
An O(n
1
2+ε)-Space and Polynomial-Time Algorithm for Directed Planar Reachability

Tatsuya Imai∗, Kotaro Nakagawa∗, A. Pavan†, N. V. Vinodchandran‡, Osamu Watanabe∗

∗ Dept. of Math. and Computer Science, Tokyo Institute of Technology
{imai7,nakagaw1,watanabe}@is.titech.ac.jp

†Dept. of Computer Science, Iowa State University, pavan@cs.iastate.edu
‡Dept. of Computer Science and Engineering, University of Nebraska-Lincoln, vinod@cse.unl.edu

Abstract—We show that the reachability problem over di-
rected planar graphs can be solved simultaneously in polynomial
time and approximately O(

√
n) space. In contrast, the best

space bound known for the reachability problem on general
directed graphs with polynomial running time is O(n/2

√
logn).

Keywords-reachability, directed planar graph, sublinear
space, polynomial time

I. INTRODUCTION

The graph reachability problem is to decide, for a given
graph G and its two vertices s and t, whether there is a
path from s to t in G. This problem is central to space
bounded computations. Different versions of this problem
characterize several important space complexity classes. The
most standard one for directed graphs, the directed graph
reachability problem, is the canonical complete problem for
non-deterministic log-space (NL). The breakthrough result
of Reingold implies that the undirected graph reachability
problem characterizes the complexity of deterministic log-
space (L) [Rei08]. It is also known that certain restricted
promise versions of the directed reachability problem char-
acterize randomized log-space computations (RL) [RTV06].
Thus progress in understanding the space complexity of
graph reachability problems directly relates to progress in
space complexity studies. We refer the readers to a (two
decades old, but excellent) survey by Wigderson [Wig92]
and a recent update by Allender [All07], to further under-
stand the significance of reachability problems in complexity
theory. Clearly, designing efficient deterministic algorithms
for reachability problems is a major concern of complexity
theory.

The standard breadth first search algorithm (denoted as
BFS throughout this paper) and Savitch’s algorithm are two
of the most fundamental algorithms known for solving di-
rected graph reachability. BFS can be implemented in linear
time and space. Savitch’s algorithm only takes O(log2 n)
space but requires Θ(nlogn) time. BFS is efficient in time
but not in space and Savitch’s algorithm is efficient in
space but takes super-polynomial time. Hence a natural
and significant question that researchers have considered
is whether we can design an algorithm for the directed

graph reachability problem that is efficient in both time
and space. In particular, can we design a polynomial-time
algorithm for the directed graph reachability problem that
uses only O(n1−ε) space for some small constant ε? The
best known result in this direction is the two decades old
bound due to Barnes, Buss, Ruzzo, and Schieber [BBRS92].
By cleverly combining BFS and Savitch’s algorithm, Barnes
et al. designed a polynomial-time algorithm for reachability
that uses O(n/2

√
logn) space. Note that the space bound that

Barnes et al. establish is only slightly sublinear. Improving
this bound remains a significant open question. There are
indications that it may be difficult to improve this bound
because there are matching lower bounds known for solv-
ing reachability on certain restricted model of computation
known as NNJAG [CR80], [Poo93], [EPA99]. All the known
algorithms for the general reachability problem can be
implemented in NNJAG without significant blow up in time
and space.

However, for certain restricted classes of directed graphs
better results are known. For example, in [SV12] it is shown
that for any ε, the reachability problem for directed acyclic
graphs with O(n1−ε) sources and embedded on surfaces
with O(n1−ε) genus can be solved in polynomial time and
O(n1−ε) space. For reachability (in fact for the shortest path
problem) on grid graphs Asano and Doerr [AD11] gave a
polynomial-time algorithm that takes only O(n

1
2+ε) space.

Asano and Doerr left open the question whether for planar
graphs such a bound can be achieved. Note that even though
directed planar reachability reduces to directed reachability
in grid graphs [ABC+09], the reduction blows up the size of
the graph by a polynomial factor and hence it is not useful
in this setting.

In this paper we present a polynomial-time reachability al-
gorithm for directed planar graphs that achieves O(n1/2+ε)-
space bound. We prove the following theorem.

Theorem 1. For any constant 0 < ε < 1/2, there is an
algorithm that, given a directed planar graph G and two
vertices s and t, decides whether there is a path from s to
t. This algorithm runs in time nO(1/ε) and uses O(n1/2+ε)
space, where n is the number of vertices of G.

For proving the above theorem we first give a polynomial-

time and Õ(
√
n)-space algorithm for computing a “sepa-

rator” of O(
√
n) size for an undirected planar graph (By

Õ(s(n)) we mean O(s(n)(log n)O(1))). This result may be
of independent interest and we state that here as a theorem.

Theorem 2. There is an algorithm that takes an undirected
planar graph G with n vertices as input and outputs a (8/9)-
separator of G. This algorithm runs in polynomial time and
uses Õ(

√
n) space.

We call the above algorithm Separator. Our reachability
algorithm uses algorithm Separator. It is important to note
that though our reachability algorithm works on a directed
planar graph, for constructing the separator we work on the
underlying undirected graph. For a given directed planar
graph G, the reachability algorithm first applies Separator
to its underlying undirected graph and computes a small
size “separator family” S — a set of vertices, removal
of which splits G into several disconnected subgraphs of
smaller size. The crucial observation is that any path in
G from one component to another has to go through S.
Based on this, we construct a new directed graph H on S.
There is a directed edge (a, b) in H if there is a path from
a to b that goes through a single component. This can be
decided by solving reachability on a smaller planar graph.
This implies that reachability in G reduces to reachability
in H . Since H is a smaller graph we can afford to perform
BFS on H . This leads to a polynomial-time, O(n2/3)-space
algorithm. To obtain the required n1/2+ε-space bound we
apply this idea recursively. By ensuring that the depth of
recursion is a constant, we can ensure that the running time
of the algorithm remains polynomial1. The idea of applying
separator algorithms for solving path problems in planar
graphs is well explored, especially in the context of time
complexity (see for example [Fre87], [HKRS97]).

