
Information and Computation 209 (2011) 627–636

Contents lists available at ScienceDirect

Information and Computation

j o u r n a l h o m e p a g e : w w w . e l s e v i e r . c o m / l o c a t e / i c

Extracting Kolmogorov complexity with applications to dimension

zero-one laws

Lance Fortnowa,1, John M. Hitchcockb,2, A. Pavan c,∗,3, N.V. Vinodchandrand,4, Fengming Wange,5

a
Department of Computer Science, University of Chicago, USA

b
Department of Computer Science, University of Wyoming, USA

c
Department of Computer Science, Iowa State University, USA

d
Department of Computer Science and Engineering, University of Nebraska-Lincoln, USA

e
Department of Computer Science, Rutgers University, USA

A R T I C L E I N F O A B S T R A C T

Article history:

Received 29 September 2009

Revised 17 September 2010

Available online 25 December 2010

We apply results on extracting randomness from independent sources to “extract” Kol-

mogorov complexity. For any α, ε > 0, given a string x with K(x) > α|x|, we show how to

use a constant number of advice bits to efficiently compute another string y, |y| = �(|x|),
with K(y) > (1 − ε)|y|. This result holds for both unbounded and space-bounded Kol-

mogorov complexity.

We use the extraction procedure for space-bounded complexity to establish zero-one

laws for the strong dimensions of complexity classes within ESPACE. The unbounded ex-

traction procedure yields a zero-one law for the constructive strong dimensions of Turing

degrees.

© 2010 Elsevier Inc. All rights reserved.

1. Introduction

Kolmogorov complexity quantifies the amount of randomness in an individual string. If a string x has Kolmogorov com-

plexitym, then x is often said to containm bits of randomness. Can we efficiently extract the Kolmogorov-randomness from

a string? That is, given x, is it possible to compute a string of length m that is Kolmogorov-random?

Vereshchagin and Vyugin showed that this is not possible in general [30], i.e., they showed that there is no algorithm

that can extract Kolmogorov complexity. Buhrman et al. [5] showed that if one allows a small amount of extra information

then Kolmogorov extraction is indeed possible. More specifically, they showed there is an efficient procedureA such that for

every x with Kolmogorov complexity αn, there exists a string ax , such that A(x, ax) outputs a nearly Kolmogorov-random

string whose length is close to αn. Moreover, the length of ax is O(log |x|), and contents of ax depend on x.

In this paper we show that we can extract Kolmogorov complexity with only a constant constant number of bits of ad-

ditional information. We give a polynomial-time computable procedurewhich takes x with an additional constant amount of

advice and outputs a nearly Kolmogorov-random stringwhose length is linear in |x|.We defer to Section 2 for the precise def-

inition of Kolmogorov complexity and other technical concepts. Formally, for anyα, ε > 0, given a string xwithK(x) > α|x|,
we show how to use a constant number of advice bits to compute another string y, |y| = �(|x|), in polynomial-time that

∗ Corresponding author.

E-mail addresses: fortnow@cs.uchicago.edu (L. Fortnow), jhitchco@cs.uwyo.edu (J.M. Hitchcock), pavan@cs.iastate.edu (A. Pavan), vinod@cse.unl.edu (N.V.

Vinodchandran), fengming@cs.rutgers.edu (F. Wang).
1 Research supported in part by NSF grants 0652601 and 0829754.
2 Research supported in part byNSF grants 0515313 and 0652601 and by anNWO travel grant. Part of this researchwas donewhile this authorwas on sabbatical

at CWI.
3 Research supported in part by NSF grants 0430807 and 0830479.
4 Research supported in part by NSF grants 0430991 and 0830730.
5 Research supported in part by NSF grant 0430807. Work done while this author was at Iowa State University.

0890-5401/$ - see front matter © 2010 Elsevier Inc. All rights reserved.

doi:10.1016/j.ic.2010.09.006

http://dx.doi.org/10.1016/j.ic.2010.09.006
http://www.sciencedirect.com/science/journal/08905401
www.elsevier.com/locate/ic
http://dx.doi.org/10.1016/j.ic.2010.09.006

628 L. Fortnow et al. / Information and Computation 209 (2011) 627–636

satisfies K(y) > (1 − ε)|y|. The number of advice bits depends only on α and ε, but the content of the advice depends on

x. This computation needs only polynomial time, and yet it extracts unbounded Kolmogorov complexity.

Our proofs use a construction of a multi-source extractor. Traditional extractor results [6,13,19,20,23–29,34] show how

to take a distribution with high min-entropy and some truly random bits to create a close to uniform distribution. A multi-

source extractor takes several independent distributions with high min-entropy and creates a close to uniform distribution.

Thus multi-source extractors eliminate the need for a truly random source. Substantial progress has been made recently in

the construction of efficient multi-source extractors [2,3,21,22]. In this paper we use the construction due to Barak et al. [2]

for our main result on extracting Kolmogorov complexity.

To make the connection, consider the uniform distribution on the set of strings x whose Kolmogorov complexity is at

most m. This distribution has min-entropy about m and x acts like a random member of this set. We can define a set of

strings x1, . . . , xk to be independent if K(x1 · · · xk) ≈ K(x1) + · · · + K(xk). By symmetry of information this implies

K(xi|x1, . . . , xi−1, xi+1, . . . , xk) ≈ K(xi). Suppose we are given independent Kolmogorov-random strings x1, . . . xk , each
of which has Kolmogorov complexitym. We view them as arising from k independent distributions each with min-entropy

m. We then argue that a multi-source extractor with small error can be used to output a nearly Kolmogorov-random string.

