
comput. complex. 23 (2014), 85 – 98

c© Springer Basel 2012

1016-3328/14/010085-14

published online November 6, 2012

DOI 10.1007/s00037-012-0050-8 computational complexity

REACHFEWL = REACHUL

Brady Garvin, Derrick Stolee,

Raghunath Tewari, and N. V. Vinodchandran

Abstract. We show that two complexity classes introduced about two
decades ago are unconditionally equal. ReachUL is the class of problems
decided by nondeterministic log-space machines which on every input
have at most one computation path from the start configuration to any
other configuration. ReachFewL, a natural generalization of ReachUL,
is the class of problems decided by nondeterministic log-space machines
which on every input have at most polynomially many computation
paths from the start configuration to any other configuration. We show
that ReachFewL = ReachUL.

Keywords. Log-space complexity, unambiguous computations, graph
reachability.

Subject classification. 68Q05, 68Q10, 68Q15, 68Q17.

1. Introduction

A nondeterministic machine is said to be unambiguous if for every
input there is at most one accepting computation. UL is the class
of problems decided by unambiguous log-space nondeterministic
machines. Is this restricted version of log-space nondeterminism
powerful enough to capture general log-space nondeterminism (the
complexity class NL)? Recent research gives ample evidence to
believe that the conjecture NL = UL is true (Allender et al. 1999;
Bourke et al. 2009; Reinhardt & Allender 2000; Thierauf & Wagner
2009). However, researchers have yet to find a proof of this equality.

This paper considers a restricted version of log-space unam-
biguity called reach-unambiguity. A nondeterministic machine is
reach-unambiguous if, for any input and for any configuration c,

86 Garvin et al. cc 23 (2014)

there is at most one path from the start configuration to c. (The
prefix ‘reach’ in the term indicates that the property should hold for
all configurations reachable from the start configuration). ReachUL
is the class of languages that are decided by log-space bounded
reach-unambiguous machines, as defined by Buntrock et al. (1991).

ReachUL is a natural and interesting subclass of UL. As defined,
ReachUL is a ‘semantic’ class. However, unlike most other seman-
tic classes, ReachUL has a complete problem (see Lange 1997). In
particular, Lange showed that the directed graph reachability prob-
lem associated with reach-unambiguous computations is ReachUL-
complete. Subsequently, Allender & Lange (1998) showed that
this reachability problem can be solved deterministically in space
O(log2 n/ log log n) which is asymptotically better than Savitch’s
O(log2 n) bound for the general reachability problem. Buntrock
et al. (1991) showed that ReachUL is also known to be closed under
complement.

The notion of fewness is a natural generalization of unambigu-
ity that is of interest to researchers (see Allender 2006; Àlvarez
& Jenner 1993; Buntrock et al. 1992, 1993, 1991; Pavan et al.
2010). Since an unrestricted log-space nondeterministic machine
can have exponential number of accepting computations, few here
means polynomially many. FewL is the class of problems decided by
nondeterministic log-space machines which on any input have at
most a polynomial number of accepting computations. Thus, FewL
extends the class UL in a natural way. The analogous extension
of ReachUL is the class ReachFewL–the class of problems decided
by nondeterministic log-space machines which on any input have
at most polynomial number of computation paths from the start
configuration to any configuration (not just the accepting configu-
ration). Can fewness be simulated by unambiguity? In particular,
is FewL = UL? This is an interesting open question and a solution
is likely to have implications on the NL versus UL question.

In this paper, we show that for reach-unambiguity, it is indeed
the case that fewness does not add any power to unambiguity
for log-space computations. That is, we show that ReachFewL=
ReachUL. This theorem improves a recent upper bound that
ReachFewL ⊆ UL ∩ coUL shown in Pavan et al. (2010).

cc 23 (2014) ReachFewL = ReachUL 87

Theorem 1.1 (Main Theorem). ReachFewL = ReachUL.

