
Journal of Computer and System Sciences 78 (2012) 765–779
Contents lists available at SciVerse ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Space complexity of perfect matching in bounded genus bipartite graphs

Samir Datta a, Raghav Kulkarni b, Raghunath Tewari c,∗,1, N.V. Vinodchandran d,1

a Chennai Mathematical Institute, Chennai, India
b University of Chicago, Chicago, IL, USA
c Indian Institute of Technology Kharagpur, Kharagpur, India
d University of Nebraska – Lincoln, Lincoln, NE, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 November 2010
Received in revised form 13 October 2011
Accepted 3 November 2011
Available online 18 November 2011

Keywords:
Space complexity
Perfect matching
Topological graph theory

We investigate the space complexity of certain perfect matching problems over bipartite
graphs embedded on surfaces of constant genus (orientable or non-orientable). We show
that the problems of deciding whether such graphs have (1) a perfect matching or not
and (2) a unique perfect matching or not, are in the log-space complexity class Stoic
Probabilistic Log-space (SPL). Since SPL is contained in the log-space counting classes⊕

L (in fact in Modk L for all k � 2), C=L, and PL, our upper bound places the above-
mentioned matching problems in these counting classes as well. We also show that the
search version, computing a perfect matching, for this class of graphs can be performed by
a log-space transducer with an SPL oracle. Our results extend the same upper bounds for
these problems over bipartite planar graphs known earlier. As our main technical result, we
design a log-space computable and polynomially bounded weight function which isolates
a minimum weight perfect matching in bipartite graphs embedded on surfaces of constant
genus. We use results from algebraic topology for proving the correctness of the weight
function.

© 2011 Elsevier Inc. All rights reserved.

1. Introduction

The perfect matching problem and its variations are one of the most well-studied problems in theoretical computer
science. Research in understanding the inherent complexity of computational problems related to matching has lead to
important results and techniques in complexity theory and elsewhere in theoretical computer science. However, even after
decades of research, the exact complexity of many problems related to matching is not yet completely understood.

We investigate the space complexity of certain well-studied perfect matching problems over bipartite graphs. We prove
new uniform space complexity upper bounds on these problems for graphs embedded on surfaces of constant genus. We prove
our upper bounds by solving the technical problem of ‘deterministically isolating’ a perfect matching for this class of graphs.

Distinguishing a single solution out of a set of solutions is a basic algorithmic problem with many applications. The
Isolation Lemma due to Mulmuley, Vazirani, and Vazirani provides a general randomized solution to this problem. Let F
be a non-empty set system on U = {1, . . . ,n}. The Isolation Lemma says, for a random weight function on U (bounded by
nO (1)), with high probability there is a unique set in F of minimum weight [1]. This lemma was originally used to give an
elegant RNC algorithm for constructing a maximum matching (by isolating a minimum weight perfect matching) in general
graphs. Since its discovery, the Isolation Lemma has found many applications, mostly in discovering new randomized or

* Corresponding author.
E-mail addresses: sdatta@cmi.ac.in (S. Datta), raghav@cs.uchicago.edu (R. Kulkarni), raghunath@cse.iitkgp.ernet.in (R. Tewari), vinod@cse.unl.edu

(N.V. Vinodchandran).
1 Research supported in part by NSF grants CCF-0830730 and CCF-0916525.
0022-0000/$ – see front matter © 2011 Elsevier Inc. All rights reserved.
doi:10.1016/j.jcss.2011.11.002

http://dx.doi.org/10.1016/j.jcss.2011.11.002
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:sdatta@cmi.ac.in
mailto:raghav@cs.uchicago.edu
mailto:raghunath@cse.iitkgp.ernet.in
mailto:vinod@cse.unl.edu
http://dx.doi.org/10.1016/j.jcss.2011.11.002

766 S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779
non-uniform upper bounds, via isolating minimum weight solutions [1–4]. Clearly, derandomizing the Isolation Lemma in
sufficient generality will improve these upper bounds to their deterministic counterparts and hence will be a major result.
Unfortunately, recently it is shown that such a derandomization will imply certain circuit lower bounds and hence is a
difficult task [5].

Can we bypass the Isolation Lemma altogether and deterministically isolate minimum weight solutions in specific sit-
uations? Recent results illustrate that one may be able to use the structure of specific computational problems under
consideration to achieve non-trivial deterministic isolation. In [6], the authors used the structure of directed paths in planar
graphs to prescribe a simple weight function that is computable deterministically in logarithmic space with respect to which
the minimum weight directed path between any two vertices is unique. In [7], the authors isolated a perfect matching in
planar bipartite graphs. In [8], the authors give a generalized weight function that isolates directed paths in planar graphs
and perfect matchings in undirected bipartite planar graphs by bypassing the use of grid graphs altogether. In this paper
we extend the deterministic isolation technique of [7,8] to isolate a minimum weight perfect matching in bipartite graphs
embedded on constant genus surfaces. This is more interesting in light of the fact that for constant genus graphs even the
existence of a polynomially bounded weight function, that isolates a minimum weight perfect matching, was not known
earlier. As a future direction it would be interesting to consider the general bipartite graph Kn,n , and prove the existence of
a polynomially bounded weight function that isolates a minimum weight perfect matching in this case.

1.1. Our contribution

Let G be a bipartite graph and let
−→
G be the directed graph obtained by replacing every undirected edge {u, v} of G with

the directed edges (u, v) and (v, u). The main technical contribution of the present paper can then be stated (semi-formally)
as follows.

– Main technical result. Given an embedding of an undirected bipartite constant genus graph G , there is a log-space
matching preserving reduction f , and a log-space computable, polynomially bounded, skew-symmetric weight function
w for the class of directed graphs, so that the weight of any simple cycle in

−−−→
f (G) with respect to w is non-zero.

We use this result to establish (using known techniques) the following new upper bounds. Refer to the next section for
definitions.