The well-known planar separator algorithm due to Lipton
and Tarjan [LT79] runs in linear time, but requires linear
space. This is because a crucial step in their algorithm is
a BFS tree computation of the input graph. Computing a
BFS tree of a graph (directed or undirected) is as difficult
as the directed graph reachability problem. Our algorithm
to construct a separator is based on ideas from the parallel
planar separator algorithm of Gazit and Miller [GM87].
This algorithm, instead of constructing a single BFS tree,
constructs a collection of smaller BFS trees. They introduced
this approach for parallel computation, but it is also useful
for designing a space efficient algorithm. We design our al-
gorithm by combining this approach with ideas from [LT79],
[KM07], [Mil86], [Kle93].

The rest of the paper is organized as follows. In the next
section we introduce basic definitions and notation that we
use. In Section III, we present the algorithm for reachability.

1We note that this approach also leads to a space efficient algorithm for
computing shortest paths in planar graphs.

In Section IV we present our algorithm for computing a
separator for a given undirected planar graph.

II. PRELIMINARIES

We will use the standard notions and notation for algo-
rithms, complexity measures, and graphs without defining
them. Throughout this paper, for any set X , |X| denotes
the number of elements in X . By log we mean the base 2
logarithm.

Although we are given a directed graph for the reacha-
bility problem, we often consider its underlying undirected
graph as an input to some procedures. Thus, while G =
(V,E) is usually used to denote an input graph, it can be
either an directed or an undirected graph; their distinction
should be clear from the context. When necessary, for a
directed graph G, by G we mean its underlying undirected
graph. We use n to denote the number of vertices of an
input graph G; on the other hand, we sometimes use n̂ to
denote the number of vertices of a graph Ĝ considered in
each context. For any U ⊆ V , let G(U) (resp., G(U)) denote
the subgraph of G (resp., G) induced by U .

For discussing the complexity of algorithms, we follow
the standard computation model. In particular, for discussing
sublinear space complexity, we consider a computation
model in which an input is present on some read-only
outside memory, an output is produced on some write-
only outside memory, and only internal memory space is
sublinearly bounded.

Our algorithms heavily depend on the O(log n) space
(and polynomial time) algorithm of Reingold [Rei08] for
the undirected graph reachability problem. We denote this
algorithm by UReach. Also as shown by Allender and
Mahajan [AM04], we have some O(log n)-space algorithm
that tests whether a given undirected graph is planar and
produces (if it is planar) its combinatorial planar embedding
(i.e., the order of edges adjacent to each vertex in some
planar embedding).

The notion of separator is central throughout this paper.
Here we define this notion formally.

Definition 1. For any undirected graph G and for any
constant ρ, 0 < ρ < 1, a subset of vertices S is called
a ρ-separator if (i) removal of S disconnects G into two
subgraphs A and B, and (ii) the number of vertices of any
component is at most ρn. The size of a separator is the
number of vertices in the separator.

It is well known that every planar graph with n vertices
has a (2/3)-separator of size O(

√
n) [LT79].

III. REACHABILITY ALGORITHM GIVEN A SEPARATOR

In this section we present our reachability algorithm
that uses the space efficient separator algorithm (called
Separator) given in Theorem 2. First we define an algo-
rithm that uses Separator iteratively to compute a separator

family that splits a given graph into sublinear size compo-
nents.

Definition 2. For any undirected graph G with n vertices,
an r(n)-separator family of G is a set S of vertices of G
so that the removal of S disconnects G into subgraphs each
of which contains at most r(n) vertices.

Although we use the term “separator family”, a separator
family is just a set of vertices, and hence, the size of a
separator family is simply the number of vertices in the set.

By using Separator, for any ε > 0, we can design
an algorithm that produces an n1−ε-separator family of
O(n1/2+ε/2) size in polynomial time and Õ(n1/2+ε/2)
space.

Lemma 3. For any ε > 0, there is an algorithm SepFamily

that takes a planar graph as input and outputs an n1−ε-
separator family of size O(n1/2+ε/2) in polynomial time and
Õ(n1/2+ε/2) space.

Proof: Our key tool is the separator algorithm
Separator of Theorem 2. For a given undirected planar
graph of size n, this algorithm produces a (8/9)-vertex
separator of size at most c

√
n (for some constant c > 0); that

is, removal of vertices in the separator disconnects the graph
into two subgraphs of size ≤ 8n/9. Intuitively, we repeat
this procedure for some sufficient number of times so that
each connected component contains at most n1−ε vertices.
The union of separators increases monotonically, and, as we
will see, its size is bounded by O(n1/2+ε/2). This whole
procedure can be implemented by using Õ(n1/2+ε/2) space
for keeping the obtained separators.

Let us examine this idea in more detail. Fix any input
undirected graph G = (V,E) with n vertices. We first define
an algorithm Separator+ so that it can be used iteratively.
This algorithm takes G, a parameter i indicating the number
of iterations, and a separator family Si obtained so far, and
it outputs a new separator family Si+1 := Si ∪S

′
. Here we

may assume (by induction hypothesis) that each connected
component of G(V \Si) is of size ≤ ni := (8/9)in. The set
S
′

added by the algorithm is the union of vertex separators
S′1, ..., S

′
` of size c

√
ni. Each S′j is obtained by applying

Separator to a connected component of G(V \Si) of size
> (8/9)ni. This guarantees the induction hypothesis on the
size of connected components. More specifically, for every
vertex v ∈ V \ Si, the algorithm first checks whether v
is the vertex with the smallest index in the component Gv
connected to v in G(V \Si), and if so and if the size of Gv
is larger than (8/9)i+1n, then Separator is applied to this
component to produce a vertex separator S′j for Gv .