Proof outline. The proof is based on the well-known hashing tech-
nique due to Fredman et al. (1984) (see Theorem 2.11). Our goal
is to reduce a ReachFewL computation to a ReachUL computa-
tion. Consider the configuration graph of a ReachFewL compu-
tation and consider the weighting scheme w where the ith edge
of this graph gets a weight 2i. With respect to w, the graph is
distance isolated (two distinct paths have different weights). By
definition, the configuration graph of a ReachFewL computation
has at most polynomially many paths from the start configura-
tion to any other configuration. Hence, by the FKS-hashing theo-
rem, there is an O(log n) bit prime number p so that with respect
to the weight function wp the graph is distance isolated, where
wp(e) = w(e) (mod p). Now a standard layering technique will
make this new weighted graph reach-unambiguous. This argument
works for primes that are ‘good’. For rejecting a bad prime, we
use the result from Lange (1997) that checking whether a graph is
reach-unambiguous with respect to a specific vertex can be done
in ReachUL. Thus, we can cycle through all O(log n) bit numbers
one by one, check whether it is prime, and if yes, check whether
it is a good prime. For the first such good prime, we are guaran-
teed that the corresponding layered graph is reach-unambiguous.
All these computations can be performed in log-space, and hence,
we get that ReachFewL log-space Turing reduces to ReachUL. The
theorem follows since ReachUL is closed under log-space Turing
reductions (see Buntrock et al. 1991).

As a corollary to the main theorem, we get a new upper bound
for the reachability problem over certain class of graphs that beats
Savitch’s O(log2 n) space bound. Allender & Lange (1998) showed
that the reachability problem over reach-unambiguous graphs can
be solved in DSPACE(log2 n/ log log n). Our main theorem implies
the same upper bound for the reachability problem over directed
graphs that are polynomially ambiguous.

Corollary 1.2. The s-t reachability problem over graphs with
a promise that there are at most polynomially many paths
from s to any other vertex can be solved in deterministic space
O(log2 n/ log log n).

88 Garvin et al. cc 23 (2014)

The main theorem and the corollary can be slightly extended to
get a o(log2 n)-space algorithm for the reachability problem over
graphs with at most 2o(log n

√
log log n) paths from the start vertex to

any other vertex.

2. Definitions and necessary results

We only introduce the necessary definitions and notation related
to log-space bounded complexity classes. For other standard com-
plexity-theoretic definitions and notation that we use refer to the
text book by Arora & Barak (2009).

In space complexity investigations, it is standard to view the
computations as directed graphs on configurations. Given a Turing
machine M and an input x, GM,x will denote the configuration
graph of M on x.

L denotes deterministic log-space and NL denotes nondeter-
ministic log-space. For a language A, LA denotes the class of
languages recognized by deterministic log-space machines with an
oracle access to A. For a complexity class C, LC denotes the class
{LA | A ∈ C}.

We are interested in log-space unambiguous complexity classes.
There are mainly two versions of unambiguity that have been stud-
ied in the literature. The most general version gives rise to the class
UL which is defined as follows.

Definition 2.1. A language A is in the class UL if there exists a
nondeterministic log-space machine M accepting A such that, for
every instance x, M has at most one accepting computation on
input x.

The other form of log-space unambiguity that is studied in the
literature is called reach-unambiguity (see Buntrock et al. 1991;
Lange 1997). This notion gives rise to the class ReachUL. We
define reach-unambiguity as a general graph-theoretic notion.

Definition 2.2. Let G be a graph, s be a vertex in G, and k be
an integer. We say that G is k-reach-unambiguous with respect to
s if for all vertices x ∈ V (G), there are at most k paths from s to
x. If k = 1, we say G is reach-unambiguous with respect to s.

cc 23 (2014) ReachFewL = ReachUL 89

2.1. Definition and properties of ReachUL. Buntrock et al.
(1991) defined ReachUL and showed that this class is closed under
complement and log-space Turing reductions. Later, Lange (1997)
showed that ReachUL (defined slightly differently) has complete
problems. We will need these results to prove our main theorem.