– New upper bounds. For bipartite graphs, combinatorially embedded on surfaces of constant genus, we show that
(a) checking if the graph has a perfect matching is in SPL, (b) checking if the graph has a unique perfect matching
is in SPL, and (c) constructing a perfect matching (if one exists) is in FLSPL .

SPL is a log-space complexity class that was first studied by Allender, Reinhardt, and Zhou [4]. This is the class of
problems reducible to the determinant with the promise that the determinant is either 0 or 1. In [4], the authors show,
using a non-uniform version of Isolation Lemma, that perfect matching problem for general graphs is in a ‘non-uniform’
version of SPL. In [7], using the above-mentioned deterministic isolation, the authors show that for planar bipartite graphs,
Decision-BPM is in fact in SPL (uniformly). Recently, Hoang showed that for graphs with polynomially many matchings,
perfect matchings and many related matching problems are in SPL [9]. SPL is contained in log-space counting classes such
as Modk L for all k � 2 (in particular in

⊕
L), PL, and C=L, which are in turn contained in NC2. PL and C=L contain the class

nondeterministic log-space or NL. But no relation is known between the classes Modk L (for all k � 2), PL, and C=L. Thus
the upper bound of SPL that we prove implies that the problems Decision-BPM and Unique-BPM for the class of graphs
we study are in these log-space counting classes as well.

The techniques that we use in this paper can also be used to isolate directed paths in graphs on constant genus surfaces.
This shows that the reachability problem for this class of graphs can be decided in the unambiguous class UL (a subclass
of NL), extending the results of [6]. But this upper bound is already known since recently Kynčl and Vyskočil show that
reachability for bounded genus graphs log-space reduces to reachability in planar graphs [10].

Matching problems over graphs of low genus have been of interest to researchers, mainly from a parallel complexity
viewpoint. For the class of bipartite planar graphs, it was shown that finding a perfect matching can be done in NC [11].
In [12], the authors present an NC2 algorithm for computing a perfect matching for bipartite graphs on surfaces of O (log n)

genus (readers can also find an account of known parallel complexity upper bounds for matching problems over various
classes of graphs in their paper). However, the space complexity of matching problems for graphs of low genus has not
been investigated before. The present paper takes a step in this direction.

1.2. Proof outline

We assume that the graph G is presented as a combinatorial embedding on a surface (orientable or non-orientable) of
genus g , where g is a constant. This is a standard assumption when dealing with graphs on surfaces, since it is NP-complete
to check whether a graph has genus � g [13]. We first give a sequence of two reductions to get, from G , a graph G ′ with
an embedding on a genus g ‘polygonal schema in normal form’. These two reductions work for both orientable and non-
orientable cases. At this point we take care of the non-orientable case by reducing it to the orientable case. These reductions
are matching preserving, bipartiteness preserving and computable in log-space. Finally, for

−→
G ′ (the directed version of G ′),

S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779 767
Fig. 1. Outline of the steps. Note that all reductions are log-space computable and preserves matchings and bipartiteness.

we prescribe a set of 2g′ + 1 weight functions (where g′ = O (g)), W = {wi}1�i�2g′+1, that are polynomially bounded
and computable in log-space, so that for any cycle C in

−→
G ′ , there is a weight function wi ∈ W with respect to which

the weight of C is non-zero. Since g′ is constant, we can take a linear combination of the elements in W , for example∑
wi∈W wi × (nc)i (where n is the number of vertices) for some fixed constant c (say c = 4), to get a single weight function

(which again is polynomially bounded and log-space computable) with respect which the weight of any cycle is non-zero.
The intuition behind these weight functions is as follows (for some of the definitions, refer to later sections). The set W

is a disjoint union W1 ∪ W2 ∪ {w} of the sets of weight functions W1, W2, and {w}. Consider a graph G embedded on a
fundamental polygon with 2g sides. There are two types cycles in G: surface separating and surface non-separating. A basic
theorem from algebraic topology implies that a surface non-separating cycle will intersect at least one of the sides of the
polygon an odd number of times. This leads to 2g weight functions in W1 to take care of all the surface non-separating
cycles. There are two types of surface separating cycles: (a) ones which completely lie inside the polygon and (b) the ones
which cross some boundary. Cycles of type (a) behave exactly like cycles in the plane so the weight function w designed
for planar graphs works (from [7,8]). For dealing with cycles of type (b), we first prove that if such a cycle intersects a
boundary, it should alternate between ‘coming in’ and ‘going out’. This leads to 2g weight functions in W2 which handle
all type (b) cycles.

Fig. 1 gives a pictorial view of the components involved in the proof of our main technical result.

1.3. Organization of the paper

The rest of the paper is organized as follows. In Section 2 we give the necessary definitions and state results from earlier
work, that we use in this paper. In Section 3 we give log-space reductions that takes a combinatorial embedding of a
graph G (orientable or non-orientable) embedded on a surface of genus g , and outputs an orientable graph H embedded on
the polygonal schema of a surface of genus g′ (where g′ = O (g)), such that G has a perfect matching if and only if H has
a perfect matching and given a perfect matching in H we can construct a perfect matching in G in log-space. In Section 4
we state and prove the complexity upper bounds that we discussed earlier.

2. Preliminaries

For a positive integer n, [n] is defined to be the set {1,2, . . . ,n}.

2.1. Topological graph theory

We introduce the necessary terminology from algebraic topology. For a more comprehensive understanding of this topic,
refer to any standard algebraic topology book such as [14].

A 2-manifold is a topological space such that every point has an open neighborhood homeomorphic to R
2 and two

distinct points have disjoint neighborhoods. A 2-manifold is often called a surface. The genus of a surface Γ is the maximum
number g , such that there exist g pairwise disjoint cycles C1, C2, . . . , C g on Γ , whose removal still leaves Γ \ (C1 ∪ C2 ∪
· · · ∪ C g) connected. A surface is called orientable if it has two distinct sides, else it is called non-orientable. A cycle C in Γ

is said to be non-separating if there exists a path between any two points in Γ \ C , else it is called separating.