To extract the randomness from a single string x, we break x into a number of substrings x1, . . . , xl , and view each

substring xi as coming from a different random source. Of course, these substrings may not be independently random in the

Kolmogorov sense, thus we cannot view these strings as coming from independent sources. A useful concept is to quantify

the dependencywithin x as
∑l

i=1 K(xi)−K(x).We show that if the dependencywithin x is small, then the output of themulti-

source extractor on its substrings is a nearly Kolmogorov-random string. Another technical problem is that the randomness

in x may not be nicely distributed among the substrings; for this we need to use a small (constant) number of nonuniform

advice bits.

This result about extracting Kolmogorov-randomness also holds for polynomial-space bounded Kolmogorov complexity.

We apply this to obtain zero-one laws for the strong dimensions of certain complexity classes. Resource-bounded dimension

[14] and strong dimension [1] were developed as extensions of the classical Hausdorff and packing fractal dimensions to

study the structure of complexity classes. Dimension and strong dimension both refine resource-bounded measure and are

duals of each other inmanyways. Strong dimension is also related to resource-bounded category [11]. In this paper we focus

on strong dimension.

The strong dimension of each complexity class is a real number between zero and one inclusive.While there are examples

of nonstandard complexity classes with fractional dimensions [1], we do not know of a standard complexity class with this

property. Can a natural complexity class have a fractional dimension? In particular consider the class E. Determining its

strong dimensionwithin ESPACEwould imply amajor separation (either E �⊆ PSPACE or E �= ESPACE). However, we are able

to use our Kolmogorov-randomness extraction procedure to obtain a zero-one law ruling out the intermediate fractional

possibility. Formally, we show that the strong dimension Dim(E | ESPACE) is either 0 or 1. The zero-one law also holds for

various other complexity classes.

Our techniques also apply in the constructive dimension setting [15].Miller andNies [18] asked if it is possible to compute

a set of higher constructive dimension from an arbitrary set of positive constructive dimension. We answer the strong

dimension variant of this question in the negative, obtaining a zero-one law: for every Turing degree D, the constructive

strong dimension Dim(D) is either 0 or 1.

After the preliminary version of the paper appeared [7], there has been further work on the problem of Kolmogorov

extraction and relations between Kolmogorov extraction and randomness extraction [8,31–33]. Zimand [31] showed that

there is a computable function f such that if x and y are two n-bit strings and the dependency within xy is small, then f (x, y)
is close to being a Kolmogorov-random string. Hitchcock et al. [8] showed that every computable function that works as a

Kolmogorov extractor is also an almost randomness extractor.

2. Preliminaries

2.1. Kolmogorov complexity

We use � = {0, 1} to denote the binary alphabet. Let M be a Turing machine. Let f : N → N. For any x ∈ �∗, define
KM(x) = min{|π | | M(π) prints x}

and

KS
f
M(x) = min{|π | | M(π) prints x using at most f (|x|) space}.

There is a universal machine U such that for every machine M and every reasonable space bound f , there is some constant

c such that for all x, KU(x) ≤ KM(x) + c and KS
cf+c
U (x) ≤ KS

f
M(x) + c [12]. We fix such a machine U and drop the subscript,

writing K(x) and KSf (x), which are called the (plain) Kolmogorov complexity of x and f -bounded (plain) Kolmogorov complexity

of x. While we use plain complexity in this paper, our results also hold for prefix-free complexity.

The following definition quantifies the fraction of randomness in a string.

Definition 1. For a string x, the rate of x is rate(x) = K(x)/|x|. For a polynomial g, the g-rate of x is rateg(x) = KSg(x)/|x|.

L. Fortnow et al. / Information and Computation 209 (2011) 627–636 629

We denote the uniform distribution over �n with Un. Two distributions X and Y over �n, are ε-close if

1

2

∑
x∈�n

|X(x) − Y(x)| ≤ ε.

Definition 2. Let X be a distribution over �n and Sup(X) denotes the set {x ∈ �n | Pr[X = x] �= 0}. Themin-entropy of X is

min
x∈Sup(X)

log
1

Pr[X = x] .

2.2. Polynomial-space dimension

We now review the definitions of polynomial-space dimension [14] and strong dimension [1]. For more background we

refer to these papers and the survey paper [10].

Let s > 0. An s-gale is a function d : {0, 1}∗ → [0, ∞) satisfying 2sd(w) = d(w0) + d(w1) for all w ∈ {0, 1}∗.
For a language A, we write A�n for the first n bits of A’s characteristic sequence (according to the standard enumeration

of {0, 1}∗) and A� [i, j] for the subsequence beginning from the ith bit and ending at the jth bit. A language is sometimes also

called a sequence. An s-galed succeeds on a languageA if lim sup
n→∞ d(A�n) = ∞ andd succeeds strongly onA if lim inf

n→∞ d(A�n) =
∞. The success setofd is S∞[d] = {A | d succeeds on A}. The strong success setofd is S∞

str[d] = {A | d succeeds strongly on A}.
Definition 3. Let X be a class of languages.

(1) The pspace-dimension of X is

dimpspace(X) = inf

⎧⎨
⎩s

∣∣∣∣∣∣
there is a polynomial-space computable

s-gale d such that X ⊆ S∞[d]

⎫⎬
⎭ .

