
Altera Corporation 6–1
October 2007

6. Developing Programs
Using the Hardware

Abstraction Layer

Introduction This chapter discusses how to develop programs for the Nios® II
processor based on the Altera® hardware abstraction layer (HAL). This
chapter contains the following sections:

■ “The Nios II Project Structure” on page 6–3
■ “The system.h System Description File” on page 6–4
■ “Data Widths and the HAL Type Definitions” on page 6–5
■ “UNIX-Style Interface” on page 6–6
■ “File System” on page 6–7
■ “Using Character-Mode Devices” on page 6–9
■ “Using File Subsystems” on page 6–11
■ “Using Timer Devices” on page 6–11
■ “Using Flash Devices” on page 6–16
■ “Using DMA Devices” on page 6–22
■ “Reducing Code Footprint” on page 6–29
■ “Boot Sequence and Entry Point” on page 6–37
■ “Memory Usage” on page 6–40
■ “Paths to HAL Files” on page 6–46

The API for HAL-based systems is readily accessible to software
developers who are new to the Nios II processor. Programs based on the
HAL use the ANSI C standard library functions and runtime
environment, and access hardware resources via the HAL API’s generic
device models. The HAL API largely conforms to the familiar ANSI C
standard library functions, though the ANSI C standard library is
separate from the HAL. The close integration of the ANSI C standard
library and the HAL makes it possible to develop useful programs that
never call the HAL functions directly. For example, you can manipulate
character mode devices and files using the ANSI C standard library I/O
functions, such as printf() and scanf().

1 This document does not cover the ANSI C standard library. An
excellent reference is The C Programming Language, Second
Edition, by Brian Kernighan and Dennis M. Ritchie (Prentice-
Hall).

NII52004-7.2.0

6–2 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Introduction

Nios II Design Flows

As described in the Overview chapter of the Nios II Software Developer’s
Handbook, the Nios II EDS offers the following two distinct design flows:

■ The Nios II IDE design flow
■ The Nios II software build tools design flow

Most of the information in this chapter applies to both design flows.
Design flow differences are noted explicitly.

1 Both design flows create board support packages (BSPs).
However, the Nios II IDE design flow refers to a BSP as a system
library.

f For more detailed information about developing programs in the Nios II
software build tools design flow, refer to the Using the Nios II Software
Build Tools chapter of the Nios II Software Developer’s Handbook.

HAL BSP Settings

Every Nios II BSP possesses settings, which determine the BSP’s
characteristics. For example, HAL BSPs have settings that determine the
hardware components associated with standard devices such as stdout.
Defining and manipulating BSP settings is an important part of Nios II
project creation.

How you manipulate BSP settings depends on which design flow you are
using. In the Nios II IDE, you manipulate BSP (system library) settings
through the System Library Properties page. With the Nios II software
build tools, you manipulate BSP settings with command line options or
Tcl scripts.

f For details of how to control BSP settings, refer to:

■ The Nios II IDE help system — for IDE-managed projects
■ The Using the Nios II Software Build Tools chapter of the Nios II Software

Developer’s Handbook — for user-managed projects.

Many HAL settings are reflected in the system.h file, which can provide
a helpful reference if you need to know details about your BSP. For
information about system.h, refer to “The system.h System Description
File” on page 6–4.

1 Do not edit system.h. Both design flows provide tools to
manipulate system settings.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–3
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

The Nios II
Project Structure

The creation and management of software projects based on the HAL is
integrated tightly with both Nios II design flows. This section discusses
the Nios II projects as a basis for understanding the HAL.

Figure 6–1 shows the blocks of a Nios II program with emphasis on how
the HAL BSP fits in. The label for each block describes what or who
generated that block, and an arrow points to each block’s dependency.

Figure 6–1. The Nios II HAL Project Structure

Every HAL-based Nios II program consists of two Nios II projects, as
shown in Figure 6–1. Your application-specific code is contained in one
project (the user application project), and it depends on a separate BSP
project (the HAL BSP).

The application project contains all the code you develop. The executable
image for your program ultimately results from building both projects.

In the Nios II IDE flow, the Nios II IDE creates the HAL BSP (system
library) project when you create your application project. In the Nios II
software build tools, you create the BSP using nios2-create-bsp or a
related tool.

The HAL BSP project contains all information needed to interface your
program to the hardware. The HAL drivers relevant to your SOPC
Builder system are built into the BSP project.

Nios II Program
Based on HAL

Also known as: Your program, or user project
Defined by: .c, .h, .s files
Created by: You

Also known as: HAL system library project

Defined by: .ptf or .sopc file

Defined by: Nios II BSP settings

Also known as: Nios II processor system, or the hardware

Created by: SOPC Builder

Created by: Nios II IDE or Nios II software build tools

Application Project

HAL BSP Project

SOPC Builder System

6–4 Altera Corporation
Nios II Software Developer’s Handbook October 2007

The system.h System Description File

The BSP project depends on the SOPC Builder system, defined by an
SOPC Builder system file (.sopc or .ptf). Both build flows can
automatically keep your BSP up to date with the SOPC Builder system.
This project dependency structure isolates your program from changes to
the underlying hardware, and you can develop and debug code without
concern about whether your program matches the target hardware.

In an IDE-managed project, the Nios II IDE manages the HAL BSP
(system library) and updates the driver configurations to accurately
reflect the system hardware. If the SOPC Builder system changes — i.e.,
the SOPC Builder system file (.ptf) is updated — the IDE rebuilds the
HAL system library the next time you build or run your application
program.

When you rebuild a user-managed project, the Nios II software build
tools can automatically update your BSP to match the hardware. You
control whether and when you allow these updates to take place.

f For details about how the software build tools keep your BSP up to date
with your hardware system, refer to the Using the Nios II Software Build
Tools chapter of the Nios II Software Developer’s Handbook.

In summary, when your program is based on a HAL BSP, you can always
keep it synchronized with the target hardware by simply rebuilding your
software.

The system.h
System
Description File

The system.h file provides a complete software description of the Nios II
system hardware. Not all information in system.h is useful to you as a
programmer, and it is rarely necessary to include it explicitly in your C
source files. Nonetheless, system.h holds the answer to the fundamental
question, “What hardware is present in this system?”

The system.h file describes each peripheral in the system and provides
the following details:

■ The hardware configuration of the peripheral
■ The base address
■ The IRQ priority (if any)
■ A symbolic name for the peripheral

Both Nios II design flows generate the system.h file for HAL BSP projects.
The contents of system.h depend on both the hardware configuration and
the HAL BSP properties.

1 Do not edit system.h. Both design flows provide tools to
manipulate system settings.

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–5
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

The code in Example 6–1 from a system.h file shows some of the
hardware configuration options it defines.

Example 6–1. Excerpts from a system.h File

/*
 * sys_clk_timer configuration
 *
 */

#define SYS_CLK_TIMER_NAME "/dev/sys_clk_timer"
#define SYS_CLK_TIMER_TYPE "altera_avalon_timer"
#define SYS_CLK_TIMER_BASE 0x00920800
#define SYS_CLK_TIMER_IRQ 0
#define SYS_CLK_TIMER_ALWAYS_RUN 0
#define SYS_CLK_TIMER_FIXED_PERIOD 0

/*
 * jtag_uart configuration
 *
 */

#define JTAG_UART_NAME "/dev/jtag_uart"
#define JTAG_UART_TYPE "altera_avalon_jtag_uart"
#define JTAG_UART_BASE 0x00920820
#define JTAG_UART_IRQ 1

Data Widths and
the HAL Type
Definitions

For embedded processors such as the Nios II processor, it is often
important to know the exact width and precision of data. Because the
ANSI C data types do not explicitly define data width, the HAL uses a set
of standard type definitions instead. The ANSI C types are supported, but
their data widths are dependent on the compiler’s convention.

The header file alt_types.h defines the HAL type definitions; Table 6–1
shows the HAL type definitions.

Table 6–1. The HAL Type Definitions

Type Meaning

alt_8 Signed 8-bit integer.

alt_u8 Unsigned 8-bit integer.

6–6 Altera Corporation
Nios II Software Developer’s Handbook October 2007

UNIX-Style Interface

Table 6–2 shows the data widths that the Altera-provided GNU tool-
chain uses.

UNIX-Style
Interface

The HAL API provides a number of UNIX-style functions. The UNIX-
style functions provide a familiar development environment for new
Nios II programmers, and can ease the task of porting existing code to run
under the HAL environment. The HAL primarily uses these functions to
provide the system interface for the ANSI C standard library. For
example, the functions perform device access required by the C library
functions defined in stdio.h.

The following list is the complete list of the available UNIX-style
functions:

■ _exit()
■ close()
■ fstat()
■ getpid()
■ gettimeofday()
■ ioctl()
■ isatty()
■ kill()
■ lseek()

alt_16 Signed 16-bit integer.

alt_u16 Unsigned 16-bit integer.

alt_32 Signed 32-bit integer.

alt_u32 Unsigned 32-bit integer.

alt_64 Signed 64-bit integer.

alt_u64 Unsigned 64-bit integer.