768 S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779
Table 1
Common surfaces and their properties.

Name Orientability Genus Polygonal schema in normal form

Sphere Orientable 0 σσ
Torus Orientable 1 στστ
Projective plane Non-orientable 1 σσ
Klein bottle Non-orientable 2 στστ

A polygonal schema of a surface Γ is a polygon with 2g′ directed sides, such that the sides of the polygon are parti-
tioned into g′ classes, each class containing exactly two sides and glueing the two sides of each equivalence class gives
the surface Γ (upto homeomorphism). A side in the ith equivalence class is labeled σi or σi depending on whether it is
directed clockwise or anti-clockwise respectively. The partner of a side σ is the other side in its equivalence class. By an
abuse of notation, we shall sometimes refer to the symbol of a side’s partner, as the partner of the symbol. Frequently
we will denote a polygonal schema as a linear ordering of its sides moving in a clockwise direction, denoted by X . For a
polygonal schema X , we shall refer to any polygonal schema which is a cyclic permutation, or a reversal of the symbols, or
a complementation (σ mapped to σ and vice versa) of the symbols, as being the same as X . A polygonal schema is called
orientable (resp. non-orientable) if the corresponding surface is orientable (resp. non-orientable). Note that g′ need not be
equal to the genus of Γ .

Definition 1. An orientable polygonal schema is said to be in normal form if it is in one of the following forms:

σ1τ1σ1τ1σ2τ2σ2τ2 . . . σmτmσmτm, (2.1)

σσ . (2.2)

A non-orientable polygonal schema is said to be in normal form if it is of one of the following forms:

σσ X, (2.3)

στστ X (2.4)

where, X is a string representing an orientable schema in normal form (i.e. like form (2.1) or (2.2) above) or possibly an
empty string.

Table 1 lists some common surfaces and their polygonal schema in normal forms.
We denote the polygonal schema in the normal form of a surface Γ as Λ(Γ). We will refer to two orientable symbols

σ , τ which form the following contiguous substring: στστ as being clustered together while a non-orientable symbol σ
which occurs like σσ as a contiguous substring is said to form a pair. Thus, in the first and third normal forms above all
symbols are clustered. The connected sum of two surfaces Γ1 and Γ2 is defined to be the surface whose polygonal schema
is the concatenation of Λ(Γ1) and Λ(Γ2).

The first normal form represents a connected sum of tori and the third of a projective plane and tori. In the fourth
normal form all but one of the orientable symbols are clustered while the only non-orientable symbol is sort of clustered
with the other orientable symbol. This form represents a connected sum of a Klein bottle and tori. The second normal form
represents a sphere.

We next introduce the concept of Z2-homology. Given a 2-manifold Γ , a 1-cycle is a collection of closed curves in Γ .
Given two sets A and B , the symmetric difference of A and B , denoted as A�B is the set of elements that belong to
A or B but now both. The set of 1-cycles forms an Abelian group, denoted as C1(Γ), under the symmetric difference
operation, �. Therefore the identity element of the group is the empty collection and the inverse of an element is itself.
Two 1-cycles C1, C2 are said to be homologically equivalent if C1�C2 forms the boundary of some region in Γ . Observe
that this is an equivalence relation. Then the first homology group of Γ , H1(Γ), is the set of equivalence classes of 1-cycles.
In other words, if B1(Γ) is defined to be the subset of C1(Γ) that are homologically equivalent to the empty set, then
H1(Γ) = C1(Γ)/B1(Γ).2 If Γ is a genus g surface then H1(Γ) is generated by a system of 2g 1-cycles L = {L1, L2, . . . , L2g},
and every Li (1 � i � 2g) contains a closed simple curve Q i , such that Q = {Q 1, Q 2, . . . , Q 2g} generates H1(Γ) as well.
Moreover the elements of Q have only one point in common, and whose complement is homeomorphic to a topological
disk. Such a disk is also referred to as the fundamental polygon of Γ .

A combinatorial embedding of a graph is a map which given a vertex, gives a cyclic ordering of the edges around the
vertex. An undirected graph G is said to be embedded on a surface Γ if it can be drawn on Γ so that no two edges
cross. We assume that the graph is given together with a combinatorial embedding on a surface of constant genus. Refer
to the book by Mohar and Thomassen [15] for details. The genus of a graph G is the minimum number g such that G
has an embedding on a surface of genus g (an embedding where every face of G is homeomorphic to a disc). Such an

2 For examples of the homology group of various surfaces please refer to any standard text on algebraic topology such as [14].

S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779 769
Fig. 2. Polygonal schema of K5 on the fundamental polygon of the torus.

embedding is also called a 2-cell embedding. A genus g graph is said to be orientable (non-orientable) if the surface is
orientable (non-orientable).

Definition 2. The polygonal schema of a graph G is a combinatorial embedding given on the polygonal schema of some
surface Γ together with the ordered set of vertices on each side of the polygon. Formally it is a tuple (φ, S), where φ is a
cyclic ordering of the edges around a vertex (also known as the rotation system of G) and S = (S1, S2, . . . , S2g) is the cyclic
ordering of the directed sides of the polygon. Each Si is an ordered sequence of the vertices (which we shall refer to as
boundary vertices), from the tail to the head of the side Si and is paired with some other side, say S ′

i in S , such that the
jth vertex of Si (say from the tail of Si) is the same as the jth vertex of S ′

i (from the tail of S ′
i). Moreover, no edge in G

crosses any of the sides Si (1 � i � 2g) and every edge can have at most one of its endpoints as a boundary vertex.

An example of the polygonal schema of the complete graph on 5 vertices (K5) on the torus is shown in Fig. 2.
In the following definition we formalize the class of such graphs.

Definition 3.

– Let BipartiteGenusg be the class of genus g bipartite graphs G , given together with a rotation system (or combinatorial
embedding) of G on a surface of genus g .

– Let g � 0 be an integer. Then BddBipGenusg = ⋃
0�i�g BipartiteGenusi .

We also define the directed version of the above class of graphs as follows:

Definition 4.

