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1. INTRODUCTION

The problem of extracting pure randomness from weak random sources has received
intense attention in the last two decades, producing several exciting results. The main
goal in this topic is to give explicit constructions of functions that are known as ran-
domness extractors; functions that output almost pure random bits given samples from
a weak source of randomness which may be correlated and biased. Randomness extrac-
tors have found applications in several areas of theoretical computer science including
complexity theory and cryptography. The body of work on randomness extractors is
vast and we do not attempt to list them here. Instead, we refer the readers to sur-
vey articles by Nisan and Ta-Shma [1999] and Shaltiel [2004], and Rao’s thesis [Rao
2006] for an extensive exposition on the topic (with the caveat that some of the recent
advances are not reported in these articles).
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We will focus on a type of randomness extractors known as multisource extractors.
These are multi-input functions with the property that if the inputs come from in-
dependent distributions with certain guaranteed randomness, typically measured by
their min-entropy, then the output distribution will be close to the uniform distribu-
tion. If the function takes k inputs, they are called k-source extractors. We will further
focus on 2-source extractors, noting that the discussion as well as the results we prove
also hold for k-source extractors for any k ≥ 2. A distribution over n-bit strings is
said to have min-entropy k, if all elements in the support of the distribution has a
probability ≤ 2−k. A function f : {0, 1}n × {0, 1}n → {0, 1}m is a 2-source extractor
for min-entropy k if for any two independent distributions X and Y on {0, 1}n with
min-entropy k, the output f (X , Y ) is statistically close to the uniform distribution.
It is known that such extractors exist for all min-entropy levels with optimal para-
meters [Chor and Goldreich 1988], but explicitly constructing 2-source extractors for
sources with low min-entropy is a very active research question [Bourgain 2005; Kalai
et al. 2009; Rao 2006, 2008].

While min-entropy characterizes the amount of randomness present in a probability
distribution, Kolmogorov complexity characterizes the amount of randomness present
in individual strings. The Kolmogorov complexity of a string x, denoted by K(x), is the
the length of the shortest program that outputs x. If K(x) = m, then x can be viewed as
containing m bits of randomness. A string x is Kolmogorov random if its Kolmogorov
complexity is close to the length of x. A natural notion that arises is that of Kolmogorov
extractors: explicit functions that extract Kolmogorov complexity from strings that
need not be Kolmogorov random. More formally, a 2-string Kolmogorov extractor for
complexity k is a function f : �n×�n → �m such that K( f (x, y)) is close to m whenever
K(x), K(y) ≥ k and x and y are Kolmogorov independent (K(xy) � K(x) + K(y)). Kol-
mogorov extractors have recently been of interest to researchers [Buhrman et al. 2005;
Fortnow et al. 2011; Zimand 2009, 2010]. One of the main observations that emerged
from this research is that a randomness extractor is also a Kolmogorov extractor. In
particular, Fortnow et al. [2011] show that the construction due to Barak et al. [2006]
of a multisource extractor is also a Kolmogorov extractor. Zimand takes this approach
further and gives constructions of Kolmogorov extractors in other settings [Zimand
2009, 2010]. Thus, this line of research uses randomness extractors as a tool in Kol-
mogorov complexity research. However, the role of Komogorov complexity in the area
of randomness extraction has not yet been explored by researchers. We take a step in
this direction.

We ask the following question. Is it true that a Kolmogorov extractor is also a ran-
domness extractor? While randomness extractors concern information-theoretic ran-
domness, Kolmogorov extractors concern computational randomness. Thus intuitively
it appears that Kolmogorov extractors are weaker objects than randomness extractors.
Moreover, if we use the strict definition of extraction, it is easy to come up with a coun-
terexample to this converse. Let f be a Kolmogorov extractor, then f ◦ 1 (output of f
concatenated with bit 1) is also a Kolmogorov extractor. But f ◦ 1 is not a randomness
extractor for any function f because it never outputs 50% of the strings, that is, strings
that end with 0. The reason for this counterexample is that any Kolmogorov complex-
ity measure is precise only up to a small additive term. Consequently, a string x of
length n is considered Kolmogorov random even if its Kolmogorov complexity is only
n − a(n) for a slow growing function a(n) such as a constant multiple of log n [Fortnow
et al. 2011]. Thus a more fruitful question is to ask whether a Kolmogorov extrac-
tor is also an almost randomness extractor. An almost randomness extractor is like a
traditional randomness extractor except that we only require the output of an almost
extractor to be close to a distribution with min-entropy m − O(log n). For a tradi-
tional extractor, the output has to be close to the uniform distribution, that is, the only
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distribution with min-entropy m. Such almost extractors have been considered in the
literature (see for example the work of Rao [2008]).