Table 6–2. GNU Toolchain Data Widths

Type Meaning

char 8 bits.

short 16 bits.

long 32 bits.

int 32 bits.

Table 6–1. The HAL Type Definitions

Type Meaning

Altera Corporation 6–7
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

■ open()
■ read()
■ sbrk()
■ settimeofday()
■ stat()
■ usleep()
■ wait()
■ write()

The most commonly used functions are those that relate to file I/O. See
“File System” on page 6–7.

f For details on the use of these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

File System The HAL provides infrastructure for UNIX-style file access. You can use
this infrastructure to build a file system on any storage devices available
in your hardware.

f For an example, see the Read-Only Zip File System chapter of the Nios II
Software Developer’s Handbook.

You can access files within a HAL-based file system by using either the C
standard library file I/O functions in the newlib C library (for example
fopen(), fclose(), and fread()), or using the UNIX-style file I/O
provided by the HAL.

The HAL provides the following UNIX style functions for file
manipulation:

■ close()
■ fstat()
■ ioctl()
■ isatty()
■ lseek()
■ open()
■ read()
■ stat()
■ write()

f For more information on these functions, refer to the HAL API Reference
chapter of the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–8 Altera Corporation
Nios II Software Developer’s Handbook October 2007

File System

The HAL registers a file subsystem as a mount point within the global
HAL file system. Attempts to access files below that mount point are
directed to the file subsystem. For example, if a read-only zip file
subsystem (zipfs) is mounted as /mount/zipfs0, the zipfs file subsystem
handles calls to fopen() for /mount/zipfs0/myfile.

There is no concept of a current directory. Software must access all files
using absolute paths.

The HAL file infrastructure also allows you to manipulate character
mode devices via UNIX-style path names. The HAL registers character
mode devices as nodes within the HAL file system. By convention,
system.h defines the name of a device node as the prefix /dev/ plus the
name assigned to the hardware component in SOPC builder. For
example, a UART peripheral uart1 in SOPC builder is /dev/uart1 in
system.h.

The code in Example 6–2 shows reading characters from a read-only zip
file subsystem rozipfs that is registered as a node in the HAL file system.
The standard header files stdio.h, stddef.h, and stdlib.h are
installed with the HAL.

Example 6–2. Reading Characters from a File Subsystem

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>

#define BUF_SIZE (10)

int main(void)
{

FILE* fp;
char buffer[BUF_SIZE];

fp = fopen ("/mount/rozipfs/test", "r");
if (fp == NULL)
{

 printf ("Cannot open file.\n");
 exit (1);
}

Altera Corporation 6–9
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

fread (buffer, BUF_SIZE, 1, fp);

fclose (fp);

return 0;
}

f For more information on the use of these functions, refer to the newlib C
library documentation installed with the Nios II Embedded Design Suite
(EDS). On the Windows Start menu, click Programs, Altera, Nios II
<version>, Nios II Documentation.

Using Character-
Mode Devices

A character-mode device is a hardware peripheral that sends and/or
receives characters serially. A common example is the universal
asynchronous receiver/transmitter (UART). Character mode devices are
registered as nodes within the HAL file system. In general, a program
associates a file descriptor to a device’s name, and then writes and reads
characters to or from the file using the ANSI C file operations defined in
file.h. The HAL also supports the concept of standard input, standard
output, and standard error, allowing programs to call the stdio.h I/O
functions.

Standard Input, Standard Output and Standard Error

Using standard input (stdin), standard output (stdout), and standard
error (stderr) is the easiest way to implement simple console I/O. The
HAL manages stdin, stdout, and stderr behind the scenes, which
allows you to send and receive characters through these channels without
explicitly managing file descriptors. For example, the HAL directs the
output of printf() to standard out, and perror() to standard error.
You associate each channel to a specific hardware device by manipulating
BSP settings.

The code in Example 6–3 on page 6–10 shows the classic Hello World
program. This program sends characters to whatever device is associated
with stdout when compiled in Nios II IDE.

6–10 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Character-Mode Devices

Example 6–3. Hello World

#include <stdio.h>
int main ()
{
 printf ("Hello world!");
 return 0;
}

When using the UNIX-style API, you can use the file descriptors stdin,
stdout, and stderr, defined in unistd.h, to access, respectively, the
standard in, standard out, and standard error character I/O streams.
unistd.h is installed with the Nios II EDS as part of the newlib C library
package.

General Access to Character Mode Devices

Accessing a character-mode device (besides stdin, stdout, or stderr)
is as easy as opening and writing to a file. The code in Example 6–4
demonstrates writing a message to a UART called uart1.

Example 6–4. Writing Characters to a UART

#include <stdio.h>
#include <string.h>

int main (void)
{
 char* msg = "hello world";
 FILE* fp;

 fp = fopen ("/dev/uart1", "w");
 if (fp!=NULL)
 {
 fprintf(fp, "%s",msg);
 fclose (fp);
 }
 return 0;
}

C++ Streams

HAL-based systems can use the C++ streams API for manipulating files
from C++.

Altera Corporation 6–11
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

/dev/null

All systems include the device /dev/null. Writing to /dev/null has no
effect, and all data is discarded. /dev/null is used for safe I/O redirection
during system startup. This device could also be useful for applications
that wish to sink unwanted data.

This device is purely a software construct. It does not relate to any
physical hardware device within the system.

Lightweight Character-Mode I/O

The HAL offers several methods of reducing the code footprint of
character-mode device drivers. For details, see “Reducing Code
Footprint” on page 6–29.

Using File
Subsystems

The HAL generic device model for file subsystems allows access to data
stored in an associated storage device using the C standard library file
I/O functions. For example the Altera zip read-only file system provides
read-only access to a file system stored in flash memory.

A file subsystem is responsible for managing all file I/O access beneath a
given mount point. For example, if a file subsystem is registered with the
mount point /mnt/rozipfs, all file access beneath this directory, such as
fopen("/mnt/rozipfs/myfile", "r"), is directed to that file
subsystem.

As with character mode devices, you can manipulate files within a file
subsystem using the C file I/O functions defined in file.h, such as
fopen() and fread().

f For more information on the use of these functions, refer to the newlib C
library documentation installed with the Nios II EDS. On the Windows
Start menu, click Programs, Altera, Nios II <version>, Nios II
Documentation.

Using Timer
Devices

Timer devices are hardware peripherals that count clock ticks and can
generate periodic interrupt requests. You can use a timer device to
provide a number of time-related facilities, such as the HAL system clock,
alarms, the time-of-day, and time measurement. To use the timer facilities,
the Nios II processor system must include a timer peripheral in hardware.

The HAL API provides two types of timer device drivers:

■ System clock driver. This type of driver supports alarms, such as you
would use in a scheduler.

6–12 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Timer Devices

■ Timestamp driver. This driver supports high-resolution time
measurement.

An individual timer peripheral can behave as either a system clock or a
timestamp, but not both.

f The HAL-specific API functions for accessing timer devices are defined
in sys/alt_alarm.h and sys/alt_timestamp.h.

System Clock Driver

The HAL system clock driver provides a periodic “heartbeat”, causing
the system clock to increment on each beat. Software can use the system
clock facilities to execute functions at specified times, and to obtain
timing information. You select a specific hardware timer peripheral as the
system clock device by manipulating BSP settings.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

The HAL provides implementations of the following standard UNIX
functions: gettimeofday(), settimeofday(), and times(). The
times returned by these functions are based on the HAL system clock.

The system clock measures time in units of “ticks”. For embedded
engineers who deal with both hardware and software, do not confuse the
HAL system clock with the clock signal driving the Nios II processor
hardware. The period of a HAL system clock tick is generally much
longer than the hardware system clock. system.h defines the clock tick
frequency.

At runtime, you can obtain the current value of the system clock by
calling the alt_nticks() function. This function returns the elapsed
time in system clock ticks since reset. You can get the system clock rate, in
ticks per second, by calling the function alt_ticks_per_second().
The HAL timer driver initializes the tick frequency when it creates the
instance of the system clock.

The standard UNIX function gettimeofday() is available to obtain the
current time. You must first calibrate the time of day by calling
settimeofday(). In addition, you can use the times() function to
obtain information on the number of elapsed ticks. The prototypes for
these functions appear in times.h.

f For more information on the use of these functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–13
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Alarms

You can register functions to be executed at a specified time using the
HAL alarm facility. A software program registers an alarm by calling the
function alt_alarm_start():

int alt_alarm_start (alt_alarm* alarm,
 alt_u32 nticks,
 alt_u32 (*callback) (void* context),
 void* context);

The function callback() is called after nticks have elapsed. The
input argument context is passed as the input argument to
callback() when the call occurs. The HAL does not use the context
parameter. It is only used as a parameter to the callback() function.

Your code must allocate the alt_alarm structure, pointed to by the
input argument alarm. This data structure must have a lifetime that is at
least as long as that of the alarm. The best way to allocate this structure is
to declare it as a static or global.alt_alarm_start() initializes
*alarm.