– Given G , define
−→
G to be the directed graph formed by replacing every edge {u, v} in G with the directed edges (u, v)

and (v, u). Let DirBipartiteGenusg be the class of directed graphs
−→
G , such that G is in BipartiteGenusg .

– Let g � 0 be an integer. Then DirBddBipGenusg = ⋃
0�i�g DirBipartiteGenusi .

2.2. Complexity theory

For a nondeterministic machine M , let accM(x) and rejM(x) denote the number of accepting computations and the
number of rejecting computations respectively on an input x. Denote gapM(x) = accM(x) − rejM(x).

Definition 5. A language L is in SPL if there exists a log-space bounded nondeterministic machine M so that for all inputs x,
gapM(x) ∈ {0,1} and x ∈ L if and only if gapM(x) = 1. FLSPL is the class of functions computed by a log-space machine with
an SPL oracle. UL is the class of languages L, decided by a nondeterministic log-space machine (say M), such that for every
string in L, M has exactly one accepting path and for a string not in L, M has no accepting path.

Alternatively, we can define SPL as the class of problems log-space reducible to the problem of checking whether the
determinant of a matrix is 0 or not under the promise that the determinant is either 0 or 1. For definitions of other
complexity classes refer to any standard textbooks such as [16,17]. All reductions discussed in this paper are log-space
reductions.

Given an undirected graph G = (V , E), a matching M is a subset of E such that no two edges in M have a vertex in
common. A maximum matching is a matching of maximum cardinality. M is said to be a perfect matching if every vertex is
an endpoint of some edge in M .

770 S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779
Definition 6. We define the following computational problems related to matching:

– Decision-BPM: Given a bipartite graph G , checking if G has a perfect matching.
– Search-BPM: Given a bipartite graph G , constructing a perfect matching, if one exists.
– Unique-BPM: Given a bipartite graph G , checking if G has a unique perfect matching.

Unique-BPM have been studied earlier (see [7]), and we include it here for the sake of completeness.

2.3. Necessary prior results

Lemma 1 is an adaptation of Theorem 6 in [8] for the case of constant genus bipartite graphs.

Lemma 1. Let g � 0 be some fixed constant and let w be a polynomially bounded, skew-symmetric edge weight function defined
for the class of graphs DirBddBipGenusg , such that for any graph G ∈ DirBddBipGenusg and any cycle C ∈ G, w(C) �= 0. Then in
log-space we can construct a polynomially bounded, edge weight function w ′ for the class of graphs BddBipGenusg , such that for any
graph H ∈ BddBipGenusg the minimum weight perfect matching in H is unique with respect to w ′ .

Proof. Let H be a graph in BddBipGenusg . By definition, the graph
−→
H is in DirBddBipGenusg and hence there exists a

polynomially bounded weight function w with respect to which every cycle in
−→
H has non-zero weight. Using Reingold’s

reachability algorithm [18], construct a bipartition (L, R) of H . Now for an edge e = {u, v} in H such that u ∈ L and v ∈ R ,
set w ′(e) = w(

−→e) where −→e is the directed edge (u, v) in
−→
H .

Now suppose H has two distinct minimum weight perfect matchings, M1 and M2, with respect to w ′ . Then the
symmetric difference of M1 and M2 is a collection of disjoint, even length, simple cycles, where the edges of the cy-
cle alternate between the matchings M1 and M2. Since M1 and M2 are distinct, there is at least one such cycle. Let
C = (v0, v1, . . . , v2k−1, v0) be such a cycle. Let ei = (vi, v(i+1) (mod 2k)) for 0 � i � 2k − 1. Without loss of generality assume,
v0 ∈ L and the edge e0 is in M1. Therefore if i is even (resp. odd), then ei ∈ M1 (resp. ei ∈ M2) and −→ei is directed from L
to R (resp. from R to L). Thus w ′(e2i) = w(

−→e2i) and w ′(e2i+1) = −w(
−−−−→e2i+1) for 0 � i � k − 1, due to skew symmetry of w .

The weight of the restriction of M1 to C , w ′(M1 ∩ C) = ∑k
i=1 w ′(e2i−1). Similarly w ′(M2 ∩ C) = ∑k

i=1 w ′(e2i). Now,

w ′(M1 ∩ C) − w ′(M2 ∩ C) =
k∑

i=1

w ′(e2i−1) −
k∑

i=1

w ′(e2i)

=
k∑

i=1

w(
−−−−→e2i−1) +

k∑
i=1

w(
−→e2i) =

2k∑
i=1

w(
−→ei)

�= 0.

Therefore either M1 ∩ C or M2 ∩ C has higher weight with respect to w ′ . Without loss of generality assume it is M2. Thus
we get a perfect matching M ′ = M2 \ (M2 ∩ C) ∪ (M1 ∩ C) in H of lesser weight, which is a contradiction. �
Lemma 2. (See [4].) For any weighted graph G assume that the minimum weight perfect matching in G is unique and also for any
subset of edges E ′ ⊆ E, the minimum weight perfect matching in G \ E ′ is also unique. Then deciding if G has a perfect matching is in
SPL. Moreover, computing the perfect matching (in case it exists) is in FLSPL .

Sketch of proof. Let wmax and wmin be the maximum and minimum possible weights respectively, that an edge in G can
get. Note that wmax and wmin are polynomially bounded in the size of the graph G . Then any perfect matching in G will
have a weight from the set W = {k: k ∈ Z, n · wmin � k � n · wmax}. Similar to [4], there exists a GapL function f , such that
if for some k ∈ W , G has a perfect matching of weight k, then (f (G,k))2 = 1 and otherwise for each k, f (G,k) = 0. Note
that in [4] the authors actually give a GapL/poly function since the weight function for the graphs (which are unweighted
to begin with) are required as an advice in their GapL machine. Here we consider weighted graphs, thus eliminating the
need for any advice. Now consider the function

g(G) = 1 −
∏

k

(
1 − (

f (G,k)
)2)

.

