency of higher priority ISRs.

1 Nested ISRs increase the processing time for lower priority
interrupts.

If your ISR is very short, it might not be worth the overhead to re-enable
higher-priority interrupts. Enabling nested interrupts in a short ISR can
actually increase the interrupt latency of higher priority interrupts.

1 If you use a private exception stack, you cannot nest interrupts.
For more information about private exception stacks, see “Use
Fast Memory” on page 8–11.

To implement nested interrupts, use the alt_irq_interruptible()
and alt_irq_non_interruptible() functions to bracket code
within a processor-intensive ISR. After the call to
alt_irq_interruptible(), higher priority IRQs can interrupt the
running ISR. When your ISR calls alt_irq_non_interruptible(),
interrupts are disabled as they were before
alt_irq_interruptible().

1 If your ISR calls alt_irq_interruptible(), it must call
alt_irq_non_interruptible() before returning.
Otherwise, the HAL exception handler might lock up.

Altera Corporation 8–13
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Use Compiler Optimization

For the best performance both in exception context and application
context, use compiler optimization level –O3. Level –O2 also produces
good results. Removing optimization altogether significantly increases
interrupt response time.

f For further information about compiler optimizations, refer to the
Reducing Code Footprint section in the Developing Programs using the HAL
chapter of the Nios II Software Developer’s Handbook.

Hardware Performance Improvements

There are several simple hardware changes that can provide a substantial
improvement in ISR performance. These changes involve editing and
regenerating the SOPC Builder module, and recompiling the Quartus II
design.

In some cases, these changes also require changes in the software
architecture or implementation. For a discussion of these and other
software optimizations, see “Software Performance Improvements” on
page 8–9.

The following sections describe changes you can make in the hardware
design to improve ISR performance.

Add Fast Memory

Increase the amount of fast on-chip memory available for data buffers.
Ideally, implement tightly-coupled memory which the software can use
for buffers.

f For further information about tightly-coupled memory, refer to the Cache
and Tightly-Coupled Memory chapter in the Nios II Processor Reference
Handbook, or to the Using Nios II Tightly Coupled Memory Tutorial.

Add a DMA Controller

A DMA controller performs bulk data transfers, reading data from a
source address range and writing the data to a different address range.
Add DMA controllers to move large data buffers. This allows the Nios II
processor to carry out other tasks while data buffers are being transferred.

f For information about DMA controllers, see the DMA Controller Core
chapter of the Quartus II Handbook, Volume 5: Embedded Peripherals.

8–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Debugging ISRs

Place the Exception Handler Address in Fast Memory

For the fastest execution of exception code, place the exception address in
a fast memory device. For example, an on-chip RAM with zero waitstates
is preferable to a slow SDRAM. For best performance, store exception
handling code and data in tightly-coupled memory. The Nios II EDS
includes example designs that demonstrate the use of tightly-coupled
memory for ISRs.

Use a Fast Nios II Core

For processing in both the interrupt context and the application context,
the Nios II/f core is the fastest, and the Nios II/e core (designed for small
size) is the slowest.

Select Interrupt Priorities

When selecting the IRQ for each peripheral, bear in mind that the HAL
hardware interrupt handler treats IRQ0 as the highest priority. Assign
each peripheral’s interrupt priority based on its need for fast servicing in
the overall system. Avoid assigning multiple peripherals to the same IRQ.

Use the Interrupt Vector Custom Instruction

The Nios II processor core offers an interrupt vector custom instruction
which accelerates interrupt vector dispatch in the Hardware Abstraction
Layer (HAL). You can choose to include this custom instruction to
improve your program’s interrupt response time.

When the interrupt vector custom instruction is present in the Nios II
processor, the HAL source detects it at compile time and generates code
using the custom instruction.

f For further information about the interrupt vector custom instruction,
see the Interrupt Vector Custom Instruction section in the chapter entitled
Instantiating the Nios II Processor in SOPC Builder in the Nios II Processor
Reference Handbook.

Debugging ISRs You can debug an ISR with the Nios II IDE by setting breakpoints within
the ISR. The debugger completely halts the processor upon reaching a
breakpoint. In the meantime, however, the other hardware in your system
continues to operate. Therefore, it is inevitable that other IRQs are
ignored while the processor is halted. You can use the debugger to step
through the ISR code, but the status of other interrupt-driven device

Altera Corporation 8–15
October 2007 Nios II Software Developer’s Handbook

Exception Handling

drivers is generally invalid by the time you return the processor to normal
execution. You have to reset the processor to return the system to a known
state.