(2) The strong pspace-dimension of X is

Dimpspace(X) = inf

⎧⎨
⎩s

∣∣∣∣∣∣
there is a polynomial-space computable

s-gale d such that X ⊆ S∞
str[d]

⎫⎬
⎭ .

For every X , 0 ≤ dimpspace(X) ≤ Dimpspace(X) ≤ 1. An important fact is that ESPACE has pspace-dimension 1, which

suggests the following definitions.

Definition 4. Let X be a class of languages.

(1) The dimension of X within ESPACE is

dim(X | ESPACE) = dimpspace(X ∩ ESPACE).

(2) The strong dimension of X within ESPACE is

Dim(X | ESPACE) = Dimpspace(X ∩ ESPACE).

In this paperwewill use an equivalent definition of these dimensions in terms of space-boundedKolmogorov complexity.

Definition 5. Given a language L and a polynomial g the g-rate of L is

rateg(L) = lim inf
n→∞ rateg(L �n).

strong g-rate of L is

Rateg(L) = lim sup
n→∞ rateg(L �n).

Theorem 2.1 ([9,16]). Let poly denote all polynomials. For every class X of languages,

dimpspace(X) = inf
g∈poly

sup
L∈X

rateg(L).

and

Dimpspace(X) = inf
g∈poly

sup
L∈X

Rateg(L).

630 L. Fortnow et al. / Information and Computation 209 (2011) 627–636

3. Extracting Kolmogorov complexity

Barak et al. [2] gave an explicit multi-source extractor.

Theorem 3.1 ([2]). For every constant 0 < σ < 1, and c > 1 there exist l = poly(1/σ, c), a constant r and a computable

function E : ��n → �n such that if H1, . . . ,Hl are independent distributions over �n, each with min entropy at least σn, then

E(H1, . . . ,Hl) is 2
−cn-close to Un, where Un is the uniform distribution over �n. Moreover, E runs in time nr .

We show that this extractor can be used to produce nearly Kolmogorov-random strings from strings with high enough

complexity. The following notion of dependency is useful for quantifying the performance of the extractor.

Definition 6. Let x = x1x2 · · · xk , where each xi is an n-bit string. The dependencywithin x, dep(x), is defined as
∑k

i=1 K(xi)−
K(x).

Theorem 3.2. For every 0 < σ < 1 there exist constants n0, l > 1 and a polynomial-time computable function E such that for

every n ≥ n0, if x1, x2, . . . xl are n-bit strings with K(xi) ≥ σn, 1 ≤ i ≤ l, then

K(E(x1, . . . , xl)) ≥ n − 10l log n − dep(x),

where x = x1x2 · · · xl. We also have that the length of E(x1, . . . , xl) is n.

Proof. Let σ ′ = σ/2. By Theorem 3.1, there is a constant l and a polynomial-time computable multi-source extractor E such

that if H1, . . . ,Hl are independent sources each with min-entropy at least σ ′n, then E(H1, . . . ,Hl) is 2
−5n close to Un.

We show that this extractor also extracts Kolmogorov complexity. We prove by contradiction. Suppose the conclusion is

false, i.e.,

K(E(x1, . . . , xl)) < n − 10l log n − dep(x).

Let K(xi) = mi, 1 ≤ i ≤ l. Define the following sets:

Ii = {y | y ∈ �n, K(y) ≤ mi},
Z = {z ∈ �n | K(z) < n − 10l log n − dep(x)},
Small = {〈y1, . . . , yl〉 | yi ∈ Ii, and E(y1, . . . yl) ∈ Z}.

By our assumption 〈x1, · · · xl〉 belongs to Small. We use this to arrive at a contradiction regarding the Kolmogorov com-

plexity of x = x1x2 · · · xl . We first calculate an upper bound on the size of Small.

Every string from the set S = {xy |x ∈ ��σ ′n�, y = 0n−�σ ′n�} has Kolmogorov complexity at most �σ ′n� + c log n for

some fixed constant c. Since σ ′ = σ/2, when n is large enough this quantity is at most σn. Thus the set S is a subset of each

of Ii. Thus the cardinality of each of Ii is at least 2
σ ′n. Let Hi be the uniform distribution on Ii. Thus the min-entropy of Hi is

at least σ ′n.
Since Hi’s have min-entropy at least σ ′n, E(H1, . . . ,Hl) is 2

−5n-close to Un. Then∣∣∣P[E(H1, . . . ,Hl) ∈ Z] − P[Un ∈ Z]
∣∣∣ ≤ 2−5n. (1)

Note that the cardinality of Ii is at most 2mi+1, as there are at most 2mi+1 strings with Kolmogorov complexity at most mi.

ThusHi places aweight of at least 2−mi−1 on each string from Ii. ThusH1×· · ·×Hl places aweight of at least 2−(m1+···+ml+l)

on each element of Small. Therefore,

P[E(H1, . . . ,Hl) ∈ Z] = P[(H1, . . . ,Hl) ∈ Small] ≥ |Small| · 2−(m1+···+ml+l),

and since |Z| ≤ 2n−10l log n−dep(x), from (1) we obtain

|Small| < 2m1+1 × · · · × 2ml+1 ×
(
2n−10l log n−dep(x)

2n
+ 2−5n

)
.