The callback function can reset the alarm. The return value of the
registered callback function is the number of ticks until the next call to
callback. A return value of zero indicates that the alarm should be
stopped. You can manually cancel an alarm by calling
alt_alarm_stop().

One alarm is created for each call to alt_alarm_start(). Multiple
alarms can be running simultaneously

Alarm callback functions execute in an interrupt context. This imposes
functional restrictions which you must observe when writing an alarm
callback.

f For more information on the use of these functions, refer to the Exception
Handling chapter of the Nios II Software Developer’s Handbook.

The code fragment in Example 6–5 demonstrates registering an alarm for
a periodic callback every second.

Example 6–5. Using a Periodic Alarm Callback Function

#include <stddef.h>
#include <stdio.h>
#include "sys/alt_alarm.h"
#include "alt_types.h"

http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–14 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Timer Devices

/*
 * The callback function.
 */

alt_u32 my_alarm_callback (void* context)
{
 /* This function will be called once/second */
 return alt_ticks_per_second();
}

...

/* The alt_alarm must persist for the duration of the alarm. */
static alt_alarm alarm;

...

 if (alt_alarm_start (&alarm,
 alt_ticks_per_second(),
 my_alarm_callback,
 NULL) < 0)
 {
 printf ("No system clock available\n");
 }

Timestamp Driver

Sometimes you want to measure time intervals with a degree of accuracy
greater than that provided by HAL system clock ticks. The HAL provides
high resolution timing functions using a timestamp driver. A timestamp
driver provides a monotonically increasing counter that you can sample
to obtain timing information. The HAL only supports one timestamp
driver in the system.

You specify a hardware timer peripheral as the timestamp device by
manipulating BSP settings. The Altera-provided timestamp driver uses
the timer that you specify.

If a timestamp driver is present, the following functions are available:

■ alt_timestamp_start()
■ alt_timestamp()

Altera Corporation 6–15
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Calling alt_timestamp_start() starts the counter running.
Subsequent calls to alt_timestamp() return the current value of the
timestamp counter. Calling alt_timestamp_start() again resets the
counter to zero. The behavior of the timestamp driver is undefined when
the counter reaches (232 – 1).

You can obtain the rate at which the timestamp counter increments by
calling the function alt_timestamp_freq(). This rate is typically the
hardware frequency that the Nios II processor system runs at—usually
millions of cycles per second. The timestamp drivers are defined in the
alt_timestamp.h header file.

f For more information on the use of these functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

The code fragment in Example 6–6 shows how you can use the timestamp
facility to measure code execution time.

Example 6–6. Using the Timestamp to Measure Code Execution Time

#include <stdio.h>
#include "sys/alt_timestamp.h"
#include "alt_types.h"

int main (void)
{
 alt_u32 time1;
 alt_u32 time2;
 alt_u32 time3;

 if (alt_timestamp_start() < 0)
 {
 printf ("No timestamp device available\n");
 }
 else
 {
 time1 = alt_timestamp();
 func1(); /* first function to monitor */
 time2 = alt_timestamp();
 func2(); /* second function to monitor */
 time3 = alt_timestamp();

 printf ("time in func1 = %u ticks\n",
(unsigned int) (time2 – time1));

 printf ("time in func2 = %u ticks\n",
(unsigned int) (time3 – time2));

 printf ("Number of ticks per second = %u\n",
(unsigned int)alt_timestamp_freq());

}

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–16 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Flash Devices

 return 0;
}

Using Flash
Devices

The HAL provides a generic device model for nonvolatile flash memory
devices. Flash memories use special programming protocols to store data.
The HAL API provides functions to write data to flash. For example, you
can use these functions to implement a flash-based file subsystem.

The HAL API also provides functions to read flash, although it is
generally not necessary. For most flash devices, programs can treat the
flash memory space as simple memory when reading, and do not need to
call special HAL API functions. If the flash device has a special protocol
for reading data, such as the Altera EPCS serial configuration device, you
must use the HAL API to both read and write data.

This section describes the HAL API for the flash device model. The
following two APIs provide a different level of access to the flash:

■ Simple flash access—functions that write buffers into flash and read
them back at the block level. In writing, if the buffer is less than a full
block, these functions erase pre-existing flash data above and below
the newly written data.

■ Fine-grained flash access—functions that write buffers into flash and
read them back at the buffer level. In writing, if the buffer is less than
a full block, these functions preserve pre-existing flash data above
and below the newly written data. This functionality is generally
required for managing a file subsystem.

The API functions for accessing flash devices are defined in
sys/alt_flash.h.

f For more information on the use of these functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook. For details
of the Common Flash Interface, including the organization of CFI erase
regions and blocks, see the JEDEC web site at www.jedec.org. You can
find the CFI standard by searching for document JESD68.

Simple Flash Access

This interface consists of the functions alt_flash_open_dev(),
alt_write_flash(), alt_read_flash(), and
alt_flash_close_dev(). The code “Using the Simple Flash API
Functions” on page 6–17 shows the usage of all of these functions in one
code example. You open a flash device by calling

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–17
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

alt_flash_open_dev(), which returns a file handle to a flash device.
This function takes a single argument that is the name of the flash device,
as defined in system.h.

Once you have obtained a handle, you can use the alt_write_flash()
function to write data to the flash device. The prototype is:

int alt_write_flash(alt_flash_fd* fd,
int offset,
const void* src_addr,
int length)

A call to this function writes to the flash device identified by the handle
fd. The driver writes the data starting at offset bytes from the base of
the flash device. The data written comes from the address pointed to by
src_addr, the amount of data written is length.

There is also an alt_read_flash() function to read data from the flash
device. The prototype is:

int alt_read_flash(alt_flash_fd* fd,
int offset,
void* dest_addr,
int length)

A call to alt_read_flash() reads from the flash device with the handle
fd, offset bytes from the beginning of the flash device. The function
writes the data to location pointed to by dest_addr, and the amount of
data read is length. For most flash devices, you can access the contents
as standard memory, making it unnecessary to use alt_read_flash().

The function alt_flash_close_dev() takes a file handle and closes the
device. The prototype for this function is:

void alt_flash_close_dev(alt_flash_fd* fd)

The code in Example 6–7 shows the usage of simple flash API functions
to access a flash device named /dev/ext_flash, as defined in system.h.

Example 6–7. Using the Simple Flash API Functions

#include <stdio.h>
#include <string.h>
#include "sys/alt_flash.h"
#define BUF_SIZE 1024

int main ()
{

6–18 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Flash Devices

alt_flash_fd* fd;
int ret_code;
char source[BUF_SIZE];
char dest[BUF_SIZE];

/* Initialize the source buffer to all 0xAA */
memset(source, 0xAA, BUF_SIZE);

fd = alt_flash_open_dev("/dev/ext_flash");
if (fd!=NULL)
{
ret_code = alt_write_flash(fd, 0, source, BUF_SIZE);
if (ret_code==0)
{

ret_code = alt_read_flash(fd, 0, dest, BUF_SIZE);
if (ret_code==0)
{

/*
* Success.
* At this point, the flash is all 0xAA and we
* should have read that all back into dest
*/

}
}
alt_flash_close_dev(fd);

}
else
{
printf("Can’t open flash device\n");

}
return 0;

}

Altera Corporation 6–19
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Block Erasure or Corruption

Generally, flash memory is divided into blocks. alt_write_flash()
might need to erase the contents of a block before it can write data to it.
In this case, it makes no attempt to preserve the existing contents of a

block. This action can lead to unexpected data corruption (erasure), if you
are performing writes that do not fall on block boundaries. If you wish to
preserve existing flash memory contents, use the fine-grained flash
functions. See “Fine-Grained Flash Access” on page 6–20.

Table 6–3 shows how you can cause unexpected data corruption by
writing using the simple flash-access functions. Table 6–3 shows the
example of an 8 Kbyte flash memory comprising two 4 Kbyte blocks. First
write 5 Kbytes of all 0xAA into flash memory at address 0x0000, and
then write 2 Kbytes of all 0xBB to address 0x1400. After the first write
succeeds (at time t(2)), the flash memory contains 5 Kbyte of 0xAA, and
the rest is empty (i.e., 0xFF). Then the second write begins, but before
writing into the second block, the block is erased. At this point, t(3), the
flash contains 4 Kbyte of 0xAA and 4 Kbyte of 0xFF. After the second
write finishes, at time t(4), the 2 Kbyte of 0xFF at address 0x1000 is
corrupted.

Table 6–3. Example of Writing Flash and Causing Unexpected Data Corruption

Address Block

Time t(0) Time t(1) Time t(2) Time t(3) Time t(4)

Before First
Write

First Write Second Write

After Erasing
Block(s)

After Writing
Data 1

After Erasing
Block(s)

After Writing
Data 2

0x0000 1 ?? FF AA AA AA

0x0400 1 ?? FF AA AA AA

0x0800 1 ?? FF AA AA AA

0x0C00 1 ?? FF AA AA AA

0x1000 2 ?? FF AA FF FF (1)

0x1400 2 ?? FF FF FF BB

0x1800 2 ?? FF FF FF BB

0x1C00 2 ?? FF FF FF FF

Notes to Table 6–3:
(1) Unintentionally cleared to FF during erasure for second write.