Our first contribution is to show an equivalence between Kolmogorov extraction and
the previously mentioned slightly relaxed notion of randomness extraction. The follow-
ing statement is very informal and Section 3 is devoted to giving a precise statement
with a proof.

Result 1. A computable function f is a Kolmogorov extractor if and only if f is an
almost randomness extractor.

A randomness extractor is a universal object in the sense that it should extract
randomness from all distributions with certain min-entropy. Can this universality
be shifted to a distribution? That is, is there a distribution D so that a computable
function f is an extractor if and only if f extracts randomness from D? We call such
a distribution a complete distribution for randomness extraction. Kolmogorov com-
plexity has proved useful in the discovery of distributions with a similar universality
property in other areas of computer science including average-case analysis [Li and
Vitányi 1992] and learning theory [Li and Vitányi 1991].

Our second contribution is to present a complete distribution, based on Kolmogorov
complexity, for randomness extraction. Fix an input length n. For a number k con-
sider the distribution Mk that puts uniform weight on all strings of length n with
Kolmogorov complexity ≤ k. Motivated by the proof of our first result we show that
the distribution Mk is a complete distribution for almost extractors. The following
statement is informal and the full details are in Section 4.

Result 2. For any k, there is a k′ = k + O(log n) so that Mk′ is complete for almost
extractors with min-entropy parameter k.

2. PRELIMINARIES, DEFINITIONS, AND BASIC RESULTS

Kolmogorov Extractors. We only review the essentials of Kolmogorov complexity and
refer to the textbook by Li and Vitányi [1997] for a thorough treatment of the subject.
For a string x ∈ {0, 1}∗, l(x) denotes the length of x. We use the following standard
encoding function where a pair 〈x, y〉 is encoded as 1l(l(x))0l(x)xy. By viewing 〈x, y, z〉 as
〈x, 〈y, z〉〉, this encoding can be extended to 3-tuples (and similarly for any k-tuple).

Let U be a universal Turing machine. Then for any string x ∈ {0, 1}∗, the Kol-
mogorov complexity of x is defined as

K(x) = min{l(p) | U(p) = x},
that is, the length of a shortest program p that causes U to print x and halt. If we
restrict the set of programs to be prefix-free, then the corresponding measure is known
as prefix-free Kolmogorov complexity. These two complexity measures only differ by
an additive logarithmic factor. We will work with the previously defined standard
measure. Since we are flexible about additive logarithmic factors in this article, our
results will hold with the prefix-free version also.

Kolmogorov extractors are computable functions which convert strings that have
a guaranteed amount of Kolmogorov complexity into a Kolmogorov random string.
We give a general definition of Kolmogorov extractors involving a parameter for de-
pendency between the input strings. Consequently, instead of aiming for maximum
complexity in the output string, we will consider extractors which lose an additive
factor equal to the dependency in the inputs. The following notion of dependency we
use is equivalent to the well-studied notion of mutual information in the Kolmogorov
complexity literature up to an additive log factor. However, we prefer to use the term
dependency in this article.
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Definition 2.1 (Dependency). For two strings x and y of the same length, the depen-
dency between x and y is

dep(xy) = K(x) + K(y) − K(xy).