Definition 2.3 (Buntrock et al. 1991). A language L is in
ReachUL if L is accepted by a nondeterministic log-space Turing
machine M such that, on any input x, M(x) has at most one
accepting path and, in addition, GM,x is reach-unambiguous with
respect to the start configuration.

Thus, ReachUL is a subclass of UL by definition. Buntrock
et al. also considered a variation of ReachUL, namely the class
of languages that are accepted by reach-unambiguous machines
without restricting the number of accepting paths. In particular,
the reach-unambiguous machine deciding a language in this class is
allowed to have more than one accepting computation each going
to a different accepting configuration. But they showed that the
resulting complexity class is same as ReachUL.

Lange (1997) considered ReachUL using the notation RUSPACE
(log n) (or RUL) and with a slightly different definition. For a
Turing machine M and input x, let sx denote the start config-
uration and tx denote the canonical accepting configuration (the
accepting configuration where the state is the unique accepting
state, all the tape heads are in the first cell of the respective tapes,
and all the work tape contents are blanks).

Definition 2.4 (Lange 1997). A language L is in RUSPACE
(log n) if L is accepted by a nondeterministic log-space Turing
machine M such that, on any input x, GM,x is reach-unambig-
uous with respect to the start configuration and (a) x ∈ L ⇒ there
is a path from sx to tx, (b) x �∈ L ⇒ there is no path from sx to tx.

In Lange’s definition, a string is accepted if there is a computation
path from the start configuration to a fixed accepting configura-
tion, while according to the definition of Buntrock et al, a string
is accepted if there is a path from the start configuration to some

90 Garvin et al. cc 23 (2014)

accepting configuration. It is easy to see that these two classes are
same.

Proposition 2.5. ReachUL = RUSPACE(log n).

Proof. It is clear that RUSPACE(log n) ⊆ ReachUL. To see the
other containment, let L be a language in ReachUL witnessed by a
reach-unambiguous machine M . Consider the machine M ′ which
on input x simulates M on x. If M reaches an accepting configura-
tion, M ′ moves to the canonical accepting configuration. Clearly,
M ′ accepts x if and only if M accepts x, and as M is reach-unam-
biguous, M ′ is also reach-unambiguous. Moreover, since M has
exactly one accepting computation path on positive instances, M ′

will also have exactly one path that leads to the canonical accept-
ing configuration on such instances. �

We will use the name ReachUL to state results involving
RUSPACE(log n) from the literature. Lange (1997) proved that the
graph reachability problem Lru defined below is log-space many-
one complete for ReachUL.

Lru = {〈G, s, t〉 | G is a directed graph, there is a path from

s to t, and G is reach-unambiguous with respect to s}.

Theorem 2.6 (Lange 1997). Lru is complete for ReachUL under
log-space many-one reductions.

The difficult part in the completeness proof is to show that Lru

is in ReachUL. Lange designed a clever ReachUL algorithm that
checks whether a graph is reach-unambiguous with respect to the
start vertex. We will use this algorithm in the proof of our main
theorem.

2.2. Closure properties of ReachUL. We will use the fact that
a log-space algorithm that queries a ReachUL language can be sim-
ulated in ReachUL. This is stated in Buntrock et al. (1991) without
a proof. Given the fact that ReachUL is closed under complement,
this is easy to prove. For the sake of completeness, we give a proof
here.

cc 23 (2014) ReachFewL = ReachUL 91

Lemma 2.7 (Buntrock et al. 1991). LReachUL = ReachUL.

We will use the fact that ReachUL is closed under complement.

Proposition 2.8 (Buntrock et al. 1991). ReachUL is closed under
complement.