The ipending register (ctl4) is masked to all zeros during single
stepping. This masking prevents the processor from servicing IRQs that
are asserted while you single-step through code. As a result, if you try to
single step through a part of the exception handler code (e.g.
alt_irq_entry() or alt_irq_handler()) that reads the ipending
register, the code does not detect any pending IRQs. This issue does not
affect debugging software exceptions. You can set breakpoints within
your ISR code (and single step through it), because the exception handler
has already used ipending to determine which IRQ caused the
exception.

Summary of
Guidelines for
Writing ISRs

This section summarizes guidelines for writing ISRs for the HAL
framework:

■ Write your ISR function to match the prototype: void isr (void*
context, alt_u32 id).

■ Register your ISR using the alt_irq_register() function
provided by the HAL API.

■ Do not use the C standard library I/O functions, such as printf(),
inside of an ISR.

HAL Exception
Handler
Implementation

This section describes the HAL exception handler implementation. This
is one of many possible implementations of an exception handler for the
Nios II processor. Some features of the HAL exception handler are
constrained by the Nios II hardware, while others are designed to provide
generally useful services.

This information is for your reference. You can take advantage of the HAL
exception services without a complete understanding of the HAL
implementation. For details of how to install ISRs using the HAL
application programming interface (API), see “ISRs” on page 8–3.

Exception Handler Structure

The exception handling system consists of the following components:

■ The top-level exception handler
■ The hardware interrupt handler
■ The software exception handler
■ An ISR for each peripheral that generates interrupts.

8–16 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Exception Handler Implementation

When the Nios II processor generates an exception, the top-level
exception handler receives control. The top-level exception handler
passes control to either the hardware interrupt handler or the software
exception handler. The hardware interrupt handler passes control to one
or more ISRs.

Each time an exception occurs, the exception handler services either a
software exception or hardware interrupts, with hardware interrupts
having a higher priority. The HAL does not support nested exceptions,
but can handle multiple hardware interrupts per context switch. For
details, see “Hardware Interrupt Handler” on page 8–18.

Top-Level Exception Handler

The top-level exception handler provided with the HAL system library is
located at the Nios II processor's exception address. When an exception
occurs and control transfers to the exception handler, it does the
following:

1. Creates the private exception stack (if specified)

2. Stores register values onto the stack

3. Determines the type of exception, and passes control to the correct
handler

Figure 8–1 shows the algorithm that HAL top-level exception handler
uses to distinguish between hardware interrupts and software
exceptions.

Altera Corporation 8–17
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Figure 8–1. HAL Top-Level Exception Handler

The top-level exception handler looks at the estatus register to
determine the interrupt enable status. If the EPIE bit is set, hardware
interrupts were enabled at the time the exception happened. If so, the
exception handler looks at the IRQ bits in ipending. If any IRQs are
asserted, the exception handler calls the hardware interrupt handler.

If hardware interrupts are not enabled at the time of the exception, it is not
necessary to look at ipending.

If no IRQs are active, there is no hardware interrupt, and the exception is
a software exception. In this case, the top-level exception handler calls the
software exception handler.

All hardware interrupts are higher priority than software exceptions.

Hardware
interrupts
enabled?

Hardware
interrupts
pending?

Handle
software exception

No

exit

enter

NoYes

Yes

Restore context

Save context

Handle
hardware interrupts

31
IS

R

IS
R

10
IS

R

8–18 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Exception Handler Implementation

f For details on the Nios II processor estatus and ipending registers,
see the Programming Model chapter of the Nios II Processor Reference
Handbook.

Upon return from the hardware interrupt or software exception handler,
the top-level exception handler does the following:

1. Restores the stack pointer, if a private exception stack is used

2. Restores the registers from the stack

3. Exits by issuing an eret (exception return) instruction

Hardware Interrupt Handler

The Nios II processor supports thirty-two hardware interrupts. In the
HAL exception handler, hardware interrupt 0 has the highest priority,
and 31 the lowest. This prioritization is a feature of the HAL exception
handler, and is not inherent in the Nios II exception and interrupt
controller.

The hardware interrupt handler calls the user-registered ISRs. It goes
through the IRQs in ipending starting at 0, and finds the first (highest
priority) active IRQ. Then it calls the corresponding registered ISR. After
this ISR executes, the exception handler begins scanning the IRQs again,
starting at IRQ0. In this way, higher priority exceptions are always
processed before lower-priority exceptions. When all IRQs are clear, the
hardware interrupt handler returns to the top level. Figure 8–2 shows a
flow diagram of the HAL hardware interrupt handler.

When the interrupt vector custom instruction is present in the Nios II
processor, the HAL source detects it at compile time and generates code
using the custom instruction. For further information, see “Use the
Interrupt Vector Custom Instruction” on page 8–14.

Altera Corporation 8–19
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Figure 8–2. HAL Hardware Interrupt Handler

Software Exception Handler

Software exceptions can include unimplemented instructions, traps, and
other exceptions.