Definition 2.2 (Kolmogorov Extractor). An (n, m(n), k(n), α(n)) Kolmogorov extractor
is a uniformly computable family { fn}n of functions fn : �n × �n → �m(n) where there
is a constant c such that for all n, for all x, y ∈ �n with K(x) ≥ k(n), K(y) ≥ k(n), and
dep(xy) ≤ α(n), we have

K( fn(x, y)) ≥ m(n) − dep(xy) − c log n.

The computability restriction is required to make the definition nontrivial. Other-
wise it is easy to come up with Kolmogorov extractors: for any pair of inputs at length
n, just output a fixed string of length m(n) that has maximal Kolmogorov complexity.

Randomness Extractors. Randomness extractors are functions which convert weak
random sources to a distribution that is statistically close to the uniform distribution.
A weak random source is characterized by its min-entropy which is defined as follows.

Definition 2.3. For a probability distribution X over a universe S, the min-entropy
of X is

− log
(

max
s∈S

X (s)
)

= min
s∈S

(
log

1
X (s)

)
.

Here we are writing X (s) for the probability that distribution X assigns to outcome s.
For an event T ⊆ S, X (T) =

∑
s∈T X (s) is the probability of T under X .

Definition 2.4. For any two distributions X and Y on a universe S, their statistical
distance |X − Y | is

|X − Y | = max
T⊆S

∣∣X (T) − Y (T)
∣∣ = 1

2

∑
s∈S

∣∣X (s) − Y (s)
∣∣ .

If |X − Y | ≤ ε, we say X and Y are ε-close to each other.

Definition 2.5 (Almost Randomness Extractor). An (n, m(n), k(n), ε(n)) almost ran-
domness extractor is a family { fn}n of functions fn : �n × �n → �m(n) where there is a
constant c such that for all n, for every pair of independent distributions X and Y over
�n with min-entropy at least k(n), the distribution fn(X , Y ) is ε(n)-close to a distribu-
tion with min-entropy at least m(n) − c log n. Moreover, f is uniformly computable.

A distribution X over �n is called a flat distribution if it is uniform over some sub-
set of �n. For a flat distribution X , we will use X also to denote the support of the
distribution X . The following useful theorem due to Chor and Goldreich [1988] states
that every function that extracts randomness from flat distributions is a randomness
extractor.

THEOREM 2.6 [CHOR AND GOLDREICH 1988]. Let f be a function from �n × �n to
�m. Suppose for every pair of independent flat distributions X and Y with min-entropy
k, f (X , Y ) is ε-close to having min-entropy m − c log n. Then f is an (n, m, k, ε) almost
randomness extractor.

Let D be a distribution over �m induced by a distribution over �n × �n. That is,
D is the output distribution of some function f : �n × �n → �m over some input
distribution. We call D a nice distribution if for all z ∈ �m, D(z) is a rational number of
the form p/q with q ≤ 22n. This restriction allows us to effectively cycle through all nice
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distributions. For any distribution D with min-entropy k, there is a nice distribution
D′ with the same min-entropy so that the statistical distance between D and D′ is
at most 1/2n. Because of this we will assume that distributions are nice whenever
necessary.

The following lemma due to Guruswami et al. [2009] is useful to obtain a bound on
the min-entropy of a distribution. We will state it for nice distributions although the
original statement and the proof do not have such a restriction. Their proof can be
easily modified to prove this case also.

LEMMA 2.7 [GURUSWAMI ET AL. 2009]. Let D be a nice distribution and s be an
integer. Suppose that for every set S of size s, D(S) ≤ ε. Then D is ε-close to a nice
distribution with min-entropy at least log(s/ε).

Remarks and Clarifications. Although it is typical requirement for the extractors to be
efficiently computable, the only requirement we need in our proofs is that the extrac-
tors are computable. Hence, we will not mention any resource restrictions here. Here
we only focus on extractors with 2 inputs. The connection we prove here also holds for
extractors with l inputs for any constant l ≥ 2 with identical proofs. Although the para-
meters in the definition of the extractors depend on the input length n, we will omit it
in the rest of the article. For instance, a (n, m(n), k(n), α(n)) Kolmogorov extractor will
be denoted as an (n, m, k, α) extractor. In addition, we also assume that the parame-
ters that depend on input length n are computable functions of n. Finally, henceforth
by a randomness extractor we mean an almost randomness extractor unless otherwise
mentioned.