We apply this algorithm Separator+ for k times, where
k is defined by

k =

⌈
ε

log(9/8)
log n

⌉

so that
1

2
n1−ε ≤ n

(
8

9

)k
≤ n1−ε

holds. Thus, after the k applications of Separator+, the
size of connected components is at most n1−ε as desired.

Next we bound the size of the obtained separator family.
Note that there are at most (9/8)i+1 components of size
≥ (8/9)i+1n; hence, there are at most (9/8)i+1 vertex
separators added to Si at the ith iteration, and each such
vertex separator size is at most c

√
ni = c

√
(8/9)in. Thus,

the number of vertices in the final separator family Sk+1 is
bounded by(

9

8

)
c
√
n+

(
9

8

)2

c

√(
8

9

)
n+ · · ·+

(
9

8

)k+1

c

√(
8

9

)k
n

=
9c
√
n

8

k∑
i=0

(
9

8

)k/2
≤ c′
√
n

(
9

8

)k/2
≤ 2c′n1/2+ε/2

for some constant c′ > 0. Finally, observe that the space
used is dominated by the the space required to store the
separator family. It is easy to see that the running time is
bounded by a polynomial.

Now we are ready to state our algorithm for the directed
planar graph reachability problem. Consider any constant
ε > 0. We may assume that ε < 1/2, because otherwise
our target bounds, e.g., Õ(n1/2+ε) become trivial. Let
G = (V,E), s, and t be the given input; that is, G is
a directed graph, and s and t are start and goal vertices
in V . As outlined in the introduction, our algorithm first
uses SepFamily to compute an n1−ε-separator family S
of size O(n1/2+ε/2) for the underlying undirected graph
G, and explores a path from s to t through vertices in S.
For any vertices a and b in S, the reachability from a to
b is determined by the reachability in G(V ′ ∪ S), where
V ′ is the set of vertices of some connected component of
G(V \ S) that is adjacent to both a and b in G(V ′ ∪ S).
(Thus, we can immediately determine that b is not reachable
from a if there is no such connected component V ′ of
G(V \ S).) For checking this connectivity, we may use
the standard algorithm BFS for the reachability problem if
G(V ′ ∪ S) is small enough. Although Lemma 3 guarantees
that |V ′ ∪ S| = O(n1−ε), it is still large to execute BFS.
Instead we use our algorithm recursively on G(V ′∪S). Note
further that |V ′| is too large to store; thus, V ′ (and hence,
G(V ′ ∪ S)) must be given implicitly. In the algorithm, we
specify V ′ as a set of vertices connected to some vertex
in G(V \ S); then we can check whether v ∈ V ′ for a
given v by using the undirected graph reachability algorithm
UReach in O(log n) space and polynomial time. Hence, the
algorithm can be modified to handle such implicitly given
graphs with the same order of space complexity (whereas
some big polynomial-time overhead may be necessary).

1. PlanarReach(Ĝ, ŝ, t̂, n)

(let n̂ be the number of vertices of Ĝ)
2. If n̂ ≤ n1/2
3. then BFS(Ĝ, ŝ, t̂)
4. Else (let r̂ = n̂1−ε)
5. Run SepFamily to compute r̂-separator family S
6. Run ImplicitBFS((S ∪ {ŝ, t̂}, E), ŝ, t̂)

// ImplicitBFS executes in the same way as BFS

// except for the case “(a, b) ∈ E?” is queried,
// i.e., it is asked whether G(V ′ ∪ S) has an
// edge (a, b)? In this case the query is answered
// by the following process 6.1 ∼ 6.5.

6.1. For every x ∈ V
// Vx = the set of vertices of G(V \ S)’s
// connected component containing x.

6.2. If PlanarReach(G(Vx ∪ S), a, b, n) is True
6.3. then Return True for the query
6.4. End For
6.5. Return False for the query

Figure 1. Algorithm for the Directed Planar Reachability

This is the outline of our algorithm, and in Figure 1 we
describe it in a pseudo code. For solving an instance (G, s, t)
of the planar graph reachability problem, it suffices to call
PlanarReach(G, s, t, n).

We analyze the space and time complexity of this algo-
rithm; let S and T denote its space and time complex-
ity functions. First note that, since (1 − ε)k ≤ 1/2 for
k = O(1/ε), the depth of recursion is O(1/ε), which is
a constant.

We begin with the space complexity. Our goal is to
show that S(n) = Õ(n1/2+ε). Consider S(n̂) for any
n̂ > n1/2. Line 5 uses space Õ(n̂1/2+ε/2). For Line 6,
we run ImplicitBFS on2 (S ∪ {ŝ, t̂}, E), and its main
computation can be done by using Õ(|S|) space like the
standard BFS. On the other hand, for each query (a, b) ∈ E
asked in the computation, we need to run Lines 6.1 ∼ 6.5,
and the space needed for this computation is essentially
S(|Vx| + |S|) ≤ S(2n̂1−ε) for Line 6.2. Hence we get the
following recurrence.

S(n̂) =

 Õ
(
n̂1/2+ε/2

)
+ S

(
2n̂1−ε

)
if n̂ > n1/2,

Õ
(
n1/2

)
otherwise.

Since the recursion depth is bounded by O(1/ε), it is easy to
see that S(n) = O(1/ε)Õ(n1/2+ε/2) = Õ(n1/2+ε/2), which
is sufficient for our goal.