By definition, g(G) = 1 if G has a perfect matching, else it is 0.
To compute a perfect matching in G , we will construct a log-space transducer that makes several queries to the function

f defined above. For a graph G ′ having a unique minimum weight perfect matching (say M ′), the weight of M ′ can be
computed by iteratively querying the function f (G ′,k) for values of k ∈ W in an increasing order, starting from n · wmin .
The value k, for which the function outputs a non-zero value for the first time, is the weight of M ′ . We denote this weight

S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779 771
Fig. 3. An example of the cut operation �, cutting graph G along cycle (or path) C . (a) Part of graph G and cycle C . (b) Part of the resulting graph G�C ,
with the dotted lines representing the spurious edges.

by wG ′ . First compute wG . For an e in G , define the graph G−e = G \ {e}. Now compute wG−e for every edge e in G . Output
the edges e for which wG−e > wG . The set of edges output by this procedure comprise a perfect matching (in fact the
minimum weight perfect matching) because deleting an edge in this set had increased the weight of the minimum weight
perfect matching in the resulting graph. �
3. Embedding on a polygonal schema in normal form

In this section we give a log-space reduction that takes a graph G ∈ BddBipGenusg for some fixed constant g and
outputs a graph H ∈ BddBipGenusg′ (where g′ = O (g)), such that H is given as an embedding on the polygonal schema in
normal form of an orientable surface of genus g′ , and no edge of H has both its endpoints on the boundary of the polygon.
Moreover, there is a perfect matching in G if and only if there is a perfect matching in H , and given a perfect matching
in H , one can construct a perfect matching in G in log-space.

A crucial point to be noted here is that irrespective of the fact that G is orientable or non-orientable, H is always
orientable, since its embedding is given in an orientable surface.

3.1. Combinatorial embedding to a polygonal schema

Here we show that given a graph G ∈ BddBipGenusg , in log-space we can output the polygonal schema of a graph G ′ ,
such that there is a perfect matching in G if and only if there is a perfect matching in G ′ and given a perfect matching in
G ′ one can construct a perfect matching in G in log-space.

To prove this, we recall a lemma from [19].

Lemma 3. (See [19].) Let G be a graph embedded on a surface of genus g > 0, and let T be a spanning tree of G. Then there is an edge
e ∈ E(G) such that T ∪ {e} contains a non-separating cycle.

Note that in [19] the graph was required to be embedded on an orientable surface but the proof did not use this
requirement. To give a polygonal schema embedding, we first define a “cut” operation on the graph.

Given a cycle (or path) C in an embedded graph G , define by G�C the graph constructed by “cutting” the edges incident
on the cycle from the right. In other words, the neighbors of u ∈ C (which are not on the cycle) can be partitioned into
two sets, arbitrarily called left and right. For every neighbor v of u which lies to the right of C , replace the edge (u, v)

with three edges (u, xuv), (yuv , v ′) and (v ′, v) where xuv and yuv are copies of the same vertex. Replacing an edge with
a path of length 3 preserves perfect matchings in the newly constructed graph. We add spurious edges between adjacent
xuv ’s and adjacent yuv ’s along the cut and label all the newly formed spurious edges with the label LC along the left set
and L−1

C along the right set as shown in Fig. 3. Note that the spurious edges are only added for ease of understanding
while constructing the polygonal schema of the graph. Once the polygonal schema is constructed, we remove all spurious
edges.

772 S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779
Fig. 4. Cutting along a path C when (a) L1 �= L2 and L1 �= L−1
2 , (b) L1 = L2 or L1 = L−1

2 and C is between copies of the same vertex v , and (c) L1 = L2 or

L1 = L−1
2 and C is between distinct vertices v and w .

Also, if C is a path, its endpoints will lie on two paths. Consider the first path – if the two edges on either side of C on
this path have the same label L1. This can be broken into two cases – firstly, if the left and right sides of this endpoint are
the same (in other words, the path is a cycle). In this case, we just keep the same label L1. When the left and right sides of
this endpoint are distinct, we will need to split the label into two or three new labels as detailed below and similarly for
the other path and common label L2. We will only describe the case when L1, L2 are both defined – the other cases are
similar and simpler.

First assume that L1 �= L2 and L1 �= L−1
2 . Then we will split and remove labels L1, L2 and replace them by four new labels

say L′
1,C , L′′

1,C and L′
2,C , L′′

2,C , respectively for the two sides of the intersection. If, on the other hand, L1 is the same as L2 or
its inverse – then there are two subcases. Firstly, if the path C is between two copies of the same vertex then we replace
L1 by two new labels L′

1,C , L′′
1,C one for either side of the cut. L2 being a copy or an inverse copy of L1 splits automatically.

The second case is if C is between two distinct points on two copies or inverse copies. Then we split L1 into three parts
according to the two points. The rotation system is modified appropriately. We illustrate this operation in Fig. 4.

Notice that in the process of cutting, for every new label LC we are adding at most 4 new labels.

Lemma 4. Let g be a fixed constant. Then given a graph G ∈ BddBipGenusg we can find a polygonal schema of a corresponding graph
H ∈ BddBipGenusg (in fact having the same genus) in log-space such that G has a perfect matching if and only if H has a perfect
matching. Moreover, given a perfect matching in H, one can construct a perfect matching in G in log-space.

Proof. Given a graph Gi embedded on a surface, potentially with spurious edges, we can find Ci+1, a non-separating cycle
(which does not use a spurious edge) by invoking Lemma 3. Define Gi+1 to be Gi�Ci+1.

Starting with G0 = G of genus g and repeating the above operation at most g times, we get a planar graph H with at
most 2g spurious faces (which consist of spurious edges).

Now find a spanning tree of this graph which does not use a spurious edge – that such a tree exists follows from noticing
that the graph without spurious edges is still connected. Find a tree path connecting any two spurious faces. Cut along this
path to combine the two spurious faces into one larger spurious face. Repeat the operation till all the spurious faces are
merged into one spurious face and re-embed the planar graph so that it forms the external face. Finally, remove all spurious
edges to get the desired polygonal schema of the given graph. Note that the final graph has a perfect matching if and only
if the G had a perfect matching, since each cut operation preserves matchings. Also, given a perfect matching in the final
graph, we can construct a perfect matching in G in log-space.

