
C/C++ keyword: asm
Syntax
asm("instruction");

The asm command allows you to insert assembly language commands directly into your code. The __asm__ keyword is

recognized and is equivalent to the asm token. Extended syntax is supported to indicate how assembly operands map to C/C++

variables.

Example
asm("fsinx %1,%0" : "=f"(x) : "f"(a));

// Map the output operand on "x",

// and the input operand on "a".

C/C++ keyword: volatile
The volatile keyword is an implementation-dependent type qualifier, used when declaring variables, which prevents the compiler

from optimizing those variables. Volatile should be used with variables whose value can change in unexpected ways (i.e.

through an interrupt), which could conflict with optimizations that the compiler might perform.

C/C++ Language Reference

54 TR0173 (v4.0) April 6, 2009

Processor specific keyword: __asm() (Nios II)

Syntax
 __asm("instruction_template"
 [: output_param_list
 [: input_param_list
 [: register_save_list]]]);

With the __asm() keyword you can use assembly instructions in the C source and pass C variables as operands to the
assembly code.

instruction_template
Assembly instructions that may contain parameters from the input list or
output list in the form: %parm_nr

%parm_nr[.regnum]
Parameter number in the range 0 .. 9.
With the optional .regnum you can access an individual register from a register pair.
For example, with the word register R12, .0 selects register R1.

output_param_list [["=[&]constraint_char"(C_expression)],...]

input_param_list [["constraint_char"(C_expression)],...]

& Says that an output operand is written to before the inputs are read,
so this output must not be the same register as any input.

constraint _char Constraint character: the type of register to be used for the C_expression.

C_expression
Any C expression. For output parameters it must be an lvalue, that is,
something that is legal to have on the left side of an assignment.

register_save_list [["register_name"],...]

register_name:q Name of the register you want to reserve.

Constraint Type Operand Remark

R
general purpose register
(64 bits)

r0 .. r31
Based on the specified register, a register pair
is formed (64-bit). For example r0:r1.

r
general purpose register
(32 bits)

r0 .. r31

i immediate value #value

l label label

m memory label variable stack or memory operand, a fixed address

number other operand same as %number

Input constraint only. The number must refer to an output
parameter. Indicates that %number and number are the same
register.
Use %number.0 and %number.1 to indicate the first and second
half of a register pair when used in combination with R.