Why is there a dependency parameter in the definition of Kolmogorov extractor?
Our aim is to establish a tight connection between randomness extractors and Kol-
mogorov extractors. Randomness extractors typically have four parameters: input
length n, output length m, min-entropy bound k, and the error parameter ε. Except for
the error parameter, there is an obvious mapping of parameters between Kolmogorov
and randomness extractors. But there appears to be no natural notion of “error” in
Kolmogorov extraction. What is a choice for the parameter in the definition of Kol-
mogorov extractor analogous to the error parameter? Our theorems indicate that the
dependency is a good choice.

3. THE EQUIVALENCE

3.1. Kolmogorov Extractor is a Randomness Extractor

In this section we show that for appropriate settings of parameters, a Kolmogorov
extractor is also a randomness extractor. First we will give a simple argument for the
special case when the dependency parameter is O(log n). In this case we get a inverse
polynomial error for the randomness extractor. We will only give a sketch of the proof
since the subsequent theorem for the general case subsumes this case.

A Special Case. The proof of this special case is a simple application of the following
well-known coding theorem.

THEOREM 3.1 (CODING THEOREM). Let D be a probability distribution over {0, 1}∗
that is computable by a program P. Then there is a constant c such that

1
2K(x) ≥ c

2|P| D(x).

THEOREM 3.2. Let f be a (n, m, k, α) Kolmogorov extractor with α = O(log n). Then
f is a (n, m, k′, ε) almost randomness extractor where k′ = k+O(log n) and ε = 1/poly(n).
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PROOF. (Sketch). Let c be the constant associated with the Kolmogorov extractor f .
That is, K( f (x, y)) ≥ m− c log n−dep(xy) provided K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ α.

We will show that for every pair of flat distributions X and Y with min-entropy k′,
f (X , Y ) is ε-close to a nice distribution with min-entropy at least m− (c + 6) log n. Then
by Theorem 2.6, it will follow that f is an almost randomness extractor for min-entropy
k′. For the purpose of contradiction, suppose there are flat distributions X and Y with
min-entropy k′ so that f (X , Y ) is ε far from all nice distributions with min-entropy
at least m − (c + 6) log n. Let X and Y be the first such distributions (in some fixed
ordering of distributions).

The number of flat distributions with min-entropy k′ is finite, and the number of
nice distributions over �m with min-entropy at least m− (c+6) log n is also finite. Thus
there is a program p which, given n as input, produces the distributions X and Y .
Thus the size of p is at most 2 log n for large enough n. Let D denote the distribution
f (X , Y ).

The idea of the rest proof is as follows. Consider the following set S.

S = {〈x, y〉 ∈ X × Y | K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ 10 log n}
First using a simple counting argument it is easy to show that S is a large set and

hence probability of the complement of S with respect to X × Y is small. Since f is a
Kolmogorov extractor, for all elements (x, y) ∈ S, K(z) is close to m where z = f (x, y).
Since D is computable, by the coding theorem, it follows that D(z) ≤ m − O(log n).
Thus, except for a small fraction of strings in f (S), the strings in the range of f satisfy
the min-entropy condition. Hence D must be close to a distribution with min-entropy
m − c log n.

3.1.1. The General Case. We now state and prove the theorem for a general setting of
parameters. The proof follows the line of argument of the proof of the special case. But
we will use Lemma 2.7 instead of the coding theorem.

THEOREM 3.3. Let f be a (n, m, k, α) Kolmogorov extractor. Then f is an (n, m, k′, ε)
almost randomness extractor where:

(a) if k′ − k > α − 4 log n + 1, then ε ≤ 1
2α−4 log n−1 .

(b) if k′ − k ≤ α − 4 log n + 1, then ε ≤ 1
2k′−k−2 .

PROOF. Let c be the constant associated with the Kolmogorov extractor f . That is,
K( f (x, y)) ≥ m − c log n − dep(xy) provided K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ α.