6–20 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using Flash Devices

Fine-Grained Flash Access

There are three additional functions that provide complete control over
writing flash contents at the highest granularity:
alt_get_flash_info(), alt_erase_flash_block(), and
alt_write_flash_block().

By the nature of flash memory, you cannot erase a single address within
a block. You must erase (i.e., set to all ones) an entire block at a time.
Writing to flash memory can only change bits from 1 to 0; to change any
bit from 0 to 1, you must erase the entire block along with it.

Therefore, to alter a specific location within a block while leaving the
surrounding contents unchanged, you must read out the entire contents
of the block to a buffer, alter the value(s) in the buffer, erase the flash
block, and finally write the whole block-sized buffer back to flash
memory. The fine-grained flash access functions automate this process at
the flash block level.

alt_get_flash_info() gets the number of erase regions, the number
of erase blocks within each region, and the size of each erase block. The
prototype is:

int alt_get_flash_info(alt_flash_fd* fd,
 flash_region** info,
 int* number_of_regions)

If the call is successful, upon return the address pointed to by
number_of_regions contains the number of erase regions in the flash
memory, and *info points to an array of flash_region structures.
This array is part of the file descriptor.

The flash_region structure is defined in sys/alt_flash_types.h, and
the typedef is:

typedef struct flash_region
{
 int offset; /* Offset of this region from start of the flash */
 int region_size; /* Size of this erase region */
 int number_of_blocks; /* Number of blocks in this region */
 int block_size; /* Size of each block in this erase region */
}flash_region;

With the information obtained by calling alt_get_flash_info(), you
are in a position to erase or program individual blocks of the flash.

alt_erase_flash() erases a single block in the flash memory. The
prototype is:

Altera Corporation 6–21
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

int alt_erase_flash_block(alt_flash_fd* fd,
 int offset,

 int length)

The flash memory is identified by the handle fd. The block is identified
as being offset bytes from the beginning of the flash memory, and the
block size is passed in length.

alt_write_flash_block()writes to a single block in the flash
memory. The prototype is:

int alt_write_flash_block(alt_flash_fd* fd,
 int block_offset,
 int data_offset,
 const void *data,
 int length)

This function writes to the flash memory identified by the handle fd. It
writes to the block located block_offset bytes from the start of the
flash. The function writes length bytes of data from the location pointed
to by data to the location data_offset bytes from the start of the flash
device.

1 These program and erase functions do not perform address
checking, and do not verify whether a write operation spans into
the next block. You must pass in valid information about the
blocks to program or erase.

The code in Example 6–8 on page 6–21 demonstrates the usage of the fine-
grained flash access functions.

Example 6–8. Using the Fine-Grained Flash Access API Functions

#include <string.h>
#include "sys/alt_flash.h"
#include "stdtypes.h"
#include "system.h"
#define BUF_SIZE 100

int main (void)
{
 flash_region* regions;
 alt_flash_fd* fd;
 int number_of_regions;
 int ret_code;
 char write_data[BUF_SIZE];

 /* Set write_data to all 0xa */
 memset(write_data, 0xA, BUF_SIZE);

6–22 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using DMA Devices

 fd = alt_flash_open_dev(EXT_FLASH_NAME);

 if (fd)
 {
 ret_code = alt_get_flash_info(fd, ®ions, &number_of_regions);

 if (number_of_regions && (regions->offset == 0))
 {
 /* Erase the first block */
 ret_code = alt_erase_flash_block(fd,

regions->offset,
 regions->block_size);
 if (ret_code == 0)
 {

/*
* Write BUF_SIZE bytes from write_data 100 bytes into
* the first block of the flash
*/

 ret_code = alt_write_flash_block (
fd,
regions->offset,
regions->offset+0x100,
write_data,
BUF_SIZE);

 }
 }
 }

return 0;
}

Using DMA
Devices

The HAL provides a device abstraction model for direct memory access
(DMA) devices. These are peripherals that perform bulk data transactions
from a data source to a destination. Sources and destinations can be
memory or another device, such as an Ethernet connection.

In the HAL DMA device model, DMA transactions fall into one of two
categories: transmit or receive. As a result, the HAL provides two device
drivers to implement transmit channels and receive channels. A transmit
channel takes data in a source buffer and transmits it to a destination
device. A receive channel receives data from a device and deposits it into
a destination buffer. Depending on the implementation of the underlying
hardware, software might have access to only one of these two endpoints.

Figure 6–2 shows the three basic types of DMA transactions. Copying
data from memory to memory involves both receive and transmit DMA
channels simultaneously.

Altera Corporation 6–23
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Figure 6–2. Three Basic Types of DMA Transactions

The API for access to DMA devices is defined in sys/alt_dma.h.

f For more information on the use of these functions, refer to the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

DMA devices operate on the contents of physical memory, therefore
when reading and writing data you must consider cache interactions.

f For more information on cache memory, refer to the Cache and Tightly-
Coupled Memory chapter of the Nios II Software Developer’s Handbook.

DMA Transmit Channels

DMA transmit requests are queued up using a DMA transmit device
handle. To obtained a handle, use the function
alt_dma_txchan_open(). This function takes a single argument, the
name of a device to use, as defined in system.h.

The code in Example 6–9 on page 6–24 shows how to obtain a handle for
a DMA transmit device dma_0.

1. Receiving Data
 from a Peripheral

DMA
Recieve
Channel

Peripheral Memory

 2. Transmitting Data
 to a Peripheral

DMA
Receive
Channel

Peripheral

DMA
Transmit
Channel

DMA
Receive
Channel

DMA
Transmit
Channel

3. Transferring Data
 from Memory to
 Memory

Memory

MemoryMemory

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–24 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using DMA Devices

Example 6–9. Obtaining a File Handle for a DMA Device

#include <stddef.h>
#include "sys/alt_dma.h"

int main (void)
{
 alt_dma_txchan tx;

 tx = alt_dma_txchan_open ("/dev/dma_0");
 if (tx == NULL)
 {
 /* Error */
 }
 else
 {
 /* Success */
 }
 return 0;
}

You can use this handle to post a transmit request using
alt_dma_txchan_send(). The prototype is:

typedef void (alt_txchan_done)(void* handle);

int alt_dma_txchan_send (alt_dma_txchan dma,
 const void* from,
 alt_u32 length,
 alt_txchan_done* done,
 void* handle);

Calling alt_dma_txchan_send() posts a transmit request to channel
dma. Argument length specifies the number of bytes of data to transmit,
and argument from specifies the source address. The function returns
before the full DMA transaction completes. The return value indicates
whether the request is successfully queued. A negative return value
indicates that the request failed. When the transaction completes, the
user-supplied function done is called with argument handle to provide
notification.

Two additional functions are provided for manipulating DMA transmit
channels: alt_dma_txchan_space(), and
alt_dma_txchan_ioctl(). The alt_dma_txchan_space()
function returns the number of additional transmit requests that can be
queued to the device. The alt_dma_txchan_ioctl()function
performs device-specific manipulation of the transmit device.

Altera Corporation 6–25
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

1 If you are using the Altera Avalon-MM DMA device to transmit
to hardware (not memory-to-memory transfer), call the
alt_dma_txchan_ioctl()function with the request
argument set to ALT_DMA_TX_ONLY_ON.

f For further information, refer to “alt_dma_txchan_ioctl()” in
the HAL API Reference chapter of the Nios II Software
Developer’s Handbook.

DMA Receive Channels

DMA receive channels operate in a similar manner to DMA transmit
channels. Software can obtain a handle for a DMA receive channel using
the alt_dma_rxchan_open() function. You can then use the
alt_dma_rxchan_prepare() function to post receive requests. The
prototype for alt_dma_rxchan_prepare() is:

typedef void (alt_rxchan_done)(void* handle, void* data);

int alt_dma_rxchan_prepare (alt_dma_rxchan dma,
 void* data,
 alt_u32 length,
 alt_rxchan_done* done,
 void* handle);

A call to this function posts a receive request to channel dma, for up to
length bytes of data to be placed at address data. This function returns
before the DMA transaction completes. The return value indicates
whether the request is successfully queued. A negative return value
indicates that the request failed. When the transaction completes, the
user-supplied function done() is called with argument handle to
provide notification and a pointer to the receive data.

Certain errors can prevent the DMA transfer from completing. Typically
this is caused by a catastrophic hardware failure; for example, if a
component involved in the transfer fails to respond to a read or write
request. If the DMA transfer does not complete (i.e., less than length
bytes are transferred), function done() is never called.

Two additional functions are provided for manipulating DMA receive
channels: alt_dma_rxchan_depth() and
alt_dma_rxchan_ioctl().