Next consider the time complexity. We need to be precise
only up to a polynomial factor. Then by analysis similar to

2Though we use E to denote symbolically the set of edges of G(V ′∪S),
this set is not used in the algorithm explicitly.

the above, we have the following recurrence.

T (n̂) =

{
q(n)

(
p1(n̂)T

(
2n̂1−ε

)
+ p2(n̂)

)
if n̂ > n1/2,

q(n)Õ
(
n1/2

)
otherwise.

Here p1(n̂) is the number of times we make the recur-
sive calls of Line 6.2, and p2(n̂) is the time needed by
SepFamily at Line 5. On the other hand, a polynomial q(n)
is for the overhead when Ĝ is given implicitly. Again from
the O(1/ε) bound for the recursion depth, it is easy to see
the bound T (n) = p(n)O(1/ε) holds for some polynomial
p(n).

Finally we argue the correctness of the algorithm. Con-
sider the execution of PlanarReach(G, s, t, n), and let
H denote the graph (S ∪ {s, t}, E) given at Line 6 in
this execution, where E denotes the set of pairs (a, b) of
S ∪ {s, t} such that the process of Line 6.1 ∼ 6.5 returns
true. We inductively assume that this process returns true if
and only if there is a directed path from a to b in the induced
graph G(Vx∪S) for some set of vertices Vx connected to x
in G(V \ S). We claim that there is a directed path from s
to t in G if and only if there is a directed path from s to t
in H . The if-part is trivial because every directed edge of H
corresponds to some directed path in G. Thus, we consider
the only-if-part. Let p be a path from s to t in G. We can
decompose p into psp1p2 · · · plpt. Path ps is the part of p
that starts at s and enters S at the very first time. Let y1 be
the end vertex of ps. In general pi is the part of p that starts
at yi ∈ S and ends in yi+1 where yi+1 is the first vertex
where the path p reenters S (after leaving S). pt is the part of
the path that starts at yl+1 and ends in t. Notice that since S
is a separator family, pi completely lies inside the subgraph
G(Vx ∪ S) for some x. Because of this observation, H has
an edge (yi, yi+1) for every i, 1 ≤ i ≤ l, and also edges
(s, y1) and (yl+1, t). Hence sy1y2 · · · yl+1t is a path in H
from s to t, as desired.

IV. SPACE AND TIME EFFICIENT SEPARATOR ALGORITHM

This section is devoted to the proof of the following
theorem.

Theorem 2. There is an algorithm that takes an undirected
planar graph G with n vertices as input and outputs a (8/9)-
separator of G. This algorithm runs in polynomial time and
uses Õ(

√
n) space.

We first make some assumptions that will make the
presentation of the algorithm easier. We assume that a
given input undirected graph for our separator algorithm is
connected and triangulated. In fact, in our application of this
algorithm, only a connected graph is given as an input to the
algorithm. Also triangulation is easy by adding “imaginary
edges” so that every face becomes a triangle. For example,
we may use the following rule which can be implemented
in O(log n) space (and hence polynomial time): For each

face, consider the smallest indexed vertex on it. For every
other vertex on that face, add an edge to this vertex, thereby
triangulating the face. We may assume that this triangulation
algorithm is applied before the execution of the separator
algorithm. Also, as mentioned in the preliminaries, we
assume without loss of generality the combinatorial planar
embedding is given as a part of an input.

A. Preliminaries for the Separator Theorem

As mentioned in the introduction, our separator algorithm
draws heavily from the work of Gazit and Miller [GM87].
Here we recall some key notions and notation which can be
found in the literature [LT79], [GM87], [KM07], [Mil86].

Let G be a planar graph (not necessarily triangulated) and
let f be a face. The face-size of f is the number of edges
(hence, that of vertices) of f . Two faces of G are edge-
connected if they share an edge. A set of faces R is edge-
connected if for every pair of faces f and g in R, there
exist faces f1, · · · , fi in R such that f and f1 are edge-
connected, fi and g are edge-connected, and fj and fj+1

are edge-connected for all j, 1 ≤ j ≤ i − 1. A region of a
planar graph is a set of edge-connected faces. The boundary
of a region is the set of edges such that each edge lies on
exactly one face of the region. Given a region R, we denote
the boundary with B(R). It is known that the boundary of
any region can be decomposed into a set of disjoint simple
cycles [Mil86].

f1 f2
f3f4

f5 f6

faces f1, f2, ... a shadow part: a region
two bold lines: a boundary

Figure 2. Example of faces, regions, and boundaries.

From now on let G denote any planar graph that is
connected and triangulated. Below we will usually regard
triangular faces as vertices of a related graph called “face-
vertex graph”, which is different from the standard dual
graph. The face-vertex graph of G is a graph denoted as
G′ = (V ′, E′) where V ′ is the set of triangle faces of G
and E′ is the set of pairs (f1, f2) of triangle faces of G
such that f1 and f2 share a vertex in G. We add prefix “tr-”
to distinguish terms for face-vertex graphs. For example, a
vertex of G′, which corresponds to some triangular face of
G, is called a tr-vertex, and an edge of G′ is called as a tr-
edge. A path of G′ consisting of tr-edges is called a tr-path;
we often regard a tr-path as a sequence of faces.