We will show that for every pair of flat distributions X and Y with min-entropy
k′, f (X , Y ) is ε-close to a nice distribution with min-entropy at least m − (c + 9) log n
where ε is as given in the statement of the theorem. Then by Theorem 2.6, it will
follow that f is an almost randomness extractor for min-entropy k′. For the purpose of
contradiction, suppose there are flat distributions X and Y with min-entropy k′ so that
f (X , Y ) is ε far from all nice distribution with min-entropy at least m − (c + 9) log n.
Let X and Y be the first such distributions (in some fixed ordering of distributions).
For simplicity, we will denote the supports of distributions X and Y also by X and Y ,
respectively. Let D denote the distribution f (X , Y ). D is a nice distribution.

The number of flat distributions with min-entropy k′ is finite, and the number of
nice distributions over �m with min-entropy at least m− (c+9) log n is also finite. Thus
there is a program p which, given n, c and a code for f as input, produces the flat
distributions X and Y by brute-force search method. The size of p is at most 2 log n for
large enough n. We will spilt the rest of the proof into two cases.
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Case (a) k′ − k > α − 4 log n + 1. Define the “good set” S as

S = {〈x, y〉 ∈ X × Y | K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ α}.
Let S′ be the complement of S within X × Y . That is S′ = X × Y \ S. We will bound

the size of S′. Observe that S′ is a subset of the union of following sets.

S1 = {〈x, y〉 ∈ X × Y | K(x) < k}

S2 = {〈x, y〉 ∈ X × Y | K(y) < k}
S3 = {〈x, y〉 ∈ X × Y | dep(xy) > α}

Clearly, sizes of S1 and S2 are bounded by 2k+k′
. We will bound |S3|. Since the

program p produces X and Y and |X | = |Y | = 2k′
, every string in X ∪Y has Kolmogorov

complexity at most k′ + 2 log n. Thus for any 〈x, y〉 ∈ S3 we have that K(xy) = K(x) +
K(y) − dep(xy) ≤ 2k′ + 4 log n − α. So |S3| ≤ 22k′+4 log n−α. Hence |S′| ≤ |S1 ∪ S2 ∪ S3| ≤
|S1| + |S2| + |S3| ≤ 2k+k′+1 + 22k′+4 log n−α. Since k′ − k > α − 4 log n + 1, this sum is
≤ 22k′+4 log n−α+1. Thus we have the following bound on the probability of S′.

CLAIM 3.4. If k′ − k > α − 4 log n + 1 then PrX×Y (S′) ≤ 1
2α−4 log n−1 .

We assumed that f is not an almost randomness extractor. That is the distribution
is ε-far from any nice distribution with min-entropy m − (c + 9) log n. By Lemma 2.7,
there is a set U ⊆ �m of size 2m−α−(c+4) log n such that D(U) > 1/2α−5 log n. Since a
program of size 2 log n produces distributions X and Y and f is computable, there
is a program of size at most 3 log n that produces the set U. Thus for all u ∈ U,
K(u) < m − α − c log n.

Since PrX×Y (S′) ≤ 1
2α−4 log n−1 ≤ 1

2α−5 log n and D(U) > 1
2α−5 log n , there must exist a tuple

〈x, y〉 ∈ S so that f (x, y) ∈ U and for this tuple we have K( f (x, y)) < m − α − c log n.
This is a contradiction since f is a Kolmogorov extractor and for all elements 〈x, y〉 ∈ S,
K( f (x, y)) ≥ m − dep(xy) − c log n ≥ m − α − c log n.

Case (b) k′ − k ≤ α − 4 log n + 1. The proof is very similar. Define the “good set” S as

S = {〈x, y〉 ∈ X × Y | K(x) ≥ k, K(y) ≥ k, and dep(xy) ≤ k′ − k + 4 log n}.
In this case, we can bound the size of S′ (the complement of S within X × Y ) by

considering the following sets.