1 If you are using the Altera Avalon-MM DMA device to receive
from hardware, (not memory-to-memory transfer), call the
alt_dma_rxchan_ioctl() function with the request
argument set to ALT_DMA_RX_ONLY_ON.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–26 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using DMA Devices

alt_dma_rxchan_depth() returns the maximum number of receive
requests that can be queued to the device. alt_dma_rxchan_ioctl()
performs device-specific manipulation of the receive device.

f For further details, see the HAL API Reference chapter of the Nios II
Software Developer’s Handbook.

The code in Example 6–10 shows a complete example application that
posts a DMA receive request, and blocks in main() until the transaction
completes.

Example 6–10. A DMA Transaction on a Receive Channel

#include <stdio.h>
#include <stddef.h>
#include <stdlib.h>
#include "sys/alt_dma.h"
#include "alt_types.h"

/* flag used to indicate the transaction is complete */
volatile int dma_complete = 0;

/* function that is called when the transaction completes */
void dma_done (void* handle, void* data)
{
 dma_complete = 1;
}

int main (void)
{
 alt_u8 buffer[1024];
 alt_dma_rxchan rx;

 /* Obtain a handle for the device */
 if ((rx = alt_dma_rxchan_open ("/dev/dma_0")) == NULL)
 {
 printf ("Error: failed to open device\n");
 exit (1);
 }
 else
 {
 /* Post the receive request */
 if (alt_dma_rxchan_prepare (rx, buffer, 1024, dma_done, NULL) < 0)
 {
 printf ("Error: failed to post receive request\n");
 exit (1);
 }

 /* Wait for the transaction to complete */
 while (!dma_complete);

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–27
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

 printf ("Transaction complete\n");
 alt_dma_rxchan_close (rx);
 }
 return 0;
}

Memory-to-Memory DMA Transactions

Copying data from one memory buffer to another buffer involves both
receive and transmit DMA drivers. The code in Example 6–11 shows the
process of queuing up a receive request followed by a transmit request to
achieve a memory-to-memory DMA transaction.

Example 6–11. Copying Data from Memory to Memory

#include <stdio.h>
#include <stdlib.h>

#include "sys/alt_dma.h"
#include "system.h"

static volatile int rx_done = 0;

/*
 * Callback function that obtains notification that the data has
 * been received.
 */

static void done (void* handle, void* data)
{
 rx_done++;
}

/*
 *
 */

int main (int argc, char* argv[], char* envp[])
{
 int rc;

 alt_dma_txchan txchan;
 alt_dma_rxchan rxchan;

void* tx_data = (void*) 0x901000; /* pointer to data to send */
 void* rx_buffer = (void*) 0x902000; /* pointer to rx buffer */

 /* Create the transmit channel */

6–28 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Using DMA Devices

 if ((txchan = alt_dma_txchan_open("/dev/dma_0")) == NULL)

{
 printf ("Failed to open transmit channel\n");
 exit (1);
 }

 /* Create the receive channel */

 if ((rxchan = alt_dma_rxchan_open("/dev/dma_0")) == NULL)
 {
 printf ("Failed to open receive channel\n");
 exit (1);
 }

 /* Post the transmit request */

 if ((rc = alt_dma_txchan_send (txchan,

 tx_data,
128,
NULL,
NULL)) < 0)

 {
 printf ("Failed to post transmit request, reason = %i\n", rc);
 exit (1);
 }

 /* Post the receive request */

 if ((rc = alt_dma_rxchan_prepare (rxchan,

rx_buffer,
128,
done,
NULL)) < 0)

 {
 printf ("Failed to post read request, reason = %i\n", rc);

exit (1);
 }

 /* wait for transfer to complete */

 while (!rx_done);

 printf ("Transfer successful!\n");

 return 0;
}

Altera Corporation 6–29
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Reducing Code
Footprint

Code size is always of concern for system developers, because there is a
cost associated with the memory device that stores code. The ability to
control and reduce code size is important in controlling this cost.

The HAL environment is designed to include only those features that you
request, minimizing the total code footprint. If your Nios II hardware
system contains exactly the peripherals used by your program, the HAL
contains only the drivers necessary to control the hardware, and nothing
more.

The following sections describe options to consider when you need to
further reduce code size. The hello_world_small example project
demonstrates the use of some of these options to reduce code size to the
absolute minimum.

Enable Compiler Optimizations

To enable compiler optimizations, use the -O3 compiler optimization
level for the nios2-elf-gcc compiler. You can specify this command-
line option in the project properties; for details, refer to the Nios II IDE
help system. Alternatively, you can specify the -O3 option on the
command line. With this option turned on, the Nios II IDE compiles code
with the maximum optimization available, for both size and speed. You
must set this option for both the BSP (system library) and the application
project.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Use Reduced Device Drivers

Some devices provide two driver variants, a “fast” variant and a “small”
variant. Which features are provided by these two variants is device
specific. The “fast” variant is full-featured, while the “small” variant
provides a reduced code footprint.

By default the HAL always uses the fast driver variants. You can choose
the small footprint drivers by turning on the Reduced device drivers
option for your HAL BSP (system library) in the Nios II IDE.
Alternatively, on the command line, you can use the preprocessor option
–DALT_USE_SMALL_DRIVERS when building the HAL BSP (system
library).

In a user-managed software project, you can select the reduced device
driver for an individual component.

6–30 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Reducing Code Footprint

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Table 6–4 lists the Altera Nios II peripherals that currently provide small
footprint drivers. The small footprint option might also affect other
peripherals. Refer to each peripheral’s data sheet for complete details of
its driver’s small footprint behavior.

Reduce the File Descriptor Pool

The file descriptors that access character mode devices and files are
allocated from a file descriptor pool. Software can control the size of this
pool with the Max file descriptors system library property in the Nios II
IDE. Alternatively, on the GNU command line, use the compile time
constant ALT_MAX_FD. The default is 32.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Use /dev/null

At boot time, standard input, standard output and standard error are all
directed towards the null device, i.e., /dev/null. This direction ensures
that calls to printf() during driver initialization do nothing and
therefore are harmless. Once all drivers have been installed, these streams
are then redirected towards the channels configured in the HAL. The
footprint of the code that performs this redirection is small, but you can
eliminate it entirely by selecting null for stdin, stdout, and stderr.
This selection assumes that you want to discard all data transmitted on
standard out or standard error, and your program never receives input
via stdin. You can control the assignment of stdin, stdout, and
stderr channels by manipulating BSP settings.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Table 6–4. Altera Peripherals Offering Small Footprint Drivers

Peripheral Small Footprint Behavior

UART Polled operation, rather than IRQ-driven.

JTAG UART Polled operation, rather than IRQ-driven.

Common flash interface controller Driver is excluded in small footprint mode.

LCD module controller Driver is excluded in small footprint mode

EPCS serial configuration device Driver is excluded in small footprint mode

Altera Corporation 6–31
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Use a Smaller File I/O Library

Use the Small newlib C Library

The full newlib ANSI C standard library is often unnecessary for
embedded systems. The GNU Compiler Collection (GCC) provides a
reduced implementation of the newlib ANSI C standard library, omitting
features of newlib that are often superfluous for embedded systems. The
small newlib implementation requires a smaller code footprint. You can
control the newlib implementation as a system library property in the
Nios II IDE. When you use nios2-elf-gcc in command line mode, the
-msmallc command-line option enables the small C library.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Table 6–5 summarizes the limitations of the Nios II small newlib C library
implementation.

Table 6–5. Limitations of the Nios II Small newlib C Library (Part 1 of 2)

Limitation Functions Affected

No floating-point support for printf() family of routines. The functions listed
are implemented, but %f and %g options are not supported. (1)

asprintf()
fiprintf()
fprintf()
iprintf()
printf()
siprintf()
snprintf()
sprintf()

No floating-point support for vprintf() family of routines. The functions listed
are implemented, but %f and %g options are not supported.

vasprintf()
vfiprintf()
vfprintf()
vprintf()
vsnprintf()
vsprintf()

No support for scanf() family of routines. The functions listed are not
supported.

fscanf()
scanf()
sscanf()
vfscanf()
vscanf()
vsscanf()

No support for seeking. The functions listed are not supported. fseek()
ftell()

6–32 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Reducing Code Footprint

1 The small newlib C library does not support MicroC/OS II.

f For details of the GCC small newlib C library, refer to the newlib
documentation installed with the Nios II EDS. On the Windows Start
menu, click Programs, Altera, Nios II <version>, Nios II
Documentation.

1 The Nios II implementation of the small newlib C library differs
somewhat from GCC. Table 6–5 provides details of the
differences.

No support for opening/closing FILE *. Only pre-opened stdout, stderr,
and stdin are available. The functions listed are not supported.

fopen()
fclose()
fdopen()
fcloseall()
fileno()

No buffering of stdio.h output routines. functions supported with no
buffering:

fiprintf()
fputc()
fputs()
perror()
putc()
putchar()
puts()
printf()

functions not supported:
setbuf()
setvbuf()

No stdio.h input routines. The functions listed are not supported. fgetc()
gets()
fscanf()
getc()
getchar()
gets()
getw()
scanf()

No support for locale. setlocale()
localeconv()

No support for C++, because the above functions are not supported.