Proof. (of Lemma 2.7). The containment ReachUL ⊆ LReachUL

is immediate. Let L be a language in LReachUL decided by a log-
space oracle Turing machine M with access to a ReachUL oracle O.
Since ReachUL is closed under complement, we can assume with-
out loss of generality that O is accepted by a reach-unambiguous
Turing machine N (a Turing machine whose configuration graph
on any input is reach-unambiguous) with three types of halting
configurations: ‘accept’, ‘reject’, and ‘?’ so that for any input y
(1) if y ∈ O then there is a unique computation path that leads to
an ‘accept’ configuration and all other computation paths lead to
a ‘?’ configuration and (2) if y �∈ O then there is a unique com-
putation path that leads to a ‘reject’ configuration and all other
computation paths lead to a ‘?’ configuration. Moreover, since
O ∈ ReachUL, on any input, there is at most one path from the
start configuration to any other configuration of N .

Consider the nondeterministic machine M ′ which on an input
x, simulates M(x) until a query configuration is reached with a
query, say y. At this point M ′ will save the current configuration
of M and simulate N(y) until it halts. If N(y) accepts y, then M ′

continues with the simulation of M with YES as the answer to the
query y; if N(y) rejects y, then M ′ continues with the simulation
of M with NO as the answer the query y; and if N(y) reaches a ‘?’
halting configuration then, M ′ rejects the computation and halts.
Finally M ′ accepts x if and only if M accepts x.

It is straightforward to verify that M ′(x) accepts if and only if
M(x) accepts and GM ′,x is reach-unambiguous with respect to the
start configuration. �

Definition 2.9. A language L is in ReachFewL if L is accepted
by a nondeterministic log-space Turing machine M such that, for
some polynomial q and for any input x, GM,x is q(|x|)-reach-unam-
biguous with respect to the start configuration.

92 Garvin et al. cc 23 (2014)

2.3. Converting graphs with a few paths to distance
isolated graphs.

Definition 2.10. Let G be a weighted graph on n vertices and
let s be a vertex of G. We say that G is distance isolated with
respect to s, if for every vertex v ∈ V (G) and weight d there is at
most one path of weight d from s to v, where weight of a path is
the sum of the weights on its edges.

We use the well-known hashing result due to Fredman, Komlós and
Szemerédi to convert a graph with polynomially many paths to a
distance isolated graph.

Theorem 2.11 (Fredman et al. 1984). For every constant c,
there is a constant c′ so that for every set S of n-bit integers with
|S| ≤ nc there is a c′ log n-bit prime number p so that for any
x �= y ∈ S x �≡ y (mod p).

Lemma 2.12. Let G be a graph on n vertices and let s be a vertex
of G. Let E(G) = {e1, e2, . . . , e�} be the set of edges of G. Let
q be a polynomial. If G is q(n)-reach-unambiguous with respect
to s, then there is a prime p ≤ nk, for some constant k, such
that the weight function wp : E(G) → {1, . . . , p} given by wp(ei) =
2i (mod p) defines a weighted graph Gwp which is distance isolated
with respect to s.

Proof. Let q(n) ≤ c1n
k1 for all n ≥ 1. Also let w be the

edge weight function that assigns the weight 2i to the edge ei, for
i ∈ [�]. Let Sv be the set of weights of all paths from s to v,
and S = ∪v∈V (G)Sv. Then, |S| ≤ c1n

k1+1. By Theorem 2.11 there
is a c′ log n-bit prime p, for some constant c′, such that for any
x �= y ∈ S x �≡ y (mod p). Then, with respect to the prime p, we
get the weight function wp, which defines the weighted graph Gwp ,
that is, distance isolated with respect to s. �

The graph Gwp in Lemma 2.12 can be converted to an
unweighted, distance isolated graph by replacing an edge having
weight � by a path of length �.

cc 23 (2014) ReachFewL = ReachUL 93

2.4. Converting distance isolated graphs to unambiguous
graphs. Given a distance isolated graph, we can form a reach-
unambiguous graph by applying a standard layering transforma-
tion.