Without loss of generality we can take dep(x) < n, otherwise the theorem is trivially true. Thus 2−5n < 2−10l log n−dep(x)

for sufficiently large n. Using this inequality and the fact that l is a constant independent of n, we obtain

|Small| < 2m1+···+ml−dep(x)−8l log n,

when n is large enough. Since K(x) = K(x1) + · · · + K(xl) − dep(x),

|Small| < 2K(x)−8l log n.

Wefirst observe that there is a program Q that, given the values ofmi’s, n, l, and dep(x) as auxiliary inputs, recognizes the

set Small. This program works as follows: Let z = z1 · · · zl , where |zi| = n. For each program Pi of length at most mi check

whether Pi outputs zi, by running the Pi’s in a dovetail fashion. If it is discovered that for each of zi, K(zi) ≤ mi, then compute

y = E(z1, · · · , zl). Now verify that K(y) is at most n − dep(x) − 10l log n. This again can be done by running programs of

L. Fortnow et al. / Information and Computation 209 (2011) 627–636 631

the length at most n− dep(x) − 10l log n in a dovetail manner. If it is discovered that K(y) is at most n− dep(x) − 10l log n,

then accept z.

So given the values of parameters n, dep(x), l and mi’s, there is a program P that enumerates all elements of Small. Since

by our assumption x belongs to Small, x appears in this enumeration. Let i be the position of x in this enumeration. Since

|Small| is at most 2K(x)−8l log n, i can be described using K(x) − 8l log n bits.

Thus there is a program P′ based on P that outputs x. This program takes i, dep(x), n,m1, · · · ,ml , and l, as auxiliary inputs.

Since themi’s and dep(x) are bounded by n,

K(x) ≤ K(x) − 8l log n + 2 log n + l log n + O(1)

≤ K(x) − 5l log n + O(1),

which is a contradiction. �

Corollary 3.3. For every constant 0 < σ < 1, there exist constants l and n0, and a polynomial-time computable function E with

the following property:

• Let x1, · · · xl be n-bit strings such that n ≥ n0, K(xi) ≥ σn, and K(x1x2 · · · xl) = ∑
K(xi) − O(log n).

• E(x1, . . . , xl) is Kolmogorov-random in the sense that

K(E(x1, . . . , xl)) > n − O(log n).

Theorem 3.2 says that given x ∈ �ln, if each piece xi has high enough complexity and the dependency with x is small,

thenwe can output a string ywhose Kolmogorov rate is higher than the Kolmogorov rate of x, i.e., y is relativelymore random

than x. What if we only knew that x has high enough complexity but knew nothing about the complexity of individual pieces

or the dependency within x? Our next theorem states that in this case also there is a procedure producing a string whose

rate is higher than the rate of x. However, this procedure needs a constant number of advice bits.

Theorem 3.4. For all real numbers 0 < α < β < 1 there exist a constant 0 < δ < 1, constants c, l, n0 ≥ 1, and a procedure

R such that the following holds. For any string x with |x| ≥ n0 and rate(x) ≥ α, there exists an advice string ax such that

rate(R(x, ax)) ≥ min{rate(x) + δ, β}
where |ax| = c. Moreover, R runs in polynomial time, and |R(x, ax)| = �|x|/l�.

The number c depends only on α, β and is independent of x. However, the contents of ax depend on x.

Before we give a formal proof, we briefly explain the proof idea. Given a string x, we split it into l substrings x1, x2, . . . , xl .
Consider the function E from Theorem 3.2. If dep(x1x2, · · · xl) is small, then by Theorem 3.2 the rate of E(x1, . . . , xl) is higher
than the rate of x. The crucial observation is that if dep(x1x2 · · · xl) is not small, then one of the substrings xi must have a

higher rate than the rate of x. Thus one of x1, x2, . . . , xl, E(x1, . . . , xl) has a higher rate than the rate of x. Since l is constant,

a constant number of advice bits suffices to specify the string with higher rate. We now give a formal proof.

Proof. Let 0 < α′ < α and 0 < ε < min{1 − β, α′}. Let σ = (1 − ε)α′. Using parameter σ in Theorem 3.2, we obtain a

constant l > 1 and a polynomial-time computable function E that extracts Kolmogorov complexity.

Let β ′ = 1 − ε
2
, and γ = ε2

2l
. Observe that γ ≤ 1−β ′

l
and γ < α′−σ

l
.

Let x have rate(x) = ν ≥ α. Let n, k ≥ 0 such that |x| = ln + k and k < l. We strip the last k bits from x and write

x = x1 · · · xl where each |xi| = n. Let ν′ = rate(x) after this change. We have ν′ > ν − γ /2 and ν′ > α′ if |x| is sufficiently
large.

We consider three cases.

Case 1. There exists j, 1 ≤ j ≤ l such that K(xj) < σn.

Case 2. Case 1 does not hold and dep(x) ≥ γ ln.

Case 3. Case 1 does not hold and dep(x) < γ ln.

We have two claims about Cases 1 and 2:

Claim 3.4.1. Assume Case 1 holds. There exists i, 1 ≤ i ≤ l, such that rate(xi) ≥ ν′ + γ .

Proof of Claim 3.4.1. Suppose not. Then for every i �= j, 1 ≤ i ≤ l, K(xi) ≤ (ν′ + γ)n. We can describe x by describing xj
which takes σn bits, and all the xi’s, i �= j. Thus the total complexity of x would be at most

(ν′ + γ)(l − 1)n + σn + O(log n)

Since γ < α′−σ
l

and α′ < ν′ this quantity is less than ν′ln. Since the rate of x is ν′, this is a contradiction. � Claim 3.4.1

632 L. Fortnow et al. / Information and Computation 209 (2011) 627–636

Claim 3.4.2. Assume Case 2 holds. There exists i, 1 ≤ i ≤ l, rate(xi) ≥ ν′ + γ .