Notes to Table 6–5:
(1) These functions are a Nios II extension. GCC does not implement them in the small newlib C library.

Table 6–5. Limitations of the Nios II Small newlib C Library (Part 2 of 2)

Limitation Functions Affected

Altera Corporation 6–33
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Use UNIX-Style File I/O

If you need to reduce the code footprint further, you can omit the newlib
C library, and use the UNIX-style API. See “UNIX-Style Interface” on
page 6–6.

The Nios II EDS provides ANSI C file I/O, in the newlib C library,
because there is a per-access performance overhead associated with
accessing devices and files using the UNIX-style file I/O functions. The
ANSI C file I/O provides buffered access, thereby reducing the total
number of hardware I/O accesses performed. Also the ANSI C API is
more flexible and therefore easier to use. However, these benefits are
gained at the expense of code footprint.

Emulate ANSI C Functions

If you choose to omit the full implementation of newlib, but you need a
limited number of ANSI-style functions, you can implement them easily
using UNIX-style functions. The code in Example 6–12 shows a simple,
unbuffered implementation of getchar().

Example 6–12. Unbuffered getchar()

/* getchar: unbuffered single character input */
int getchar (void)
{

char c;
return (read (0, &c, 1) == 1) ? (unsigned char) c : EOF;

}

f This example is from The C Programming Language, Second Edition, by
Brian W. Kernighan and Dennis M. Ritchie. This standard textbook
contains many other useful functions.

Use the Lightweight Device Driver API

The lightweight device driver API allows you to minimize the overhead
of accessing device drivers. It has no direct effect on the size of the drivers
themselves, but lets you eliminate driver API features which you might
not need, reducing the overall size of the HAL code.

The lightweight device driver API is available for character-mode
devices. The following device drivers support the lightweight device
driver API:

6–34 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Reducing Code Footprint

■ JTAG UART
■ UART
■ Optrex 16207 LCD

For these devices, the lightweight device driver API conserves code space
by eliminating the dynamic file descriptor table and replacing it with
three static file descriptors, corresponding to stdin, stdout and
stderr. Library functions related to opening, closing and manipulating
file descriptors are unavailable, but all other library functionality is
available. You can refer to stdin, stdout and stderr as you would to
any other file descriptor. You can also refer to the following predefined
file numbers:

#define STDIN 0
#define STDOUT 1
#define STDERR 2

This option is appropriate if your program has a limited need for file I/O.
The Altera Host Based File System and the Altera Zip Read-only File
System are not available with the reduced device driver API.

You can turn on the Lightweight device driver API system library
property in the Nios II IDE.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Alternatively, on the command line, you can use the preprocessor option
-DALT_USE_DIRECT_DRIVERS when building the HAL BSP. By default,
the lightweight device driver API is disabled.

f For further details about the lightweight device driver API, see the
Developing Device Drivers for the HAL chapter of the Nios II Software
Developer’s Handbook.

Use the Minimal Character-Mode API

If you can limit your use of character-mode I/O to very simple features,
you can reduce code footprint by using the minimal character-mode API.
This API includes the following functions:

■ alt_printf()
■ alt_putchar()
■ alt_putstr()
■ alt_getchar()

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–35
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

These functions are appropriate if your program only needs to accept
command strings and send simple text messages. Some of them are
helpful only in conjunction with the lightweight device driver API,
discussed in “Use the Lightweight Device Driver API” on page 6–33.

To use the minimal character-mode API, include the header file
sys/alt_stdio.h.

The following sections outline the effects of the functions on code
footprint.

alt_printf()

This function is similar to printf(), but supports only the %c, %s, %x
and %% substitution strings. alt_printf() takes up substantially less
code space than printf(), regardless whether you select the
lightweight device driver API. alt_printf() occupies less than 1Kbyte
with compiler optimization level -O2.

alt_putchar()

Equivalent to putchar(). In conjunction with the lightweight device
driver API, this function further reduces code footprint. In the absence of
the lightweight API, it calls putchar().

alt_putstr()

Similar to puts(), except that it does not append a newline character to
the string. In conjunction with the lightweight device driver API, this
function further reduces code footprint. In the absence of the lightweight
API, it calls puts().

alt_getchar()

Equivalent to getchar(). In conjunction with the lightweight device
driver API, this function further reduces code footprint. In the absence of
the lightweight API, it calls getchar().

f For further details on the minimal character-mode functions, refer to the
HAL API Reference chapter of the Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

6–36 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Reducing Code Footprint

Eliminate Unused Device Drivers

If a hardware device is present in the system, by default the Nios II design
flows assume the device needs drivers, and configure the HAL BSP
accordingly. If the HAL can find an appropriate driver, it creates an
instance of this driver. If your program never actually accesses the device,
resources are being used unnecessarily to initialize the device driver.

If the hardware includes a device that your program never uses, consider
removing the device from the hardware. This reduces both code footprint
and FPGA resource usage.

However, there are cases when a device must be present, but runtime
software does not require a driver. The most common example is flash
memory. The user program might boot from flash, but not use it at
runtime; thus, it does not need a flash driver.

In the Nios II IDE, you can prevent the HAL from including the flash
driver by defining the ALT_EXCLUDE_CFI_FLASH preprocessor option
in the properties for the BSP (system library) project. Alternatively, you
can specify the –DALT_EXCLUDE_CFI_FLASH option to the preprocessor
on the command line.

In a user-managed project, you can selectively omit any individual driver,
select a specific driver version, or substitute your own driver.

f For further information on controlling driver configurations, refer to the
Using the Nios II Software Build Tools chapter of the Nios II Software
Developer’s Handbook.

Another way to control the device driver initialization process is by using
the free-standing environment. See “Boot Sequence and Entry Point” on
page 6–37.

Eliminate Unneeded Exit Code

The HAL calls the exit() function at system shutdown to provide a
clean exit from the program. exit() flushes all of the C library internal
I/O buffers and calls any C++ functions registered with atexit(). In
particular, exit() is called upon return from main(). Two HAL options
allow you to minimize or eliminate this exit code.

Eliminate Clean Exit

To avoid the overhead associated with providing a clean exit, your
program can use the function _exit() in place of exit(). This function
does not require you to change source code. You can control exit behavior

http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–37
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

through the Clean exit (flush buffers) system library property in the
Nios II IDE. Alternatively, on the command line, you can specify the
preprocessor option -Dexit=_exit.

Eliminate All Exit Code

Many embedded systems never exit at all. In such cases, exit code is
unnecessary.

You can configure the HAL to omit all exit code (exit() and _exit())
from the BSP by turning on Program never exits in the system library
properties in the Nios II IDE. Alternatively, on the command line, you can
use the preprocessor option -DALT_NO_EXIT when building the HAL
BSP (system library).

1 If you enable this option, make sure your main() function (or
alt_main() function) does not return.

Turn off C++ Support

By default, the HAL provides support for C++ programs, including
default constructors and destructors. You can omit this support code by
turning off the Support C++ system library property in the Nios II IDE.
Alternatively, on the command line, you can use the preprocessor option
-DALT_NO_C_PLUS_PLUS when building the HAL BSP (system
library).

Boot Sequence
and Entry Point

Normally, your program’s entry point is the function main(). There is an
alternate entry point, alt_main(), that you can use to gain greater
control of the boot sequence. The difference between entering at main()
and entering at alt_main() is the difference between hosted and free-
standing applications.

Hosted vs. Free-Standing Applications

The ANSI C standard defines a hosted application as one that calls
main() to begin execution. At the start of main(), a hosted application
presumes the runtime environment and all system services are initialized
and ready to use. This is true in the HAL environment. If you are new to
Nios II programming, the HAL’s hosted environment helps you come up
to speed more easily, because you don’t have to consider what devices
exist in the system or how to initialize each one. The HAL initializes the
whole system.

6–38 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Boot Sequence and Entry Point

The ANSI C standard also provides for an alternate entry point that
avoids automatic initialization, and assumes that the Nios II programmer
manually initializes any needed hardware. The alt_main() function
provides a free-standing environment, giving you complete control over
the initialization of the system. The free-standing environment places
upon the programmer the burden of manually initializing any system
feature used in the program. For example, calls to printf() do not
function correctly in the free-standing environment, unless alt_main()
first instantiates a character-mode device driver, and redirects stdout to
the device.

1 Using the freestanding environment increases the complexity of
writing Nios II programs, because you assume responsibility for
initializing the system. If your main interest is to reduce code
footprint, you should use the suggestions described in
“Reducing Code Footprint” on page 6–29. It is easier to reduce
the HAL BSP footprint by using BSP settings, than to use the
freestanding mode.

The Nios II EDS provides examples of both free-standing and hosted
programs.

f For more information, refer to the Nios II IDE help system.