Software exception handling depends on options selected in the Nios II
IDE. If you have enabled unimplemented instruction emulation, the
exception handler first checks to see if an unimplemented instruction
caused the exception. If so, it emulates the instruction. Otherwise, it
handles traps and other exceptions.

Unimplemented Instructions

You can include a handler to emulate unimplemented instructions. The
Nios II processor architecture defines the following implementation-
dependent instructions:

■ mul
■ muli
■ mulxss
■ mulxsu

i = O

IRQ active?

NoYes

No

exit

i = i + 1

i = = 32?

enter

call ISR i i

8–20 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Exception Handler Implementation

■ mulxuu
■ div
■ divu

f For details on unimplemented instructions, see the Processor Architecture
chapter of the Nios II Processor Reference Handbook.

1 Unimplemented instructions are different from invalid
instructions, which are described in “Invalid Instructions” on
page 8–23.

When to Use the Unimplemented Instruction Handler
You do not normally need the unimplemented instruction handler,
because the Nios II IDE includes software emulation for unimplemented
instructions from its run-time libraries if you are compiling for a Nios II
processor that does not support the instructions.

Here are the circumstances under which you might need the
unimplemented instruction handler:

■ You are running a Nios II program on an implementation of the
Nios II processor other than the one you compiled for. The best
solution is to build your program for the correct Nios II processor
implementation. Only if this is not possible should you resort to the
unimplemented instruction handler.

■ You have assembly language code that uses an implementation-
dependent instruction.

Figure 8–3 shows a flowchart of the HAL software exception handler,
including the optional instruction emulation logic. If instruction
emulation is not enabled, this logic is omitted.

Altera Corporation 8–21
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Figure 8–3. HAL Software Exception Handler

If unimplemented instruction emulation is disabled, but the processor
encounters an unimplemented instruction, the exception handler treats
resulting exception as an other exception. Other exceptions are described
in “Other Exceptions” on page 8–22.

Using the Unimplemented Instruction Handler
The unimplemented instruction handler defines an emulation routine for
each of the implementation-dependent instructions. In this way, the full
Nios II instruction set is always supported, even if a particular Nios II
core does not implement all instructions in hardware.

Exception at
unimplemented

instruction?

Exception
at trap

instruction

Yes

enter

exit

No

Emulate
unimplemented

instruction

Optional
Unimplemented
Instruction
Logic

No

Infinite
loop

Break

Optional
trap logic

Yes

8–22 Altera Corporation
Nios II Software Developer’s Handbook October 2007

HAL Exception Handler Implementation

To include the unimplemented instruction handler, turn on Emulate
multiply and divide instructions on the System properties page of the
Nios II IDE. The emulation routines are small (less than ¾ KBytes of
memory), so it is usually safe to include them even when targeting a
Nios II core that does not require them. If a Nios II core implements a
particular instruction in hardware, its corresponding exception never
occurs.

1 An exception routine must never execute an unimplemented
instruction. The HAL exception handling system does not
support nested software exceptions.

Software Trap Handling

If the cause of the software exception is not an unimplemented
instruction, the HAL software exception handler checks for a trap
instruction. The HAL is not designed to handle software traps. If it finds
one, it executes a break.

If your software is compiled for release, the exception handler makes a
distinction between traps and other exceptions. If your software is
compiled for debug, traps and other exceptions are handled identically,
by executing a break instruction. Figure 8–3 shows a flowchart of the
HAL software exception handler, including the optional trap logic. If
your software is compiled for debug, the trap logic is omitted.

In the Nios II IDE, you can select debug or release compilation in the
Project Properties dialog box, under C/C++ Build.

Other Exceptions

If the exception is not caused by an unimplemented instruction or a trap,
it is an other exception. In a debugging environment, the processor
executes a break, allowing the debugger to take control. In a non-
debugging environment, the processor goes into an infinite loop.

f For details about the Nios II processor break instruction, see the
Programming Model and Instruction Set Reference chapters of the Nios II
Processor Reference Handbook.

Other exceptions can occur for these reasons:

■ You need to include the unimplemented instruction handler,
discussed in “Unimplemented Instructions” on page 8–19.

Altera Corporation 8–23
October 2007 Nios II Software Developer’s Handbook

Exception Handling

■ A peripheral is generating spurious interrupts. This is a symptom of
a serious hardware problem. A peripheral might generate spurious
hardware interrupts if it deasserts its interrupt output before an ISR
has explicitly serviced it.

Invalid Instructions

An invalid instruction word contains invalid codes in the OP or OPX
field. For normal Nios II core implementations, the result of executing an
invalid instruction is undefined; processor behavior is dependent on the
Nios II core.