The distance between two vertices v1 and v2 (denoted as
dist(v1, v2)) is the length (i.e., the number of edges) of the
shortest path between them. Similarly, for any tr-vertices f1
and f2 in G′, the distance between f1 and f2 (denoted by

G G'
white circles: faces in G and tr-vertices in G′

f1 f2

f3
f4

tr-path (f1, f2, f3, f4):
a shortest tr-path from f1 to f4

Figure 3. Example of face-vertex graph and tr-path.

dist(f1, f2)) is the length (i.e., the number of tr-edges) of the
shortest tr-path between f1 and f2 in G′. Note that for any v1
and v2 of G that lie on triangle faces f1 and f2 respectively,
we have dist(v1, v2) ≤ dist(f1, f2) + 1. For a tr-vertex f
and an integer r, let `(f, r) denote the set of tr-vertices that
are at distance exactly r from f . For any d ≥ 1, the d-radius
ball around f is the set Bd(f) = {g ∈ V ′ | dist(f, g) ≤ d}.
Given a tr-vertex f and a region R, the distance between f
and R is defined by dist(f,R) = ming∈R{dist(f, g)}.

`(f, 2) r0 = maxr{|`(f, r)| ≤
√
k}

Figure 4. Example of `(f, r), Nk(f), and core.

Let k(n) be a function of n. The notion of k(n)-
neighborhood defined below is central to the algorithm of
Gazit and Miller [GM87].

Definition 3. For any tr-vertex f of G′, the k(n)-
neighborhood of f (denoted as Nk(n)(f)) is the set of k(n)
tr-vertices closest to f with respect to the distance function
dist. More formally,

Nk(n)(f) = Br(f) ∪ F,

where r is the maximum integer such that |Br(f)| ≤ k(n),
and F is an edge-connected subset of `(f, r + 1) so that
|Nk(n)(f)| becomes exactly k(n).

Remark. In the above definition there could be more than
one choice for F . In such cases, we fix one such F (for
example, by choosing it in a greedy way) and work with

it. To avoid notational clutter, from now we will use k for
k(n), and write Nk(f) for Nk(n)(f).

Definition 4. A set I of faces (tr-vertices) is a k-maximal
independent set if

• for every f, g ∈ I , Nk(f) ∩Nk(g) = ∅, and
• for every f ′ /∈ I , there exists a face f ∈ I such that
Nk(f ′) ∩Nk(f) 6= ∅.

Note that the size of a k-maximal independent set is
O(n/k). We can compute a k-maximal independent set
with time and space stated below by a straight forward
greedy algorithm that considers faces in the lexicographic
order. Thus, in our discussion, we may assume that some k-
maximal independent set I is given (as a part of an input).

Lemma 4. There is an algorithm that takes a planar graph
G as an input, and outputs a k-maximal independent set in
polynomial time and Õ(n/k + k) space.

Next we define the notion of “core” of a face [LT79],
[KM07].

Definition 5. Let f be a tr-vertex and Nk(f) be its k-
neighborhood. Let r0 be the largest number such that
`(f, r0) ⊆ Nk(f) and |`(f, r0)| ≤

√
k. The core of f is

defined as the union of `(f, i), 1 ≤ i ≤ r0.

Note that a core is a region. The following lemma is
critical. For its proof, see, for example, [Kle93].

Lemma 5. For every tr-vertex f , the following holds:

• The size of the boundary of the core of f is at most√
k.

• For every tr-vertex f ′ ∈ Nk(f) and not in core of
f , there is a tr-vertex g in the core of f such that
dist(f ′, g) ≤

√
k.

We extend the notion of core a face to core of a vertex. For
any vertex v of G, let f be a triangle face (for consistency
we take the lexicographically smallest face) on which v lies.
The core of v is simply the core of f .

Next, we define the notion of “Voronoi region” [GM87].
We fix some k-maximal independent set I . For every face
g of G, we associate a unique member of I as follows:
If g ∈ Nk(f) for some f ∈ I , then g is associated to f .
For g 6∈ Nk(f) for any f ∈ I , g is associated with the
lexicographically first f ∈ I such that dist(Nk(f), g) is the
smallest among all faces in I . The Voronoi region of f ∈ I ,
denoted as V (f), is the set of faces that are associated with
f . (The name “region” is justified by the following lemma.)

Lemma 6. [GM87], [KM07] Every Voronoi region is edge-
connected. The diameter of a Voronoi region is O(k); that is,
the distance between every pair of tr-vertices in the Voronoi
region is O(k).

We first show an algorithm that identifies, for a given face,
the Voronoi region to which it belongs.

Lemma 7. There is an algorithm that takes a planar graph
G, a tr-vertex g of G′, and a k-maximal independent set
I , as an input, and computes f ∈ I such that g ∈ V (f).
Moreover, this algorithm runs in polynomial time and Õ(k)
space.

Proof: For each f ∈ I , compute distance from g to
Nk(f) if Nk(f) and Nk(g) intersect. Keep track of the
smallest tr-vertex f for which this distance is minimized.
Distance can be computed by storing both Nk(f) and Nk(g).
Since each k-neighborhood has k tr-vertices, the distance
computation can be done in Õ(k) space. Thus the space
taken by this algorithm is Õ(k), and the running time of the
algorithm is polynomial.

Based on this, we next show that there is an algorithm to
construct a BFS tree of a given Voronoi region in polynomial
time using small space. This algorithm will be a component
of our algorithm for computing a separator. Here we regard
the Voronoi region as a subgraph of the face-vertex graph G′,
and by “BFS tree” we mean a tr-tree visiting all tr-vertices
in a breadth first manner w.r.t. the tr-distance from the root.

Lemma 8. There is a polynomial-time and Õ(k)-space
algorithm that, given a planar graph G, a k-maximal
independent set I , and f ∈ I , constructs a BFS tree of
V (f) rooted at f . The diameter of this tree is O(k).

Proof: In order to use the standard method for produc-
ing a rooted tree using small space, it suffices to specify a
parent relation so that it is easy to determine the parent of
a given tr-vertex g ∈ V (f) in the BFS tree.