Boot Sequence for HAL-Based Programs

The HAL provides system initialization code in the C runtime library
(crt0.S). This code performs the following boot sequence:

■ Flushes the instruction and data cache
■ Configures the stack pointer
■ Configures the global pointer register
■ Zero initializes the BSS region using the linker supplied symbols

__bss_start and __bss_end. These are pointers to the beginning
and the end of the BSS region

■ If there is no boot loader present in the system, copies to RAM any
linker section whose run address is in RAM, such as.rwdata,
.rodata, and .exceptions. See “Global Pointer Register” on
page 6–44.

■ Calls alt_main()

The HAL provides a default implementation of the alt_main()
function, which performs the following steps:

■ Calls ALT_OS_INIT() to perform any necessary operating system
specific initialization. For a system that does not include an OS
scheduler, this macro has no effect.

Altera Corporation 6–39
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

■ If you are using the HAL with an operating system, initializes the
alt_fd_list_lock semaphore, which controls access to the HAL
file systems.

■ Initializes the interrupt controller, and enable interrupts.
■ Calls the alt_sys_init() function, which initializes all device

drivers and software components in the system. The Nios II design
flow creates the file alt_sys_init.c for each HAL BSP.

■ Redirects the C standard I/O channels (stdin, stdout, and
stderr) to use the appropriate devices.

■ Calls the C++ constructors, using the _do_ctors() function.
■ Registers the C++ destructors to be called at system shutdown.
■ Calls main().
■ Calls exit(), passing the return code of main() as the input

argument for exit().

alt_main.c, installed with the Nios II EDS, provides this default
implementation. In an IDE-managed project, you can find it in <Nios II
EDS install path>/components/altera_hal/HAL/src. For user-managed
projects, the software build tools copy alt_main.c into your BSP directory.

Customizing the Boot Sequence

You can provide your own implementation of the start-up sequence by
simply defining alt_main() in your Nios II project. This gives you
complete control of the boot sequence, and gives you the power to
selectively enable HAL services. If your application requires an
alt_main() entry point, you can copy the default implementation as a
starting point and customize it to your needs.

Function alt_main() calls function main(). After main() returns, the
default alt_main() enters an infinite loop. Alternatively, your custom
alt_main() might terminate by calling exit(). Do not use a return
statement.

The prototype for alt_main() is:

void alt_main (void)

The HAL build environment includes mechanisms to override default
HAL BSP code. This lets you override boot loaders, as well as default
device drivers and other system code, with your own implementation.

In the IDE-managed build flow, all source and header files are located
using a search path. The build system always searches the BSP (system
library) project’s paths first. You can override any HAL source file,

6–40 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Memory Usage

including alt_sys_init.c, by placing your own implementation in your
system project directory. Your custom file is used in place of the auto-
generated version.

In the user-managed build flow, alt_sys_init.c is a generated file, which
you should not modify. However, the Nios II software build tools enable
you to control the generated contents of alt_sys_init.c. To specify the
initialization sequence in alt_sys_init.c, you manipulate the
auto_initialize and alt_sys_init_priority properties of each
driver, using the set_sw_property Tcl command.

f For more information about generated files in user-managed projects,
and how to control the contents of alt_sys_init.c, refer to the Using the
Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook. For general information about alt_sys_init.c, refer to the
Developing Device Drivers for the HAL chapter of the Nios II Software
Developer’s Handbook. For details about the set_sw_property Tcl
command, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

Memory Usage This section describes the way that the HAL uses memory and how the
HAL arranges code, data, stack, and other logical memory sections, in
physical memory.

Memory Sections

By default, HAL-based systems are linked using an automatically-
generated linker script that is created and managed by the Nios II IDE.
This linker script controls the mapping of code and data within the
available memory sections. The auto-generated linker script creates
standard code and data sections (.text, .rodata, .rwdata, and .bss), plus a
section for each physical memory device in the system. For example, if
there is a memory component named sdram defined in the system.h file,
there is a memory section named .sdram. Figure 6–3 on page 6–41 shows
the organization of a typical HAL link map.

The memory devices that contain the Nios II processor’s reset and
exception addresses are a special case. The Nios II tools construct the 32-
byte .entry section starting at the reset address. This section is reserved
exclusively for the use of the reset handler. Similarly, the tools construct a
.exceptions section, starting at the exception address.

In a memory device containing the reset or exception address, the linker
creates a normal (non-reserved) memory section above the .entry or
.exceptions section. If there is a region of memory below the .entry

http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–41
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

or .exceptions section, it is unavailable to the Nios II software.
Figure 6–3 on page 6–41 illustrates an unavailable memory region below
the .exceptions section.

Figure 6–3. Sample HAL Link Map

ext_flash

sdram

ext_ram

epcs_controller

HAL Memory
Sections

Physical
Memory

.entry

.ext_flash

(unused)

.exceptions

.text

.rodata

.rwdata

.bss

.sdram

.ext_ram

.epcs_controller

6–42 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Memory Usage

Assigning Code and Data to Memory Partitions

This section describes how to control the placement of program code and
data in specific memory sections. In general, the Nios II design flow
automatically specifies a sensible default partitioning. However, you
might wish to change the partitioning in special situations.

For example, to enhance performance, it is a common technique to place
performance-critical code and data in RAM with fast access time. It is also
common during the debug phase to reset (i.e., boot) the processor from a
location in RAM, but then boot from flash memory in the released version
of the software. In these cases, you have to specify manually which code
belongs in which section.

Simple Placement Options

The reset handler code is always placed at the base of the .reset
partition. The exception handler code is always the first code within the
section that contains the exception address. By default, the remaining
code and data are divided into the following output sections:

■ .text—all remaining code
■ .rodata—the read-only data
■ .rwdata—read-write data,
■ .bss—zero-initialized data

You can control the placement of .text, .rodata, .rwdata, and all
other memory partitions by manipulating BSP settings.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

For more information, in the Nios II IDE help system, search for the
“System Library Properties” topic.

Advanced Placement Options

Within your program source code, you can specify a target memory
section for each piece of code. In C or C++, you can use the section
attribute. This attribute must be placed in a function prototype; you
cannot place it in the function declaration itself. The code in Example 6–13
shows placing a variable foo within the memory named ext_ram, and
the function bar() in the memory named sdram.

Altera Corporation 6–43
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Example 6–13. Manually Assigning C Code to a Specific Memory Section

/* data should be initialized when using the section attribute */
int foo __attribute__ ((section (".ext_ram.rwdata"))) = 0;

void bar (void) __attribute__ ((section (".sdram.txt")));

void bar (void)
{
 foo++;
}

In assembly you do this using the .section directive. For example, all
code after the following line is placed in the memory device named
ext_ram:

.section .ext_ram.txt

1 The section names ext_ram and sdram are examples. You need
to use section names corresponding to your hardware. When
creating section names, use the following extensions:

● .txt for code: for example, .sdram.txt
● .rodata for read-only data: for example,

.cfi_flash.rodata
● .rwdata for read-write data: for example, .ext_ram.rwdata

f For details of the usage of these features, refer to the GNU compiler and
assembler documentation. This documentation is installed with the
Nios II EDS. To find it, open the Nios II Literature page, scroll down to
Software Development, and click Using the GNU Compiler Collection
(GCC).

Placement of the Heap and Stack

By default, the heap and stack are placed in the same memory partition
as the .rwdata section. The stack grows downwards (toward lower
addresses) from the end of the section. The heap grows upwards from the
last used memory within the .rwdata section. You can control the
placement of the heap and stack by manipulating BSP settings.

6–44 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Memory Usage

By default, the HAL performs no stack or heap checking. This makes
function calls and memory allocation faster, but it means that malloc()
(in C) and new (in C++) are unable to detect heap exhaustion. You can
enable run-time stack checking by manipulating BSP settings. With stack
checking on, malloc() and new() can detect heap exhaustion.

To specify the heap size limit, set the preprocessor symbol
ALT_MAX_HEAP_BYTES to the maximum heap size in decimal. For
example, the preprocessor argument
-DALT_MAX_HEAP_SIZE=1048576 sets the heap size limit to 0x100000.
You can specify this command-line option in the system library
properties; for details, refer to the Nios II IDE help system. Alternatively,
you can specify the option on the command line.

Stack checking has performance costs. If you choose to leave stack
checking turned off, you must code your program so as to ensure that it
operates within the limits of available heap and stack memory.

f See the Nios II IDE help system for details of selecting stack and heap
placement, and setting up stack checking.

For details of how to control BSP settings, see “HAL BSP Settings” on
page 6–2.

Global Pointer Register

The global pointer register enables fast access to global data structures in
Nios II programs. The Nios II compiler implements the global pointer,
and determines which data structures to access with it. You do not need
to do anything unless you want to change the default compiler behavior.

The global pointer register can access a single contiguous region of 64K
bytes. To avoid overflowing this region, the compiler only uses the global
pointer with small global data structures. A data structure is considered
“small” if its size is less than a specified threshold. By default, this
threshold is eight bytes.

The “small” data structures are allocated to the small global data sections,
.sdata, .sdata2, .sbss, and .sbss2. The small global data sections
are subsections of the .rwdata and .bss sections. They are located
together, as shown in Figure 6–4 on page 6–45, to enable the global
pointer to access them.