Therefore, the exception handler cannot detect or respond to an invalid
instruction.

1 Invalid instructions are different from unimplemented
instructions, which are described in “Unimplemented
Instructions” on page 8–19.

f For more information, see the Nios II Core Implementation Details chapter
of the Nios II Processor Reference Handbook.

HAL Exception Handler Files

The HAL exception handling code is in the following files:

■ Source files:
● alt_exception_entry.S
● alt_exception_muldiv.S
● alt_exception_trap.S
● alt_irq_entry.S
● alt_irq_handler.c
● alt_software_exception.S
● alt_irq_vars.c
● alt_irq_register.c

■ Header files:
● alt_irq.h
● alt_irq_entry.h

Referenced
Documents

This chapter references the following documents:

■ Programming Model chapter of the Nios II Processor Reference Handbook
■ Processor Architecture chapter of the Nios II Processor Reference

Handbook
■ Developing Programs using the HAL chapter of the Nios II Software

Developer’s Handbook

http://www.altera.com/literature/hb/nios2/n2sw_nii52004.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51003.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51002.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

8–24 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Referenced Documents

■ HAL API Reference chapter in the Nios II Software Developer’s Handbook
■ Quartus II Handbook, Volume 5: Embedded Peripherals
■ Cache and Tightly Coupled Memory chapter of the Nios II Software

Developer’s Handbook
■ Using Nios II Tightly Coupled Memory Tutorial
■ DMA Controller Core chapter of the Quartus II Handbook, Volume 5:

Embedded Peripherals
■ Instantiating the Nios II Processor in SOPC Builder chapter of the Nios II

Processor Reference Handbook
■ Instruction Set Reference chapter of the Nios II Processor Reference

Handbook
■ Nios II Core Implementation Details chapter of the Nios II Processor

Reference Handbook

http://www.altera.com/literature/hb/nios2/n2cpu_nii51015.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/tt/tt_nios2_tightly_coupled_memory_tutorial.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v3.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51004.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii5v1.pdf
http://www.altera.com/literature/hb/nios2/n2cpu_nii51017.pdf

Altera Corporation 8–25
October 2007 Nios II Software Developer’s Handbook

Exception Handling

Document
Revision History

Table 8–2 shows the revision history for this document.

Table 8–2. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

No change from previous release.

May 2007
v7.1.0

● Chapter 7 was formerly chapter 6.
● Added table of contents to Introduction section.
● Added Referenced Documents section.

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

● Describes support for the interrupt vector custom instruction. Interrupt vector custom
instruction added.

May 2006
v6.0.0

● Corrected error in alt_irq_enable_all() usage
● Added illustrations
● Revised text on optimizing ISRs
● Expanded and revised text discussing HAL exception handler

code structure.

October 2005
v5.1.0

● Updated references to HAL exception-handler assembly
source files in section “HAL Exception Handler Files”.

● Added description of alt_irq_disable() and
alt_irq_enable() in section “ISRs”.

May 2005
v5.0.0

Added tightly-coupled memory information.

December 2004
v1.2

Corrected the “Registering the Button PIO ISR with the HAL”
example.

September 2004
v1.1

● Changed examples.
● Added ISR performance data.

May 2004
v1.0

Initial Release.

8–26 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

	8. Exception Handling
	Introduction
	Nios II Exceptions Overview
	Exception Handling Concepts
	How the Hardware Works

	ISRs
	HAL API for ISRs
	Writing an ISR
	Restricted Environment

	Registering an ISR
	Enabling and Disabling ISRs
	C Example
	Example: An ISR to Service a Button PIO IRQ
	Example: Registering the Button PIO ISR with the HAL

	ISR Performance Data
	Improving ISR Performance
	Software Performance Improvements
	Move Lengthy Processing to Application Context
	Move Lengthy Processes to Hardware
	Increase Buffer Size
	Use Double Buffering
	Keep Interrupts Enabled
	Use Fast Memory
	Use Nested ISRs
	Use Compiler Optimization

	Hardware Performance Improvements
	Add Fast Memory
	Add a DMA Controller
	Place the Exception Handler Address in Fast Memory
	Use a Fast Nios II Core
	Select Interrupt Priorities
	Use the Interrupt Vector Custom Instruction

	Debugging ISRs
	Summary of Guidelines for Writing ISRs
	HAL Exception Handler Implementation
	Exception Handler Structure
	Top-Level Exception Handler
	Hardware Interrupt Handler
	Software Exception Handler
	Unimplemented Instructions
	When to Use the Unimplemented Instruction Handler
	Using the Unimplemented Instruction Handler

	Software Trap Handling
	Other Exceptions

	Invalid Instructions
	HAL Exception Handler Files

	Referenced Documents
	Document Revision History