First note that we can construct a BFS tree of the k-
neighborhood of a given tr-vertex in O(k) space and polyno-
mial time by traversing tr-vertices in the standard way. This
is because the k-neighborhood is defined by the tr-distance
and each k-neighborhood has only k tr-vertices,

For a given g, we construct first the BFS tree of Nk(f).
If g ∈ Nk(f), then its parent is the same as the parent
in the BFS tree of Nk(f). Else, construct Nk(g) and its
BFS tree, which should have some common tr-vertices since
g ∈ V (f). Identify the tr-vertex f ′ ∈ Nk(f) ∩ Nk(g) such
that dist(g, f ′) is the minimum and f ′ is lexicographically
the first one (in case there are more than one tr-vertices with
the minimum distance). Consider the tr-path P from g to f ′

in the BFS of Nk(g). The parent of g is the tr-vertex h in
P that is adjacent to g (and hence one step closer to f ′).
Since each k-neighborhood has only k tr-vertices, all the
computation can be done is in Õ(k) space and polynomial
time.

Finally, note that the depth of the BFS tree is at most 2k;
hence the diameter of the tree is O(k).

B. The Separator Algorithm

We first outline the algorithm. Let G be an input planar
graph with n vertices. We set k =

√
n, and first compute

a k-maximal independent set I and check whether there is
some f ∈ I such that V (f) has more than n/3 vertices of
G. If such a Voronoi region exists, then we simply use the
algorithm of Lipton and Tarjan to get a (2/3)-separator of
V (f), which is also a (8/9)-separator of the original graph
G. Since we can construct a BFS tree of V (f) in small space
(Lemma 8), we can implement the algorithm of Lipton and
Tarjan on a Voronoi region using small space in polynomial
time.

Nontrivial treatment is necessary for the case where all
Voronoi regions are small. In this case, we construct a small
weighted planar subgraph, H of G (and a planar embedding)
with a rational weight assigned to each face where the
weights sum to 1. We then compute a weighted separator
of H . This weighted separator of H will also be a separator
of G.

For any ρ, 0 < ρ < 1, a subset S of vertices of H is
called a ρ-weight-separator if removal of S disconnects H
into two components so that each component’s total weight
is at most ρ. We use the following theorem due to Miller to
construct the weighted separator.

Theorem 9 ([Mil86]). There is a polynomial-time and
Õ(m)-space algorithm that takes as an input a weighted
planar graph H satisfying the following three conditions
and outputs a (2/3)-weight-separator of size O(d

√
m): (i)

H has m faces, (ii) the maximum face-size is d, and (iii)
there is no face with a weight more than 2/3.

The rest of the section makes the above outline formal.
Recall that the boundary of each Voronoi region is a collec-
tion of simple cycles [Mil86]. For the ease of presentation
and for explaining the main idea behind our algorithm, we
consider in this extended abstract only the case where the
boundary of every Voronoi region is one simple cycle. When
the boundary of some Voronoi region is not one simple cycle,
borrowing ideas from [GM87] and [KM07], we can reduce
to the case where the boundary of every Voronoi region
is one simple cycle. The details will be given in the full
version.

We need one more notion. For any Voronoi region,
consider its boundary and vertices (of G) on the boundary.
All such vertices belong to at least two Voronoi regions.
On the other hand, there may be some vertex that belongs
to three or more triangle faces each of which belongs to
a different Voroni region; we call such vertices Voronoi
vertices (Figure 5). The other vertices (on the boundary)
are called non Voronoi vertices.

We now establish our main lemma which will be used in
the proof of Theorem 2.

Figure 5. Voronoi vertex

Lemma 10. There is a polynomial-time, Õ(n/k+ k)-space
algorithm, that takes a planar graph G = (V,E) (with n
vertices) as input and outputs either

1) a Voronoi region V (f) such that the number of vertices
in V (f) is at least n/3.
or

2) a weighted planar subgraph H of G with the following
properties:

a) Every weight in H is less than 2/3.
b) The number of faces in H is O(n/k).
c) The size of each face of H is O(

√
k).

d) Any weight-separator of H is a separator of G.

Proof:
The algorithm first computes a k-maximal independent

set I using Lemma 4, and stores this set in the memory.
This takes Õ(n/k+k) space and polynomial-time. For each
f ∈ I , count the number of vertices in V (f) as follows:
Initialize a counter to zero. Consider a vertex v ∈ V . By
cycling through all faces on which on which v lies, using
Lemma 7, check if some face belongs to V (f). If some
face belongs to V (f), then increment the counter. If the
counter reaches n/3, then return V (f). Checking whether a
face belongs to V (f) or not can be done in Õ(k) space and
polynomial-time due to Lemma 7. Thus the total time taken
to output V (f) is polynomial and the space is Õ(n/k+ k).

Assume that for every f ∈ I , the number of vertices in
V (f) < n/3. Now we define our weighted planar graph
H . We first describe the graph part, and later describe
the weights. It is essentially a subgraph of G = (V,E)
consisting of a subset of edges of E (and their adjacent
vertices). For a given G and its k-maximal independent set
I , our algorithm executes the following three sub steps.

(1) For each f ∈ I , output the boundary of the core of f .
(2) For every v ∈ V , determine if it is a Voronoi vertex. If

v is a Voronoi vertex, then output the boundary of the
core of v.

(3) For every pair f and g of tr-vertices in I such that
B(V (f)) and B(V (g)) intersect, do the following:
Compute all Voronoi vertices that are common to
B(V (f)) and B(V (g)). For every such vertex v, com-

pute3 a path P̂f,v from f to v based on the tr-path in
the BFS tree of V (f). Then select the part of P̂f,v that
lies outside of the cores of f and v, and output it as
Pf,v. Similarly, output Pg,v .