Altera Corporation 6–45
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Figure 6–4. Small Global Data sections

If the total size of the small global data structures happens to be more than
64K bytes, they overflow the global pointer region. The linker produces
an error message saying "Unable to reach <variable name> ...
from the global pointer ... because the offset ... is
out of the allowed range, -32678 to 32767."

You can fix this with the -G compiler option. This option sets the
threshold size. For example, -G 4 restricts global pointer usage to data
structures four bytes long or smaller. Reducing the global pointer
threshold reduces the size of the small global data sections.

RAM

.rwdata

.bss.sbss2

.sbss

.sdata2

.sdata

6–46 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Paths to HAL Files

The -G option’s numeric argument is in decimal. You can specify this
compiler option in the project properties; for details, refer to the Nios II
IDE help system. Alternatively, you can specify the option on the
command line. You must set this option to the same value for both the
BSP and the application project.

Boot Modes

The processor’s boot memory is the memory that contains the reset
vector. This device might be an external flash or an Altera EPCS serial
configuration device, or it might be an on-chip RAM. Regardless of the
nature of the boot memory, HAL-based systems are constructed so that all
program and data sections are initially stored within it. The HAL
provides a small boot loader program which copies these sections to their
run time locations at boot time. You can specify run time locations for
program and data memory by manipulating BSP settings.

If the runtime location of the .text section is outside of the boot memory,
the Altera flash programmer places a boot loader at the reset address,
which is responsible for loading all program and data sections before the
call to _start. When booting from an EPCS device, this loader function
is provided by the hardware.

However, if the runtime location of the .text section is in the boot
memory, the system does not need a separate loader. Instead the _reset
entry point within the HAL executable is called directly. The function
_reset initializes the instruction cache and then calls _start. This
initialization sequence lets you develop applications that boot and
execute directly from flash memory.

When running in this mode, the HAL executable must take responsibility
for loading any sections that require loading to RAM. The .rwdata,
.rodata, and .exceptions sections are loaded before the call to
alt_main(), as required. This loading is performed by the function
alt_load(). To load any additional sections, use the
alt_load_section() function.

f For more information, refer to “alt_load_section()” in the HAL API
Reference chapter of the Nios II Software Developer’s Handbook.

Paths to HAL
Files

You might wish to view files in the HAL, especially header files, for
reference. This section describes how to find HAL source files.

http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–47
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

IDE-Managed Projects

In the IDE-managed build flow, HAL source files (and other BSP files) are
referred to by path names. Do not edit HAL files in IDE-managed
projects.

Finding HAL Files

HAL source files are in several directories because of the custom nature
of Nios II systems. Each Nios II system can include different peripherals,
and therefore the HAL BSP for each system is different. You can find
HAL-related files in the following locations:

■ The <Nios II EDS install path>/components directory contains most
HAL source files.

■ <Nios II EDS install path>/components/altera_hal/HAL/inc/sys
contains header files defining the HAL generic device models. In a
#include directive, reference these files relative to <Nios II EDS
install path>/components/altera_hal/HAL/inc/. For example, to
include the DMA drivers, use #include sys/alt_dma.h

■ Each Nios II IDE system project directory contains the system.h file
generated for that BSP (system library).

■ <Nios II EDS install path>/bin contains the newlib ANSI C library
header files.

■ The Altera design suite includes HAL drivers for SOPC Builder
components distributed with the Quartus® II Complete Design Suite.
For example, if the Altera design suite is installed in c:\altera\72,
you can find the drivers under c:\altera\72\ip\sopc_builder_ip.

Overriding HAL Functions

To provide your own implementation of a HAL function, include the file
in your Nios II IDE system project. When building the executable, Nios II
IDE finds your function, and uses it in place of the HAL version.

User-Managed Projects

In the user-managed build flow, HAL source files (and other BSP files) are
copied into the BSP directory. You are free to modify copied HAL source
files.

Finding HAL Files

You determine the location of HAL source files when you create the BSP.

f For details, refer to the Nios II Software Build Tools Reference chapter of the
Nios II Software Developer’s Handbook.

http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf

6–48 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Referenced Documents

Overriding HAL Functions

HAL source files are copied into your BSP directory when you create your
BSP. You can freely modify copied files, without losing your changes
when you update your BSP.

f For more information, refer to “Generated and Copied Files” in the Using
the Nios II Software Build Tools chapter of the Nios II Software Developer’s
Handbook.

Referenced
Documents

This chapter references the following documents:

■ Overview chapter of the Nios II Software Developer’s Handbook
■ Using the Nios II Software Build Tools chapter of the Nios II Software

Developer’s Handbook
■ Developing Device Drivers for the HAL chapter of the Nios II Software

Developer’s Handbook
■ Exception Handling chapter of the Nios II Software Developer’s

Handbook
■ Cache and Tightly-Coupled Memory chapter of the Nios II Software

Developer’s Handbook
■ HAL API Reference chapter of the Nios II Software Developer’s Handbook
■ Nios II Software Build Tools Reference chapter of the Nios II Software

Developer’s Handbook
■ Read-Only Zip File System chapter of the Nios II Software Developer’s

Handbook
■ The C Programming Language, Second Edition, by Brian Kernighan and

Dennis M. Ritchie (Prentice-Hall)
■ GNU documentation on the Nios II Literature page installed with the

Nios II EDS.

http://www.altera.com/literature/hb/nios2/n2sw_nii52001.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52005.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52006.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52007.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52010.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52012.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52016.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii52015.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf
http://www.altera.com/literature/hb/nios2/n2sw_nii5v2.pdf

Altera Corporation 6–49
October 2007 Nios II Software Developer’s Handbook

Developing Programs Using the Hardware Abstraction Layer

Document
Revision History

Table 6–6 shows the revision history for this document.

Table 6–6. Document Revision History

Date & Document
Version Changes Made Summary of Changes

October 2007
v7.2.0

● Added documentation for HAL program development with the
Nios II software build tools.

● Additional documentation of alarms functions
● Correct alt_erase_flash_block() example

—

May 2007
v7.1.0

● Added table of contents to Introduction section.
● Added Referenced Documents section.

—

March 2007
v7.0.0

No change from previous release.

November 2006
v6.1.0

● Program never exits system library option
● Support C++ system library option
● Lightweight device driver API system library option
● Minimal character-mode API

May 2006
v6.0.0

● Revised text on instruction emulation.
● Added section on global pointers.

October 2005
v5.1.0

● Added alt_64 and alt_u64 types to Table 6–1.
● Made changes to section “Placement of the Heap and Stack”.

May 2005
v5.0.0

Added alt_load_section() function information.

December 2004
v1.2

● Added boot modes information.
● Amended compiler optimizations.
● Updated Reducing Code Footprint section.

September 2004
v1.1

Corrected DMA receive channels example code.

May 2004
v1.0

Initial Release.

6–50 Altera Corporation
Nios II Software Developer’s Handbook October 2007

Document Revision History

	6. Developing Programs Using the Hardware Abstraction Layer
	Introduction
	Nios II Design Flows
	HAL BSP Settings

	The Nios II Project Structure
	The system.h System Description File
	Data Widths and the HAL Type Definitions
	UNIX-Style Interface
	File System
	Using Character- Mode Devices
	Standard Input, Standard Output and Standard Error
	General Access to Character Mode Devices
	C++ Streams
	/dev/null
	Lightweight Character-Mode I/O

	Using File Subsystems
	Using Timer Devices
	System Clock Driver
	Alarms
	Timestamp Driver

	Using Flash Devices
	Simple Flash Access
	Block Erasure or Corruption
	Fine-Grained Flash Access

	Using DMA Devices
	DMA Transmit Channels
	DMA Receive Channels
	Memory-to-Memory DMA Transactions

	Reducing Code Footprint
	Enable Compiler Optimizations
	Use Reduced Device Drivers
	Reduce the File Descriptor Pool
	Use /dev/null
	Use a Smaller File I/O Library
	Use the Small newlib C Library
	Use UNIX-Style File I/O
	Emulate ANSI C Functions

	Use the Lightweight Device Driver API
	Use the Minimal Character-Mode API
	alt_printf()
	alt_putchar()
	alt_putstr()
	alt_getchar()

	Eliminate Unused Device Drivers
	Eliminate Unneeded Exit Code
	Eliminate Clean Exit
	Eliminate All Exit Code

	Turn off C++ Support

	Boot Sequence and Entry Point
	Hosted vs. Free-Standing Applications
	Boot Sequence for HAL-Based Programs
	Customizing the Boot Sequence

	Memory Usage
	Memory Sections
	Assigning Code and Data to Memory Partitions
	Simple Placement Options
	Advanced Placement Options

	Placement of the Heap and Stack
	Global Pointer Register
	Boot Modes

	Paths to HAL Files
	IDE-Managed Projects
	Finding HAL Files
	Overriding HAL Functions

	User-Managed Projects
	Finding HAL Files
	Overriding HAL Functions

	Referenced Documents
	Document Revision History