Proof of Claim 3.4.2. By definition,

K(x) =
l∑

i=1

K(xi) − dep(x)

Since dep(x) ≥ γ ln and K(x) ≥ ν′ln,
l∑

i=1

K(xi) ≥ (ν′ + γ)ln.

Thus there exists i such that rate(xi) ≥ ν′ + γ . � Claim 3.4.2

We can now describe the constant number of advice bits. The advice ax contains the following information: which of the

three cases described above holds, and

• If Case 1 holds, then from Claim 3.4.1 the index i such that rate(xi) ≥ ν′ + γ .
• If Case 2 holds, then from Claim 3.4.2 the index i such that rate(xi) ≥ ν′ + γ .

Since 1 ≤ i ≤ l, the number of advice bits is bounded by O(log l). We now describe procedure R. When R takes an input

x, it first examines the advice ax . If Case 1 or Case 2 holds, then R simply outputs xi. Otherwise, Case 3 holds, and R outputs

E(x). Since E runs in polynomial time, R runs in polynomial time.

If Case 1 or Case 2 holds, then

rate(R(x, ax)) ≥ ν′ + γ ≥ ν + γ
2
.

If Case 3 holds, we have R(x, ax) = E(x) and by Theorem 3.2, K(E(x)) ≥ n − 10 log n − γ ln. Since γ ≤ 1−β ′
l

, in this case

rate(R(x, ax)) ≥ β ′ − 10 log n

n
.

For large enough n, this value is at least β . Therefore in all three cases, the rate increases by at least γ /2 or reaches β . By

setting δ to γ /2, we have the theorem. �

We now prove our main theorem.

Theorem 3.5. Let α and β be constants with 0 < α < β < 1. There exist a polynomial-time procedure P(·, ·) and constants

C1, C2, n1 such that for every x with |x| ≥ n1 and rate(x) ≥ α there exists a string ax with |ax| = C1 such that

rate(P(x, ax)) ≥ β

and |P(x, ax)| ≥ |x|/C2.
Proof. We apply the procedure R from Theorem 3.4 iteratively. Each application of R outputs a string whose rate is at least

β or is at least δ more than the rate of the input string. Applying R at most k = �(β −α)/δ� times, we obtain a string whose

rate is at least β .

Note that R(y, ay) has output length |R(y, ay)| = �|y|/l� and increases the rate of y if |y| ≥ n0. If we take n1 = (n0+1)kl,
we ensure that in each application of Rwehave a stringwhose length is at least n0. Each iteration of R requires c bits of advice,

so the total number of advice bits needed is C1 = kc. Thus C1 depends only on α and β . Each application of R decreases the

length by a constant fraction, so there is a constant C2 such that the length of the final outputs string is at least |x|/C2. �

Theproofs in this section alsowork for space-boundedKolmogorov complexity. For thisweneed a space-bounded version

of dependency.

Definition 7. Let x = x1x2 · · · xk where each xi is an n-bit string, let f and g be two space bounds. The (f , g)-bounded

dependency within x, dep
f
g(x), is defined as

∑k
i=1 KS

g(xi) − KSf (x).

We obtain the following version of Theorem 3.2.

Theorem 3.6. For every polynomial g there exists a polynomial f such that for every 0 < σ < 1, there exist a constant l > 1,

and a polynomial-time computable function E such that if x1, . . . , xl are n-bit strings with KSf (xi) ≥ σn, 1 ≤ i ≤ l, then

KSg(E(x1, . . . , xl)) ≥ n − 10l log n − depfg(x).

Similarly we obtain the following extension of Theorem 3.5.

L. Fortnow et al. / Information and Computation 209 (2011) 627–636 633

Theorem 3.7. Let g be a polynomial and let α and β be constants with 0 < α < β < 1. There exist a polynomial f , polynomial-

time procedure R(·, ·), and constants C1, C2, n1 such that for every x with |x| ≥ n1 and ratef (x) ≥ α there exists a string ax with

|ax| = C1 such that

rateg(R(x, ax)) ≥ β

and |R(x, ax)| ≥ |x|/C2.

4. Zero-one laws for complexity classes

In this section we establish a zero-one law for the strong dimensions of certain complexity classes. Let α < θ . We will

first show that if E has a language with Ratef (L) ≥ α, then E has a language L′ with Rateg(L′) ≥ θ .
Let L be a language with Ratef (L) ≥ α for some function f . We will first show that the characteristic sequence of L is of

the form y1y2 · · · such that for infinitely many i, ratef (yi) ≥ α/4. Let R be the procedure from Theorem 3.7. If we define

R(y1, ay1)R(y2, ay2) · · · as the characteristic sequence of a new language L′′, then for infinitely many i, the rate of R(yi, ayi)

is bigger than α. If we ensure that length of yi is reasonably bigger than the length of yi−1, then it follows that Rateg(L′) is
at least θ . The following lemma makes these ideas precise.

Lemma 4.1. Let g be any polynomial and α, θ be rational numbers with 0 < α < θ < 1. Then there is a polynomial f such that

if there exists L ∈ E with Ratef (L) > α, then there exists L′ ∈ E with Rateg(L′) ≥ θ.