Definition 2.13. Let G be a directed graph on n vertices. The
layered graph lay(G) induced by G is the graph on vertices V (G)×
{0, 1, . . . , n}, and for all edges (x, y) of G and i ∈ {0, 1, . . . , n− 1},
the edge (x, i) → (y, i + 1) is in lay(G).

Lemma 2.14. If G is an acyclic and distance isolated graph with
respect to a vertex s, then lay(G) is reach-unambiguous with
respect to (s, 0), and there is a path of length d from s to v in
G if and only if there is a path from (s, 0) to (v, d) in lay(G).

Proof. Since all edges in lay(G) pass between consecutive lay-
ers, paths of length d from s to v in G are in bijective correspon-
dence with paths from (s, 0) to (v, d) in lay(G). Since there exists
at most one path of each length from s to any vertex v in G, there
exists at most one path from (u, 0) to any other vertex (v, d) in
lay(G). �

3. ReachFewL = ReachUL

We have sufficient tools to prove Theorem 1.1.

Theorem 3.1. ReachFewL ⊆ ReachUL.

Proof. Let L be a language in ReachFewL. Then there is a con-
stant c and a nondeterministic log-space machine M deciding L,
so that for any input x, GM,x has at most |x|c paths from the start
configuration to any other configuration. Note that, without loss
of generality, we can assume that there is a single accepting config-
uration for a ReachFewL computation. Thus, in GM,x, let s be the
vertex corresponding to the start configuration and t be the ver-
tex corresponding to the accepting configuration. For determining

94 Garvin et al. cc 23 (2014)

membership of x in L, we need to decide whether there is a path
from s to t in GM,x.

Input: (G, s, t) such that G has at most nc paths from s to
any other vertex.

Output: If there is a path from s to t in G output True,
else output False.

foreach p ∈ {1, . . . , nc′} such that p is a prime do
Define wp(ei) = 2i (mod p);

Construct Gwp ;

Construct lay(Gwp);

foreach d ∈ {1, . . . , |V (Gwp)|} do
if 〈lay(Gwp), (s, 0), (t, d)〉 ∈ Lru then return True;

end

return False;

end

return False;

Algorithm 1: ReachFewSearch(G, s, t)

Consider the algorithm ReachFewSearch(G, s, t) given in Algo-
rithm 1. This is a log-space algorithm that queries the ReachUL
complete language Lru defined in Section 2. We will argue that
there is a path from s to t in GM,x if and only if ReachFew-
Search(GM,x, s, t) returns True. This will imply that ReachFewL ⊆
LReachUL. Since LReachUL equals ReachUL by Lemma 2.7, the theorem
will follow.

For the rest of the discussion by G, we mean GM,x. For constant
c, let c′ be the constant given by Theorem 2.11.

We say that a prime p is good, if Gwp is distance isolated. By
Lemma 2.12, there exists a good prime p ∈ {1, . . . , nc′}. For this
good prime, lay(Gwp) is reach-unambiguous with respect to (s, 0)
by Lemma 2.14. Moreover, there is a path from s to t in G, if and
only if there is a d such that there is a path from (s, 0) to (t, d)
in this layered graph. So if there is a path from s to t in G, for
this good prime 〈lay(Gwp), (s, 0), (t, d)〉 ∈ Lru and the algorithm
returns True. Note that for a prime p that is not good, lay(Gwp)

cc 23 (2014) ReachFewL = ReachUL 95

will not be reach-unambiguous and 〈lay(Gwp), (s, 0), (t, d)〉 �∈ Lru

for any d. �
Allender & Lange (1998) showed that ReachUL ⊆ DSPACE
(log2 n/ log log n) by showing Lru ∈ DSPACE(log2 n/ log log n). It
is not clear how to directly extend their techniques to ReachFewL.
However, our main result implies the same upper bound for the
reachability problem associated with ReachFewL computations.