It is easy to see that the procedure above can be performed in log-space, provided that g is constant. �
3.2. Normalizing a polygonal schema

We next give a log-space algorithm that takes an embedding of a graph on a polygonal schema and outputs an embed-
ding of the graph on a polygonal schema in normal form. We adapt the algorithmic proof of Brahana–Dehn–Heegaard (BDH)
[20,21] classification theorem as described in Vegter and Yap [22] so that it runs in log-space for constant genus graphs. The
algorithm starts with a polygonal schema having 2m sides and uses certain transformations O (m) times to yield a polygonal
schema in normal form.

S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779 773
Fig. 5. Reduction A (pasting along σ).

Fig. 6. Reduction B (cutting along ρ followed by pasting along τ). Note that the number of vertices in the equivalence class of r, reduces by 1.

Fig. 7. Reduction C (cutting along τ followed by pasting along ρ).

Fig. 8. Reduction D: (a) Cutting along ρ . (b) Pasting along σ . (c) Cutting along π . (d) Pasting along τ .

Lemma 5. Let g be a fixed constant. Given the polygonal schema of a graph G ∈ BddBipGenusg , we can find a polygonal schema in
normal form of a corresponding graph H ∈ BddBipGenusg in log-space, such that G has a perfect matching if and only if H has a
perfect matching. Moreover, given a perfect matching in H, one can construct a perfect matching in G in log-space.

Proof. Consider the following 6 transformations of a polygonal schema:

A. Replace Xσσ by X (example given in Fig. 5).
B. Replace στ Xτ Y by ρ Xρσ Y (example given in Fig. 6).
C. Replace σ Xσ Y by ττ Y ∗ X , where Y ∗ is reverse complement of Y (example given in Fig. 7).
D. Replace σ Xτ Yσ Uτ V by ρπρπU Y X V (example given in Fig. 8).
E. Replace σ1σ1 Xσ2σ3σ2σ3Y by τ1τ1τ2τ2τ3τ3 XY (example given in Fig. 9).
F. Replace σσττ X by σρσρ X (example given in Fig. 10).

774 S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779
Fig. 9. Reduction E: (a) Initial polygonal schema. (b) Polygonal schema obtained after applying reduction E (replacing (i) σ1 with τ3τ2, (ii) σ2 with τ1τ2 and
(iii) σ3 with τ1τ2τ3 X∗).

Fig. 10. Reduction F: (a) Cutting along ρ . (b) Pasting along τ .

The procedure to construct the polygonal schema in normal form is as follows:

1. Use reductions A, B, C several times to ensure that all the sides of the polygonal schema have a common endpoint.
2. (a) Orientable case: Use transform D repeatedly to bring the polygon in normal form.

(b) Non-orientable case:
– Use reductions C, D to convert the schema into a form where the orientable symbols are clustered and non-

orientable symbols are paired.
– Use reduction E repeatedly (in the forward direction) to eliminate all orientable symbols.
– Use reduction E in the reverse direction repeatedly to eliminate all but at most one non-orientable symbol.
– Use reduction F, if necessary, to ensure that there is at most one non-orientable symbol.

Possibly the only step requiring any explanation is the last one. We apply reduction E in reverse with X as the empty
string to replace three non-orientable symbols by two orientable ones forming a cluster of 4 and a single non-orientable
one which forms a pair. The way we apply the reduction, ensures that both the orientable and the non-orientable parts are
contiguous.

Finally we will be left with a string in one of the first two normal forms or a string of the form σσττ X (where X is an
orientable schema in normal form) in which case reduction F is applicable.

To see that the above procedure can be carried out in log-space it suffices to prove that each of the above reductions
can be carried out in log-space, the number of reductions is bounded by a constant and we can decide in log-space when
to carry out a reduction.

The Vegter–Yap paper does careful book-keeping in order to ensure that the number of operations in Step 1 is linear in
the original genus. We can alternatively, follow the brute force approach and keep on applying reductions A, B, C while the
sides of the polygon do not have a common endpoint. This will require at most linear number of applications of the first
two reductions.

Observe that for the orientable case, each application of reduction D reduces the number of unclustered symbols by two.
Thus we are done in O (m) applications of this reduction. Similarly, each application of reduction C reduces the number of
unpaired non-orientable symbols by one and as before every application of reduction D reduces the number of unclustered
orientable symbols by two. So in O (m) steps all the orientable symbols are clustered and the non-orientable symbols are
paired. Now every application of reduction E in the forward direction gets rid of two orientable symbols so in O (m) steps
all the orientable symbols are removed. Finally O (m) applications of reduction E in reverse lead to removal of all but one
non-orientable symbols.

To see that each of the steps is in log-space observe that each of the steps involves one or more of the following
operations:

S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779 775
Fig. 11. (a) Λ(Γ) when the surface is a sum of an orientable surface and the projective plane. (b) Λ(Γ) when the surface is a sum of an orientable surface
and the Klein bottle.

Fig. 12. Klein bottle. (a) The two copies of Λ(Γ) with the side that is being glued shown in dark. (b) Polygonal schema obtained after the glueing operation.

– find a path through the interior of the polygon between two points on its boundary,
– cut along a path, and
– paste two paired sides of (a cut) polygon together.

We know how to do the second operation in log-space while the third, being the reverse of the second one is even easier,
since we just have to identify corresponding boundary vertices and then excise them out of the corresponding edge. The first
operation is just an undirected reachability question in the graph (minus its boundary) hence is in log-space by Reingold’s
Theorem [18].

Finally, a determination of when to apply a particular reduction is easily seen to be in log-space for all but, possibly,
reduction D. In this case, for an orientable symbol σ separated from its mate σ on both sides, sequentially test for each
other symbol τ if it lies in one of the two stretches that σ and its mate divide the schema into, while its mate τ lies in the
other. Having found the first such τ suffices to enable a use of the reduction. �
3.3. Reducing the non-orientable case to the orientable case

Let G ∈ BddBipGenusg be a non-orientable graph. As a consequence of Lemma 5 we can assume that we are given a
combinatorial embedding (say Π) of G on a (non-orientable) polygonal schema, say Λ(Γ), in the normal form with 2g′
sides. (Here g′ is a function of g .)