Proof. Let β be a real number bigger than θ and smaller than 1 and f = ω(g). Pick positive integers C and K such that

(C − 1)/K < 3α/4, and
(C−1)β

C
> θ . Let n1 = 1, ni+1 = Cni.

We now define strings y1, y2, . . . such that each yi is a substring of the characteristic sequence of L or is in 0∗, and
|yi| = (C − 1)ni/K . While defining these strings we will ensure that for infinitely many i, ratef (yi) ≥ α/4.

We now define yi. We consider three cases.

Case 1. ratef (L �ni) ≥ α/4. Divide L �ni in to K/(C −1) segments such that the length of each segment is (C −1)ni/K .

It is easy to see that at least for one segment the f -rate is at least α/4. Define yi to be a segment with ratef (yi) ≥ α/4.

Case 2. Case 1 does not hold and for every j, ni < j < ni+1, rate
f (L � j) < α. In this case we punt and define

yi = 0
(C−1)ni

K .

Case 3. Case 1 does not hold and there exists j, ni < j < ni+1 such that ratef (L � j) > α. Divide L � [ni, ni+1] into K

segments. Since ni+1 = Cni, length of each segment is (C − 1)ni/K .

Then it is easy to show that some segment has f -rate at least α/4. We define yi to be this segment.

Since for infinitely many j, ratef (L � j) ≥ α, for infinitely many i either Case 1 or Case 3 holds. Thus for infinitely many i,

ratef (yi) ≥ α/4.

By Theorem 3.7, there is a procedure R with such that given a string x with ratef (x) ≥ α/4, and the advice ax ,

rateg(R(x, ax)) ≥ β .

Let wi = R(yi, ayi). Since for infinitely many i, ratef (yi) ≥ α/4, for infinitely many i, rateg(wi) ≥ β . Also recall that

|wi| = |yi|/C2 for an absolute constant C2.

Claim 4.1.1. |wi+1| ≥ (C − 1)
∑i

j=1 |wj|.
Proof of Claim 4.1.1.We have

i∑
j=1

|wj| ≤ C − 1

KC2

i∑
j=1

nj = C − 1

KC2

(Ci − 1)n1

C − 1
,

with the equality holding because nj+1 = Cnj . Also,

|wi+1| = (C − 1)ni+1

KC2
≥ (C − 1)Cin1

KC2
.

Thus

|wi+1|∑i
j=1 |wj| > (C − 1). � Claim 4.1.1

634 L. Fortnow et al. / Information and Computation 209 (2011) 627–636

Claim 4.1.2. For infinitely many i, rateg(w1 · · ·wi) ≥ θ .

Proof of Claim 4.1.2. For infinitely many i, rateg(wi) ≥ β , which means KSg(wi) ≥ β|wi| and therefore

KSg(w1 · · ·wi) ≥ β|wi| − O(1).

By Claim 4.1.1, |wi| ≥ (C − 1)(|w1| + · · · + |wi−1|). Thus for infinitely many i, rateg(w1 · · ·wi) ≥ (C−1)β
C

− o(1) ≥ θ.
� Claim4.1.2

Let L′ be the language with characteristic sequence w1w2 Then by Claim 4.1.2, Rateg(L′) ≥ θ .
Next, we argue that if L is in E, then L′ is in E/O(1). Observe that wi depends on yi and ayi , thus each bit of wi can be

computed by knowing yi and ayi . Recall that yi is either a subsegment of the characteristic sequence of L or 0ni . We will

know yi if we know which of the three cases mentioned above hold. This can be given as advice. Also observe that yi is a

subsequence of L �ni+1. Also recall that wi can be computed from yi in time polynomial in |yi| using constant bits of advice

ayi . Since |wi| = |yi|/C2 for some absolute constant C2, the running time needed to compute wi is also polynomial in |wi|.
Since L is in E, this places L′ in E/O(1).

Finally, we observe that the advice can be removed to obtain a language in E. Let A be the length of the advice needed to

compute L′ in exponential time. Recall that A is finite. Let I = {i | ratef (yi) ≥ α/4}. Given a potential advice a of length A let

Ia = {i | i ∈ I, R(yi, a) = wi}.
Since I is infinite and the set of all advices is finite, there is an advice a such that Ia is infinite. From nowwe will fix one such

a. Define our new language L′′ as follows: Letw′′
i = R(yi, a), andw′′

1w
′′
2w

′′
3 · · · is the characteristic sequence of the language

L′′. Now for every i ∈ Ia, rate
g(w′′

i) ≥ β . The proof of Claim 4.1.2, also shows that for every i ∈ Ia rate(w′′
1w

′′
2 · · ·w′′

i) ≥ θ .
Thus Rateg(L′′) ≥ θ .

Nowwe have to argue that L′′ is in E. Observe that if know that correct value of a, then we can compute L′′ in exponential

time. Each possible value for a gives an exponential time algorithm. Since there are only finitely many possible values for a,

we have finitely many algorithms and one of them correctly decides L′′. This shows that L′′ is in E. This completes the proof

of Lemma 4.1. �

Theorem 4.2. Dim(E | ESPACE) is either 0 or 1.

Proof. Because E ⊆ ESPACE, Dim(E | ESPACE) = Dimpspace(E).Wewill show that if Dimpspace(E) > 0, thenDimpspace(E) =
1. For this, it suffices to show that for every polynomial g and real number 0 < θ < 1, there is a language L′ in E with

Rateg(L′) ≥ θ . By Theorem 2.1, this will show that the strong pspace-dimension of E is 1.