Corollary 3.2. The s-t reachability problem over graphs with
a promise that there are at most polynomially many paths
from s to any other vertex can be solved in deterministic space
O(log2 n/ log log n).

3.1. Extension. Buntrock et al. (1993) investigated the class
ReachFewL using the notation NspaceAmbiguity(log n, nO(1)) which
is defined below.

Definition 3.3. For a space bound s and unambiguity parame-
ter a, a language L is said to be in the class NspaceAmbiguity(s(n),
a(n)) if L is accepted by an s(n) space bounded nondeterministic
Turing machine M , such that on any input x, GM,x is a(|x|)-reach-
unambiguous with respect to the start configuration.

Buntrock et al. (1993) showed that NspaceAmbiguity(s(n), a(n))
⊆ USPACE(s(n) log a(n)) (hence NspaceAmbiguity(log n,O(1)) ⊆
UL). This result was recently improved by Pavan et al. (2010) who
showed that NspaceAmbiguity(s(n), a(n)) ⊆ USPACE(s(n) + log
a(n)). Here we further improve this upper bound.

Definition 3.4. For a space bound s, a language L is said to
be in the class ReachUSPACE(s(n)) if L is accepted by an s(n)
space bounded nondeterministic Turing machine M , such that on
any input x, GM,x is reach-unambiguous with respect to the start
configuration.

The proof of the following theorem is identical to the proof of
Theorem 3.1 except for the parameters.

Theorem 3.5. NspaceAmbiguity(s(n), a(n))⊆ReachUSPACE(s(n)
+log a(n)).

96 Garvin et al. cc 23 (2014)

Proof. First using FKS-hashing with O(log a(n)) bit primes,
we can show that NspaceAmbiguity(s(n), a(n)) can be simulated
in DSPACE(s(n) + log a(n)) using Lru as an oracle (using Algo-
rithm 1 on the configuration graph of NspaceAmbiguity(s(n), a(n))
computation). Then, using identical arguments as in Lemma 2.7
(except for the parameters), it follows that DSPACE(s(n) +
log a(n))ReachUL ⊆ ReachUSPACE(s(n) + log a(n)). �

Allender & Lange (1998) showed that ReachUSPACE(s(n)) ⊆
DSPACE(log2 s(n)/ log log s(n)). Combining this result with the
above upper bound, we get a class of graphs for which the reach-
ability problem can be solved in deterministic space bound which
is asymptotically better than Savitch’s O(log2 n) bound.

Corollary 3.6. The s-t reachability problem in graphs where
the number of paths from the start vertex to any other vertex is
2o(log n

√
log log n) can be decided in DSPACE(o(log2 n)).

4. Discussion

Can we show that FewL = UL? Reinhardt & Allender (2000)
showed that the reachability problem for graphs where there is
a unique minimum length path from the source to any other vertex
can be solved in UL. Given the configuration graph G of a FewL
computation, the hashing lemma implies that there exists a small
prime p so that in Gwp all the paths from the start configuration to
the accepting configuration will be of distinct weights. This implies
that Gwp have a unique minimum length path between this pair
of configurations. However, the UL algorithm mentioned above
requires that the input graph has a unique minimum length path
from the start vertex to any other vertex, not just the terminat-
ing vertex. Managing this gap appears to be a serious technical
difficulty for showing FewL=UL.

Acknowledgements

We thank Eric Allender for pointing to an error in an earlier ver-
sion of the paper. We thank Tyler Seacrest for discussions in the
Advanced Complexity course at UNL which led to the main result

cc 23 (2014) ReachFewL = ReachUL 97

in this paper. We thank the second reviewer for pointing out a
subtle difference between the definitions of ReachUL (defined in
Buntrock et al. 1991) and RUSPACE(log n) (defined in Lange 1997).
We thank the reviewers for valuable comments that improved the
presentation of the paper.

References

Eric Allender (2006). NL-printable sets and nondeterministic Kol-
mogorov complexity. Theoretical Computer Science 355(2), 127–138.