S1 = {〈x, y〉 ∈ X × Y | K(x) < k}
S2 = {〈x, y〉 ∈ X × Y | K(y) < k}

S3 = {〈x, y〉 ∈ X × Y | dep(xy) > k′ − k + 4 log n}
Sizes of S1 and S2 are bounded by 2k+k′

. We will bound |S3|. Since the program p
produces X and Y and |X | = |Y | = 2k′

, every string in X ∪ Y has Kolmogorov complexity
at most k′ + 2 log n. Thus for any 〈x, y〉 ∈ S3 we have that K(xy) = K(x) + K(y) −
dep(xy) ≤ 2k′ + 4 log n − (k′ − k + 4 log n) = k′ + k. So |S3| ≤ 2k′+k. Hence |S′| ≤ |S1| +
|S2| + |S3| ≤ 2k+k′+1 + 2k′+k ≤ 2k+k′+2. Thus in this case we have the following bound on
the probability of S′.

CLAIM 3.5. If k′ − k ≤ α − 4 log n + 1 then PrX×Y (S′) ≤ 1
2k′−k−2 .
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We assumed that distribution D is ε-far from any nice distribution with min-entropy
m − (c + 9) log n. By Lemma 2.7, there is a set U ⊆ �m of size 2m−(k′−k+4 log n)−(c+4) log n

such that D(U) > 1/2k′−k−log n. Since a program of size 2 log n produces distributions
X and Y and f is computable, there is a program of size at most 3 log n that pro-
duces the set U. Thus for all u ∈ U, K(u) < m − (k′ − k + 4 log n) − c log n. But since
PrX×Y (S′) ≤ 1

2k′−k−2 ≤ 1
2k′−k−log n and D(U) > 1

2k′−k−log n , there must exist a tuple 〈x, y〉 ∈ S so
that f (x, y) ∈ U. This contradicts the fact that f is a Kolmogorov extractor with the
prescribed parameters.

3.2. Randomness Extractor is a Kolmogorov Extractor

In this subsection we show that an almost randomness extractor is also a Kolmogorov
extractor. We follow the line of proof presented in Fortnow et al. [2011] where it is
shown that the construction of a multisource extractor due to Barak et al. [2006] is
also a Kolmogorov extractor. Here we note that in fact the argument works even for
almost randomness extractors.

THEOREM 3.6. An (n, m, k, ε) almost extractor is also a (n, m, k′, α) Kolmogorov ex-
tractor for α < log 1

ε
− 6 log n and k′ = k + 3 log n.

PROOF. Let f : {0, 1}n × {0, 1}n → {0, 1}m be an (n, m, k, ε) almost extractor. Let c be
the the associated constant. That is, the min-entropy guarantee of the output of f is
m − c log n.

Let x1 and x2 be two strings with K(x1) = k1 ≥ k′, K(x2) = k2 ≥ k′ and dep(x1x2) ≤ α.
Let X1 and X2 be subsets of {0, 1}n with Kolmogorov complexity at most k1 and k2
respectively. That is, X1 = {x ∈ {0, 1}n|K(x) ≤ k1} and X2 = {x ∈ {0, 1}n|K(x) ≤ k2}.
We will also use X1 and X2 to denote the flat distributions that put uniform weight
on sets X1 and X2 respectively (in the next section, we give specific notation for these
distributions).

For t = m − dep(x1x2) − (c + 6) log n, let T ⊆ {0, 1}m be the set of strings with Kol-
mogorov complexity at most t. That is, T = {z | K(z) < t}. We will show that for all u, v
so that f (u, v) ∈ T, K(uv) < k1 + k2 − dep(x1x2). This will show the theorem as this will
imply f (x1, x2) �∈ T and hence K( f (x1, x2)) > m − dep(x1x2) − (c + 6) log n.

CLAIM 3.7. For all u ∈ X1 and v ∈ X2 so that f (u, v) ∈ T, K(uv) < k1+k2 −dep(x1x2).