Let Y = (X1, X2) be the cyclic ordering of the labels of the sides of Λ(Γ), where X2 is the ‘orientable part’ and X1 is
the ‘non-orientable part’. More precisely, for the polygonal schema in the normal form, we have: X1 is either σσ (thus
corresponds to the projective plane) or it is στστ (thus corresponds to the Klein bottle). See Fig. 11.

Now let G be a bipartite graph embedded on a non-orientable polygonal schema Λ(Γ) with 2g′ sides. We will construct
a graph G ′ embedded on an orientable polygonal schema with 4g′ − 2 sides such that G has a perfect matching iff G ′ has
a perfect matching. Moreover, given a perfect matching in G ′ one can retrieve in log-space a perfect matching in G . This is
illustrated in Theorem 6.

Theorem 6. Let g be a fixed constant. Given a non-orientable graph G ∈ BddBipGenusg as an embedding on a polygonal schema in
normal form Λ(Γ), with 2g′ sides, where the cyclic ordering of the sides of Λ(Γ) are σσ X or στστ X and X is the orientable part, in
log-space we can construct an orientable graph G ′ ∈ BddBipGenus4g′−2 together with its embedding on the polygonal schema of an
orientable surface Γ ′ of genus 4g′ − 2 such that: G has a perfect matching if and only if G ′ has a perfect matching. Moreover, given a
perfect matching in G ′ , we can construct a perfect matching in G in log-space.

Proof. We first show the case when Γ is the connected sum of an orientable surface and a Klein bottle. Consider the
polygonal schema formed by taking two copies of Λ(Γ) and glueing the side τ of one copy with its partnered side τ of the
other copy. We relabel the edge labelled σ in the second copy with some unused symbol δ to avoid confusion. The entire
reduction is shown in Fig. 12. Let G ′ be the resulting graph.

776 S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779
Fig. 13. Projective plane. (a) The two copies of Λ(Γ) with the two pairs of sides that are being glued shown in dark. (b) Polygonal schema obtained after
the glueing operation.

Note that the polygonal schema obtained as a result represents an orientable surface and has 4g′ − 2 sides. Also every
vertex and edge in G has exactly two copies in G ′ and G ′ is also bipartite. Let M be a matching in G . Let M ′ be the union
of the edges of M from both the copies of G . It is easy to see that M ′ is a matching in G ′ . Now consider a matching M ′
in G ′ . The projection of M ′ to G gives a subgraph of G where every vertex has degree (counted with multiplicity) exactly
two. Since G is bipartite, one can obtain a perfect matching within this subgraph.

Now consider the case when Γ is the connected sum of an orientable surface and a projective plane, that is, following
the notation above X1 corresponds to the labels of a polygonal schema for the projective plane and X2 corresponds to the
labels of a polygonal schema of an orientable surface. Take two copies of Λ(Γ), and glue σ of one copy with its partner σ
in the other copy. We show this operation in Fig. 13.

The rest of the proof is similar to the Klein bottle case. �
As a consequence of 6 we see that the non-orientable case can be reduced to the orientable case. The resulting polygonal

schema need not be in the normal form. To get a combinatorial embedding on a polygonal schema in the normal form we
apply Lemma 5 once more.

3.4. Matching-preserving reduction to a graph in the required form

As a consequence of Theorem 6, we can assume that the input graph (orientable or non-orientable) is embedded on an
orientable polygonal schema in normal form. Now the following theorem completes the claim given at the beginning of this
section.

Theorem 7. Let g be a fixed constant. Then given a 2-cell combinatorial embedding of a graph G ∈ BddBipGenusg we can find a
polygonal schema in normal form of a corresponding orientable graph H ∈ BddBipGenusg′ (where g′ = O (|g|)) in log-space, such
that no edge of H has both its endpoints on the boundary of the polygon. Moreover there is a perfect matching in G if and only if there
is a perfect matching in H. Moreover, given a perfect matching M ′ in H, in log-space we can construct a perfect matching M in G.

Proof. Given a combinatorial embedding of a graph G we apply Lemma 5 to get a combinatorial embedding of G ′ on a
polygonal schema in normal form. At this point, there are no vertices lying on the boundary of the polygonal schema,
only edges crossing it. From G ′ we construct another graph G ′′ ∈ ConstantGenusBipartite as follows: for each such edge
e = (u, v), such that u and v lie on different segments of the polygon, we introduce internal vertices u′ = v ′, v ′′ on the
edge e (converting it to a path u, u′ = v ′, v ′′, v of length 3) so that u′ , v ′ lie on the boundary of the polygon on the sides
nearer to u, v respectively (it is important to note that u′ and v ′ are copies of the same vertex in G ′′ that lie on the
boundary of the polygon of the respective paired sides). Now, due to this construction, the edge e gets replaced by a path
of length 3 and thus the number of perfect matchings in G ′′ is preserved.3 If G was orientable, we output H = G ′′ and we
are done.

If G was non-orientable, we apply Theorem 6 to get a graph G2 along with its embedding on an orientable polygonal
schema (need not be in the normal form), such that there is a one-to-one correspondence between perfect matchings in G1
and G2. Once again we apply Lemma 5 to get a graph say G ′

2 on a polygonal schema in normal form. Then we repeat the
same procedure as above to get the desired orientable graph in ConstantGenusBipartite as earlier. �

3 That is, if e was part of a matching in G ′ then we include the edges (u, u′) and (v, v ′′) in the matching in G ′′ , and if e was not part of a matching in
G ′ then we include the edge (v ′, v ′′) in the matching in H , the rest being the same.

S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779 777
4. New upper bounds

In this section we establish new upper bounds on the space complexity of certain matching problems on the class of
constant genus bipartite graphs, given as a combinatorial embedding.