Eric Allender & Klaus-Jörn Lange (1998). RUSPACE(log n) ⊆
DSPACE(log2 n/ log log n). Theory of Computing Systems 31, 539–550.

Eric Allender, Klaus Reinhardt & Shiyu Zhou (1999). Isola-
tion, Matching, and Counting Uniform and Nonuniform Upper Bounds.
Journal of Computer and System Sciences 59(2), 164–181. ISSN 0022-
0000.

Carme Àlvarez & Birgit Jenner (1993). A very hard log-space
counting class. Theoretical Computer Science 107, 3–30.

Sanjeev Arora & Boaz Barak (2009). Computational Complexity
- A Modern Approach. Cambridge University Press. ISBN 978-0-521-
42426-4.

Chris Bourke, Raghunath Tewari & N. V. Vinodchandran

(2009). Directed Planar Reachability Is in Unambiguous Log-Space.
ACM Transactions on Computation Theory 1(1), 1–17.

Gerhard Buntrock, Carsten Damm, Ulrich Hertrampf &
Christoph Meinel (1992). Structure and Importance of Logspace-
MOD Class. Mathematical Systems Theory 25(3), 223–237.

Gerhard Buntrock, Lane A. Hemachandra & Dirk Siefkes

(1993). Using Inductive Counting to Simulate Nondeterministic Com-
putation. Information and Computation 102(1), 102–117.

Gerhard Buntrock, Birgit Jenner, Klaus-Jörn Lange &
Peter Rossmanith (1991). Unambiguity and fewness for logarithmic
space. In Proceedings of the 8th International Conference on Funda-
mentals of Computation Theory (FCT’91), Volume 529 Lecture Notes
in Computer Science, 168–179. Springer-Verlag.

98 Garvin et al. cc 23 (2014)

Michael L. Fredman, János Komlós & Endre Szemerédi (1984).
Storing a Sparse Table with O(1) Worst Case Access Time. Journal of
the ACM 31(3), 538–544.

Klaus-Jörn Lange (1997). An Unambiguous Class Possessing a Com-
plete Set. In Proceedings of the 14th Annual Symposium on Theoretical
Aspects of Computer Science (STACS’97), 339–350.

A. Pavan, Raghunath Tewari & N. V. Vinodchandran (2010).
On the Power of Unambiguity in Logspace To appear in Computational
Complexity.

Klaus Reinhardt & Eric Allender (2000). Making nondetermin-
ism unambiguous. SIAM Journal on Computing 29(4), 1118 – 1131.
ISSN 0097-5397.

Thomas Thierauf & Fabian Wagner (2009). Reachability in K3,3-
Free Graphs and K5-Free Graphs Is in Unambiguous Log-Space. In
Proceedings of the 26th International Conference on Fundamentals of
Computation Theory (FCT’09), 323–334.

Manuscript received 9 May 2011

Brady Garvin

Department of Computer Science
and Engineering,

University of Nebraska-Lincoln,
Lincoln, NE 68588, USA.
bgarvin@cse.unl.edu

Derrick Stolee

Department of Computer Science
and Engineering,

University of Nebraska-Lincoln,
Lincoln, NE 68588, USA.
dstolee@cse.unl.edu

Raghunath Tewari

Department of Computer Science
and Engineering,

Indian Institute of Technology,
Kharagpur,

Kharagpur 721302, India.
raghunath@cse.iitkgp.ac.in

N. V. Vinodchandran

Department of Computer Science
and Engineering,

University of Nebraska-Lincoln,
Lincoln, NE 68588, USA.
vinod@cse.unl.edu

	ReachFewL = ReachUL
	Introduction
	Definitions and necessary results
	Definition and properties of ReachUL
	Closure properties of ReachUL
	Converting graphs with a few paths to distance isolated graphs
	Converting distance isolated graphs to unambiguous graphs

	ReachFewL= ReachUL
	Extension

	Discussion
	Acknowledgements
	References