PROOF. (Of Claim) It is clear that |Xi| ≤ 2ki. Since each string in the set 0(n−k){0, 1}k

has Kolmogorov complexity ≤ k + 2 log n+ O(log log n) ≤ ki (for large enough n), we also
have that |Xi| ≥ 2k. Thus PrXi(x) ≤ 1

2k for any x ∈ Xi, Xi has min-entropy at least k
and f works for X1 × X2.

Consider the output distribution f (X1, X2) on {0, 1}m. Let us call this distribution
D. Since f is an almost extractor the distribution D is ε-close to a distribution with
min-entropy m − c log n.

Since |T| ≤ 2t = 2m−dep(x1x2)−(c+6) log n and D is ε-close to a distribution with min-
entropy m − c log n, we have the following.

PrD(T) ≤ |T|
2m × nc + ε

≤ 2−dep(x1x2)−6 log n + 2−α−6 log n

≤ 2−dep(x1x2)−6 log n+1

The last two inequalities follow because α ≤ log( 1
ε
) − 6 log n and dep(x1x2) ≤ α.
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Consider the set S = f −1(T) ∩ X1 × X2 ⊆ {0, 1}n × {0, 1}n. We will first bound |S|.
Every tuple from S gets a weight of ≥ 1/2k1+k2 according to the joint distribution X1 ×
X2. Thus we have

|S|
2k1+k2

≤ Pr(X1,X2)(S)

= PrD(T)
≤ (2−dep(x1x2)−6 log n+1)

Hence |S| ≤ 2k1+k2−dep(x1x2)−6 log n+1.
The sets X1, X2, and T are recursively enumerable and f is computable. Hence

there is a program that given n, k1, k2, dep(x1x2), a code for f , and c, enumerates the
elements of S. Hence for any 〈u, v〉 ∈ S, K(uv) ≤ log |S| + 4 log n+ O(log log n) ≤ log |S| +
5 log n for large enough n. Since |S| ≤ 2k1+k2−dep(x1x2)−6 log n+1, K(uv) < k1 + k2 − dep(x1x2)
and the claim follows.

3.3. The Error Parameter vs. the Dependency Parameter

Theorem 3.6 suggests that there is a nice logarithmic relation between error of an
almost extractor and the dependency parameter of the corresponding Kolmogorov ex-
tractor. In particular, in Theorem 3.6, we show that an (n, m, k, ε) almost randomness
extractor is a (n, m, k′, α) Kolmogorov extractor for α = log(1/ε)− O(log n) for k′ slightly
larger than k (k′ = k + O(log n)). On the other hand, the parameters we get in the proof
of the converse direction (Kolmogorov extractor ⇒ randomness extractor) are not fully
satisfactory. Ideally we would like to prove that every (n, m, k, α) Kolmogorov extractor
is an (n, m, k′, ε) almost randomness extractor with k′ = k+ O(log n) and ε = 1/2α−O(log n)

which will be a true converse to Theorem 3.6. We note that this is not possible in
general. In particular, we show that for a (n, m, k, α) Kolmogorov extractor to be an
(n, m, k′, ε) almost randomness extractor with ε = 2α−O(log n), k′ has to be greater than
k + α (up to a log factor).

THEOREM 3.8. Let f be a (n, m, k, α) Kolmogorov extractor. Then there exists a
computable function g which is also a (n, m, k, α) Kolmogorov extractor but g is not
an (n, m, k′, ε) almost randomness extractor for ε < 1

2k′−k+4 log n for any k′ where k′ <

m + k − c log n for all constants c.

PROOF. Let f be a (n, m, k, α) Kolmogorov extractor. Consider the set U ⊆ {0, 1}n

defined as U = {0, 1}k−3 log n0n−k+3 log n. For any string x ∈ U, K(x) < k. Define the
function g as follows.

g(x, y) = 0m if x ∈ U
= f (x, y) otherwise.

Since membership in the set U is easy to decide and f is computable, g is com-
putable. Also, by definition of g, for all pair of strings x, y so that K(x) ≥ k,
K(y) ≥ k and dep(x, y) ≤ α, g(x, y) = f (x, y). Hence g is a (n, m, k, α) Kolmogorov
extractor.