Next we specify the way to assign weights to the faces
of H . For each face h of H , assign a weight nh/n, where
nh is the number of vertices of G that lie inside of h. We
can define some simple rule so that vertices of H (that are
also vertices of G) are counted once at some face.

Now our task is to show that the graph H satisfies the
desired properties. First it is clear that H is planar and
the sum of all weights is 1. Also from the above way of
assigning weights it is clear that any ρ-weight-separator of
H is an ρ-separator of G.

Next we examine the faces of H and their size parameters.
Note that a face is defined by edges and that every edge of
H is either a part of the boundary of some core or a part
of path Pf,v for some f ∈ I and some Voronoi vertex v.
We can classify all faces to the following two types (see
Figure 6).

f
core

g
core

u
core

v
core

Pfu

Pgu

Pfv
Pgv

V(f) V(g)

type II face

type I face

Figure 6. Type I and Type II faces of H

Type I: A face consisting of edges from the boundary of
some core that are produced by sub steps (1) or (2).

Type II: A face consisting of the edges of four paths
Pf,u, Pf,v, Pg,u, Pg,v and some edges in boundaries of the
cores of f , g, u, and v, where f and g are tr-vertices of G
such that B(V (f)) and B(V (g)) intersect, and u and v are
Voronoi vertices that appear in both V (f) and V (g). Note
that the edges belonging to these paths are produced by sub
step (3) and the edges from the cores are produced by sub
steps (1) or (2).

Claim 1. All faces of H are either type I or type II.

Proof: It follows from the fact that there is no face
of H that contains vertices of G from more than two

3Precisely speaking, obtain first the tr-path from f to a triangle face in
V (f) containing v; then define P̂f,v by selecting a set of edges from this
tr-path in any appropriate way.

Voronoi regions. This fact also implies that there are only
two Voronoi vertices in any Type II face.

Claim 2. The face-size of all faces of H is O(
√
k).

Proof: The O(
√
k) bound for the face-size of Type I

faces is immediate from the part (1) of Lemma 5. On the
other hand, for any Type II face and any path Pf,v of this
face, we can bound its length by O(

√
k) from the part (2)

of Lemma 5. Then the claim follows since there are at most
eight segments of length O(

√
k) paths.

Claim 3. The number of faces of H is O(n/k)

Proof: We first bound the number of Voronoi vertices.
For this, consider a graph U consisting of Voronoi vertices.
For any pair u and v of Voronoi vertices, 〈u, v〉 is an edge
of U if and only if there is a path in G from u to v along
the boundary of some Voronoi region, and this path does
not contain any other Voronoi vertex. Let nU and eU be
the number of vertices and edges of U respectively, and we
bound these numbers below. Note that there is one to one
correspondence between faces of U and Voronoi regions of
G. Hence, the number of faces of U is |I| = O(n/k). On the
other hand, each Voronoi vertex has at least three neighbors
in U ; thus, we have eU ≥ 3nU/2. Then by using Euler’s
formula, we can also bound both nU and eU by O(n/k).
Recall nU is the number of Voronoi vertices.

Now we bound the number of faces of H . The number of
Type I faces is |I|+ nU , and hence it is O(n/k). Note that
each Type II face corresponds to a part of the boundary of
two Voronoi regions connecting two Voronoi vertices, which
in fact corresponds to an edge of U . Thus, the number of
Type II faces is bounded by eU = O(n/k). The bound of
the claim follows from these bounds.

We also need to show that no face has a weight larger
than 2/3. This is proved as follows by using the assumption
that no Voronoi region has more than n/3 vertices.

Claim 4. If there is no f ∈ I such that V (f) contains more
than n/3 vertices of G, then H has no face with weight
> 2/3.

Proof: Clearly the weight of Type I face is less than 2/3
(if n is sufficiently large). On the other hand, any Type II
face (in G) is a subset of at most two Voronoi regions; thus,
the weight bound 2/3 is immediate from the assumption.

Finally, we show that the following bound on the effi-
ciency of the algorithm for computing H .

Claim 5. The above procedure for computing H can be
implemented in polynomial time and Õ(n/k + k) space.

Proof: By computing `(f, r) iteratively, we can com-
pute a core in polynomial time and Õ(k) space. Hence, sub
step (1) can be done within required time and space. The
computation for sub step (2) is also easy because for a given
vertex v and a given k-independent set I , we can check

whether v is a Voronoi vertex or not by checking whether
three faces adjacent to v belong different Voronoi regions.
This can be done in polynomial-time and Õ(k)-space. For
sub step (3), we first need to check whether v ∈ V (f) for
a given v, which can be done in polynomial time and Õ(k)
space (Lemma 7). Then P̂fv can be obtained following the
BFS tree that is computable in polynomial time and Õ(k)
space (Lemma 8).

For computing weights, we need to count the number of
vertices of G in a given face h of H . For this, it is enough to
show a way to determine, for a given vertex v of G, whether
it is in h or not. We can test this by considering a clockwise
orientation of the edges of h and then checking whether v
is connected to (any fixed vertex u of) h from the left (⇔
out) or the right (⇔ in) of the orientation. This last point
can be tested by the reachability to u from v without using
edges adjacent to h from the right to the orientation. The
reachability test can be done in O(log n) space and hence
in polynomial time.

This concludes the proof of Lemma 10

Now we are ready to present the proof of Theorem 2.

Proof of Theorem 2: We explain the execution of our
separator algorithm Separator on a given planar graph G
of n vertices. As discussed above, we may assume that G
is connected and triangulated and that some combinatorial
embedding is also given as an input.