The assumption states that the strong pspace-dimension of E is greater than 0. If the strong pspace-dimension of E is

actually one, then we are done. If not, let α be a positive rational number that is less than Dimpspace(E). By Theorem 2.1,for

every polynomial f , there exists a language L ∈ E with Ratef (L) ≥ α.

By Lemma 4.1, from such a language Lwe obtain a language L′ in Ewith Rateg(L′) ≥ θ . Thus the strong pspace-dimension

of E is 1. �

The zero-one law in Theorem 4.2 also holds for many other complexity classes.

Theorem 4.3. Let C be a class that is closed under exponential-time truth-table reductions. ThenDim(C | ESPACE) is either 0 or 1.
Therefore additional examples of classes the zero-one law holds for include NE ∩ coNE, BPE, and ENP.

Remark 1. Theorem 4.2 concerns strong dimension. For dimension, the situation is considerably more complicated. With

our techniques we can prove that if dimpspace(E) > 0, then dimpspace(E/O(1)) ≥ 1/2. It appears that a different method is

needed to eliminate the advice or increase the dimension past 1/2.

5. Zero-one law for constructive strong dimension

Miller and Nies [18] asked if every sequence of positive constructive dimension computes (by way of a Turing reduction)

a sequence of higher constructive dimension. Our techniques yield a positive answer for the variant of this question using

strong dimension instead of dimension.

For a sequence S, the constructive dimension of S is

dim(S) = lim inf
n→∞ rate(S �n)

and the constructive strong dimension of S is

Dim(S) = lim sup
n→∞ rate(S �n).

L. Fortnow et al. / Information and Computation 209 (2011) 627–636 635

The definitions extend to a class X of sequences by

dim(X) = sup
S∈X

dim(S)

and

Dim(X) = sup
S∈X

Dim(S).

We refer to [1,15] for more background on these dimensions.

Theorem 5.1. If Dim(S) > 0, then for every ε > 0, there exists R ≤T S such that Dim(R) > 1 − ε.

The proof of Theorem 5.1 is the same as Lemma 4.1, except instead of Theorem 3.7 we use Theorem 3.5. The 0–1 law for

the Turing degrees follows:

Theorem 5.2. For every Turing degree D, Dim(D) is either 0 or 1.

Proof. Suppose that a Turing degree D has positive constructive strong dimension and choose S ∈ D with Dim(S) > 0. Let

ε > 0. From Theorem 5.1 we obtain a sequence Rε with Dim(Rε) > 1 − ε and Rε ≤T S. We can encode S into Rε in a sparse

way to obtain a sequence R′
ε with S ≤T R′

ε , R
′
ε ≤T S, and Dim(R′

ε) = Dim(Rε). Therefore R′
ε ∈ D and Dim(D) > 1 − ε. As

this holds for all ε > 0, it follows that Dim(D) = 1. �

Wenote that the reductionweobtain in Theorem5.1 is actually an exponential-time truth-table reduction, so inparticular

it is a truth-table reduction. Therefore we also have a 0–1 law for the truth-table degrees.

Subsequent to the conference version of this paper, Bienvenu et al. [4] obtained a different proof of Theorem 5.1 and other

related results using quite different techniques. In contrast, Miller [17] recently showed that there is no analogous 0–1 law

for constructive dimension: there exists S with dim(S) = 1/2 such that every sequence R ≤T S has dim(R) ≤ 1/2.

Acknowledgment

We thank Xiaoyang Gu and Philippe Moser for several helpful discussions.

References

[1] K.B. Athreya, J.M. Hitchcock, J.H. Lutz, E. Mayordomo, Effective strong dimension in algorithmic information and computational complexity, SIAM Journal

on Computing 37 (3) (2007) 671–705.
[2] B. Barak, R. Impagliazzo,A.Wigderson, Extracting randomnessusing few independent sources, in: Proceedingsof the45thAnnual SymposiumonFoundations

of Computer Science, IEEE Computer Society, 2004, pp. 384–393.
[3] B. Barak, G. Kindler, R. Shaltiel, B. Sudakov, A. Wigderson, Simulating independence: new constructions of condensers, Ramsey graphs, dispersers, and

extractors, in: Proceedings of the 37th ACM Symposium on Theory of Computing, ACM, 2005, pp. 1–10.

[4] L. Bienvenu, D. Doty, F. Stephan, Constructive dimension and weak truth-table degrees, in: Proceedings of the Third Conference on Computability in Europe,
Springer-Verlag, 2007, pp. 63–72.

[5] H. Buhrman, L. Fortnow, I. Newman, N. Vereshchagin, Increasing Kolmogorov complexity, in: Proceedings of the 22nd Symposium on Theoretical Aspects of
Computer Science, Springer-Verlag, 2005, pp. 412–421.

[6] B. Chor, O. Goldreich, Unbiased bits from sources of weak randomness and probabilistic communication complexity, in: Proceedings of the 26th Annual
Symposium on Foundations of Computer Science, IEEE Computer Society, 1985, pp. 429–442.

[7] L. Fortnow, J. Hitchcock, A. Pavan, N.V. Vinodchandran, F. Wang, Extracting Kolmogorov complexity with applications to dimension zero-one laws, in:

Proceedings of the 33rd International Colloquium on Automata, Languages, and Programming, Lecture Notes in Computer Science, vol. 4051, 2006, pp.
335–345.