Now consider two flat distributions X and Y of size 2k′
such that U ⊆ X . Let D

denote the distribution g(X × Y ). Notice that PrD(0m) ≥ PrX (x ∈ U) ≥ 1
2k′−k+3 log n .
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We will show that for any c, D is 1
2k′−k+4 log n away from any distributions with min-

entropy m − c log n, provided k′ ≤ m + k − c log n for any c.
For the purpose of contradiction, suppose there is a distribution D′ of min-entropy

m − c log n so that |D − D′| ≤ 1
2k′−k+4 log n . Then

PrD′ (0m) ≤ PrD(0m) +
1

2k′−k+4 log n

≤ 1
2m−c log n +

1
2k′−k+4 log n

<
1

2k′−k+3 log n
.

This is a contradiction.

4. A COMPLETE DISTRIBUTION FOR RANDOMNESS EXTRACTION

For integers k and n, let Mn
k′ denote the distribution that places uniform weight on

the set {x ∈ {0, 1}n | K(x) ≤ k}. That is Mn
k is uniform over all the strings with

Kolmogorov complexity ≤ k. As n will be clear from the context, we will omit n
from the notation and call it Mk. We show that Mk is a complete distribution for
randomness extraction in the sense that a computable function f is an almost ran-
domness extractor if and only if it extracts randomness from two independent copies
of Mk.

This result is motivated by the proof of the equivalence theorem. Notice that in
the proof that a randomness extractor f is also a Kolmogorov extractor, we essentially
show that if f extracts randomness from the class of distributions {Ml}l≥k, then it is a
Kolmogorov extractor. The other implication shows that if f is a Kolmogorov extractor
then it is also a randomness extractor. Thus intuitively we get that the class {Ml}l≥k
is complete. Next we give a simple argument for completeness.

THEOREM 4.1. A computable function f is an (n, m, k, ε) almost extractor if and only
if there is a constant c so that f (Mk′ ×Mk′) is ε ′ close to a distribution with min-entropy
m − c log n where k′ = k + 2 log n and ε ′ = ε/n4.

PROOF. The set 0(n−k){0, 1}k is a subset of Mk since every string in this set has Kol-
mogorov complexity ≤ k + log n + O(log log n) < k′. Hence Mk′ has min-entropy ≥ k
and since f is an almost extractor for min-entropy k it should also extract randomness
from Mk′ × Mk′ .

For the other direction, let f be a function that extracts from Mk′ × Mk′ . Hence
there is a constant c so that f (Mk′ ×Mk′ ) is ε ′ close to a distribution with min-entropy
m − c log n.

For the sake of contradiction suppose f is not an almost extractor for min-entropy
k. Let X and Y be first two flat distributions over {0, 1}n for which the distribution
D = f (X , Y ) is ε-far from all nice distributions with min-entropy m − (c + 4) log n.
Observe that there is a program p which, given n, c, and a code for f , produces the
distributions X and Y . Thus for any x ∈ X , we have K(x) ≤ k + log n+ O(log log n) ≤ k′.
Similarly for y ∈ Y . Hence we have the following claim.

CLAIM 4.2. For all x ∈ X , K(x) ≤ k′. Similarly for all y ∈ Y, K(y) ≤ k′. Hence
X ⊆ Mk′ and Y ⊆ Mk′ .
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We will show that for all T ⊆ {0, 1}m, PrD(T) ≤ |T|
2m × nc+4 + ε. This suffices to show

that D is ε-close to a distribution with min-entropy m − (c + 4) log n.

PrD(T) = PrX×Y ( f −1(T) ∩ X × Y )

=
| f −1(T) ∩ X × Y |

22k

≤ Pr f (Mk×Mk)(T) × n4

≤ (
|T|
2m nc + ε ′) × n4

=
|T|
2m nc+4 + ε

The inequality second from the last is because of the assumption that f (Mk × Mk)
is ε ′ close to a distribution with min-entropy m − c log n.
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LI, M. AND VITÁNYI, P. 1991. Learning simple concepts under simple distributions. SIAM J. Comput. 20, 5,
911–935.
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