The algorithm sets k =
√
n and runs the algorithm

from Lemma 10. If the algorithm outputs a big Voronoi
region V (f) with more than n/3 vertices, then (implicitly)
construct a BFS tree of V (f) using the algorithm from
Lemma 8. The BFS tree has diameter O(

√
n). Let n′ ≥ n/3

denote the number of vertices of G in V (f). We now apply
the algorithm of Lipton and Tarjan on the subgraph induced
by V (f). Given a BFS tree (with diameter d) of the input
graph, the Lipton and Tarjan’s algorithm can be implemented
in linear time and logarithmic space to compute a separator
of size O(d). Since the BFS of V (f) has diameter O(

√
n),

and can be computed in polynomial-time using Õ(
√
n)-

space, we can compute a (2/3)-separator of V (f) using
space O(

√
n) and polynomial-time. Certainly, this separator

separates some subgraph of G of size ≥ n′/3 (≥ n/9) from
not only V (f) but also from G; thus, it is also an (8/9)-
separator, satisfying the theorem.

If no big Voronoi region exists, the algorithm produces
subgraph H of G. Now apply Miller’s algorithm from
Theorem 9 to compute a (2/3)-weight-separator of H . From
Lemma 10 we know that H has O(n/k) (= O(

√
n)) faces

with their face-size bounded by O(
√
k) (= O(n1/4)). Thus,

Miller’s algorithm runs in polynomial time and Õ(
√
n)

space, and the size of the separator is O(
√
n). On the other

hand, any 2/3-weighted separator for H is also a 2/3-
separator for G. Therefore, both the output and the efficiency
of the algorithm satisfy the required conditions.

V. ACKNOWLEDGEMENTS

We like to thank Prof. Gary Miller for pointing us to
the paper [KM07] which helped us to better understand the
ideas in the algorithm of Gazit and Miller. We also thank
the referees of CCC’13 for their comments that helped us
in improving the presentation of the paper.

A. Pavan, N. V. Vinodchandran, and O. Watanabe are
respectively supported in part by NSF grant 0916797, NSF
grant 0916525, and KAKENHI No. 24106008. Part of the
work was done while Vinodchandran was visiting Johns
Hopkins University.

REFERENCES

[ABC+09] Eric Allender, David A. Mix Barrington, Tanmoy
Chakraborty, Samir Datta, and Sambuddha Roy. Planar
and grid graph reachability problems. Theory of
Computing Systems, 45(4):675–723, 2009.

[AD11] Tetsuo Asano and Benjamin Doerr. Memory-
constrained algorithms for shortest path problem. In
CCCG, 2011.

[All07] E. Allender. Reachability problems: An update. Com-
putation and Logic in the Real World, pages 25–27,
2007.

[AM04] Eric Allender and Meena Mahajan. The complexity
of planarity testing. Information and Computation,
189:117–134, 2004.

[BBRS92] Greg Barnes, Jonathan F. Buss, Walter L. Ruzzo, and
Baruch Schieber. A sublinear space, polynomial time
algorithm for directed s-t connectivity. In Structure in
Complexity Theory Conference, 1992., Proceedings of
the Seventh Annual, pages 27–33, 1992.

[CR80] Stephen A. Cook and Charles Rackoff. Space lower
bounds for maze threadability on restricted machines.
SIAM J. Comput., 9(3):636–652, 1980.

[EPA99] Jeff Edmonds, Chung Keung Poon, and Dimitris
Achlioptas. Tight lower bounds for st-connectivity on
the NNJAG model. SIAM J. Comput., 28(6), 1999.

[Fre87] Greg N. Frederickson. Fast algorithms for shortest
paths in planar graphs, with applications. SIAM J.
Comput., 16(6):1004–1022, 1987.

[GM87] Hillel Gazit and Gary L. Miller. A parallel algorithm
for finding a separator in planar graphs. In FOCS,
pages 238–248, 1987.

[HKRS97] Monika Rauch Henzinger, Philip N. Klein, Satish
Rao, and Sairam Subramanian. Faster shortest-path
algorithms for planar graphs. J. Comput. Syst. Sci.,
55(1):3–23, 1997.

[Kle93] Philip Klein. On Gazit and Miller’s parallel algo-
rithm for planar separators: achieving greater efficiency
through random sampling. In Proceedings of the fifth
annual ACM symposium on Parallel algorithms and
architectures, SPAA ’93, pages 43–49, New York, NY,
USA, 1993. ACM.

[KM07] Ioannis Koutis and Gary L. Miller. A linear work,
O(n1/6) time, parallel algorithm for solving planar
laplacians. In SODA, pages 1002–1011, 2007.

[LT79] Richard J. Lipton and Robert E. Tarjan. A separator
theorem for planar graphs. SIAM Journal on Applied
Mathematics, 36(2):177–189, 1979.

[Mil86] Gary L. Miller. Finding small simple cycle separators
for 2-connected planar graphs. J. Comput. Syst. Sci.,
32(3):265–279, 1986.

[Poo93] Chung Keung Poon. Space bounds for graph connec-
tivity problems on node-named jags and node-ordered
jags. In FOCS, pages 218–227, 1993.

[Rei08] Omer Reingold. Undirected connectivity in log-space.
Journal of the ACM, 55(4), 2008.

[RTV06] Omer Reingold, Luca Trevisan, and Salil Vadhan.
Pseudorandom walks on regular digraphs and the RL
vs. L problem. In STOC ’06: Proceedings of the
thirty-eighth annual ACM Symposium on Theory of
Computing, pages 457–466, New York, NY, USA,
2006. ACM.

[SV12] Derrick Stolee and N. V. Vinodchandran. Space-
efficient algorithms for reachability in surface-
embedded graphs. In IEEE Conference on Compu-
tational Complexity, pages 326–333, 2012.

[Wig92] Avi Wigderson. The complexity of graph connectivity.
Mathematical Foundations of Computer Science 1992,
pages 112–132, 1992.