[8] J. Hitchcock, A. Pavan, N.V. Vinodchandran, Kolmogorov complexity in randomness extraction, in: 29th Conference on Foundations of Software Technology
and Theoretical Computer Science, LIPIcs, vol. 4, chloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2009, pp. 215–226.

[9] J.M. Hitchcock, Effective Fractal Dimension: Foundations and Applications, Ph.D. thesis, Iowa State University, 2003.
[10] J.M. Hitchcock, J.H. Lutz, E. Mayordomo, The fractal geometry of complexity classes, SIGACT News 36 (3) (2005) 24–38.

[11] J.M. Hitchcock, A. Pavan, Resource-bounded strong dimension versus resource-bounded category, Information Processing Letters 95 (3) (2005) 377–381.
[12] M. Li, P.M.B. Vitányi, An Introduction to Kolmogorov Complexity and its Applications, second ed., Springer-Verlag, Berlin, 1997.

[13] C.-J. Lu, O. Reingold, S. Vadhan, A. Wigderson, Extractors: optimal up to a constant factor, in: Proceedings of the 35th Annual ACM Symposium on Theory of

Computing, ACM, 2003, pp. 602–611.
[14] J.H. Lutz, Dimension in complexity classes, SIAM Journal on Computing 32 (5) (2003) 1236–1259.

[15] J.H. Lutz, The dimensions of individual strings and sequences, Information and Computation 187 (1) (2003) 49–79.
[16] E. Mayordomo, A Kolmogorov complexity characterization of constructive Hausdorff dimension, Information Processing Letters 84 (1) (2002) 1–3.

[17] J.S. Miller, Extracting information is hard: a Turing degree of non-integral effective Hausdorff dimension, Advances in Mathematics 226 (1) (2011) 373–384.
[18] J.S. Miller, A. Nies, Randomness and computability: open questions, Bulletin of Symbolic Logic 12 (3) (2006) 390–410.

[19] N. Nisan, A. Ta-Shma, Extracting randomness: a survey and new constructions, Journal of Computer and System Sciences 42 (2) (1999) 149–167.

[20] N. Nisan, D. Zuckerman, Randomness is linear in space, Journal of Computer and System Sciences 52 (1) (1996) 43–52.
[21] A. Rao, Extractors for a constant number of polynomially small min-entropy independent sources, in: Proceedings of the 38th Annual ACM Symposium on

Theory of Computing, ACM, 2006, pp. 497–506.
[22] R. Raz, Extractors with weak random seeds, in: Proceedings of the 37th ACM Symposium on Theory of Computing, ACM, 2005, pp. 11–20.

[23] O. Reingold, R. Shaltiel, A. Wigderson, Extracting randomness via repeated condensing, in: Proceedings of the 41st Annual Conference on Foundations of
Computer Science, IEEE Computer Society, 2000, pp. 22–31.

[24] O. Reingold, S. Vadhan, A. Wigderson, Entropy waves, the zig-zag graph product, and new constant-degree expanders and extractors, in: Proceedings of the

41st Annual Symposium on Foundations of Computer Science, IEEE Computer Society, 2000, pp. 3–13.

636 L. Fortnow et al. / Information and Computation 209 (2011) 627–636

[25] M. Santha, U. Vazirani, Generating quasi-random sequences from slightly random sources, in: Proceedings of the 25th Annual Symposium on Foundations
of Computer Science, IEEE Computer Society, 1984, pp. 434–440.

[26] R. Shaltiel, C. Umans, Simple extractors for all min-entropies and a new pseudo-random generator, in: Proceedings of the 42nd Annual Symposium on
Foundations of Computer Science, IEEE Computer Society, 2001, pp. 648–657.

[27] A. Srinivasan, D. Zuckerman, Computing with very weak random sources, SIAM Journal on Computing 28 (4) (1999) 1433–1459.

[28] A. Ta-Shma, D. Zuckerman, M. Safra, Extractors from Reed–Muller codes, in: Proceedings of the 42nd Annual Symposium on Foundations of Computer
Science, IEEE Computer Society, 2001, pp. 638–647.

[29] L. Trevisan, Extractors and pseudorandom generators, Journal of the ACM 48 (1) (2001) 860–879.
[30] N. Vereshchagin, M. Vyugin, Independent minimum length programs to translate between given strings, Theoretical Computer Science 271 (1–2) (2002)

131–143.
[31] M. Zimand, Extracting the Kolmogorov complexity of strings and sequences from sources with limited independence, in: 26th International Conference on

Symposium on Theoretical Aspects of Computer Science, LIPIcs, vol. 3, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany, 2009, pp. 697–708.

[32] M. Zimand, On generating independent random strings, in: Fifth Conference on Computability in Europe, Lecture Notes in Computer Science, vol. 5635,
2009, pp. 499–508.

[33] M. Zimand, Two sources are better than one for increasing Kolmogorov complexity of infinite sequences, Theory of Computing Systems 46 (4) (2010)
707–722.

[34] D. Zuckerman, Randomness-optimal oblivious sampling, Random Structures and Algorithms 11 (4) (1997) 345–367.

	Extracting Kolmogorov complexity with applications to dimension zero-one laws
	Introduction
	Preliminaries
	Kolmogorov complexity
	Polynomial-space dimension

	Extracting Kolmogorov complexity
	Zero-one laws for complexity classes
	Zero-one law for constructive strong dimension