4.1. Main technical theorem

In this section we prove Theorem 8 which would help us in establishing the desired upper bounds.

Theorem 8 (Main Theorem). Let g be a fixed constant. Then given an orientable graph G ∈ DirBddBipGenusg in terms of its polyg-
onal schema, such that no edge of G has both its endpoints along the boundary of the polygon, there exists a log-space computable,
polynomially bounded, skew-symmetric weight function w : E(G) → Z, such that for any cycle C ∈ G of length at least 3, w(C) �= 0.

Proof. Let (φ, S) be the polygonal schema (having 2g′ sides) of the given graph G , where S = (S1, S2, . . . , S2g′) and g′ =
O (g). We shall denote the pair of a side Si by S ′

i . Let T = {T1, T2, . . . T g′ } be the set of distinct sides of the polygon, that
is, no two elements in T are pairs of each other. We define w as a linear combination of the 2g′ + 1 weight functions
w1, w ′

1, . . . , w g′ , w ′
g′ , wTV .4

For each edge e = (u, v) in G , define the 2g′ + 1 weight functions as follows:

– For each i ∈ [g′],

wi(e) =
{1 if u lies on the side Ti,

−1 if v lies on the side Ti,

0 otherwise.

(4.1)

– For each i ∈ [g′],

w ′
i(e) =

{ j if u lies on the side Ti at index j from the tail of Ti,

− j if v lies on the side Ti at index j from the tail of Ti,

0 otherwise.

(4.2)

– wTV is defined to be the weight function defined by Tewari and Vinodchandran in [8] by assuming G to be a planar
graph.

Firstly note that each of the three kinds of weight functions that we defined above are skew-symmetric. Therefore a
linear combination of them is also skew-symmetric.

Now think of G as a planar graph by ignoring the identification of vertices along respective sides of the polygon, which
we shall call Gplanar . Gplanar is bipartite since G is bipartite. Now wTV is the weight function defined in Lemma 3 in [8].
Therefore for every cycle C ∈ G that does not cross any of the sides Si (and thus is a valid cycle in Gplanar), wTV (C) �= 0 [8].

Let C be a simple cycle in G that crosses the boundary of the polygon at some point. That is, there exists a vertex v
on side Ti such that the cycle enters v from the side Ti and exits from the vertex corresponding to v on side T ′

i . Let EC
j

be the set of edges of C whose one endpoint (either head or tail) lies on the side T j . From the definition of w j it follows
that w j(C) = w j(EC

j) (same thing holds for w ′
j as well). Now if there exists a k such that |EC

k | is odd, then wk(C) �= 0.

Otherwise, if for all k, |EC
k | is even then by Lemma 10 it follows that the edges of EC

k , alternate between going out and
coming into the side Tk if at all it passes through the side Tk . Existence of one such side is guaranteed since C crosses
the boundary of the polygon. Without loss of generality we assume that side is T1. Now by using Lemma 11 we get that
w ′

1(EC
1) �= 0 and thus w ′

1(C) �= 0. (See below for Lemmas 10 and 11.) �
To establish Lemma 10 we use an argument (Lemma 9) from homology theory. For two cycles (directed or undirected)

C1 and C2, let I(C1, C2) denote the number of times C1 and C2 cross each other (that is, one of them goes from the left to
the right side of the other, or vice versa).

Next we adapt the following lemma from Cabello and Mohar [23]. Here we assume we are given an orientable surface
(Cabello and Mohar give a proof for a graph on a surface).

Lemma 9. (See [23].) Given a genus g orientable, surface Γ , let C = {Ci}i∈[2g] be a set of cycles that generate the first homology group
H1(Γ). A cycle C in Γ is non-separating if and only if there is some cycle Ci ∈ C such that I(C, Ci) ≡ 1 (mod 2).

4 We can construct such a w in log-space since g′ is constant.

778 S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779
Fig. 14. Construction of a path from Q 1 to Q 2 in Γ \ C (the dotted path is a path between Q 1 and Q ′
1, respectively between Q 2 and Q ′

2).

Proof. Let C̃ be some cycle in Γ . We can write C̃ = ∑
i∈[2g] ti Ci , where ti ∈ {0,1}, since C generates H1(Γ). Define I C̃ (C) =∑

i∈[2g] ti I(C, Ci) (mod 2). One can verify that I C̃ : C1(Γ) → Z2 is a group homomorphism. Now since B1(Γ) is a normal
subgroup of C1(Γ), I C̃ induces a homomorphism from H1(Γ) to Z2.

Any cycle is separating if and only if it is homologically equivalent to the empty set. Therefore if C is separating, then
C ∈ B1(Γ) and thus every homomorphism from H1(Γ) to Z2 maps it to 0. Hence for every i ∈ [2g], I(C, Ci) ≡ ICi (C) = 0.

Suppose C is non-separating. One can construct a cycle C ′ on Γ , that intersects C exactly once. Let C ′ = ∑
i∈[2g] t′

i Ci .
Now 1 ≡ IC ′ (C) ≡ ∑

i∈[2g] t′
i I(C, Ci) (mod 2). This implies that there exists i ∈ [2g] such that I(C, Ci) ≡ 1 (mod 2). �

Lemma 10. Let Γ be a genus g orientable surface and let C = {Ci}i∈[2g] be a system of 2g directed cycles on Γ , having exactly one
point in common and Γ \ C is the fundamental polygon of Γ . Let C be a simple directed cycle on Γ . If I(C, Ci) is even for all i ∈ [2g]
then for all j ∈ [2g], C alternates between going from left to right and from right to left of the cycle C j in the direction of C j (if C
crosses C j at all).

Proof. Suppose there exists a j ∈ [2g] such that C does not alternate being going from left to right and from right to left
with respect to C j . Thus if we consider the ordered set of points where C intersects C j , ordered in the direction of C j , there
are two consecutive points (say P1 and P2) such that at both these points C crosses C j in the same direction.

We will show that for any two points Q 1 and Q 2 in Γ \ C , there exists a path in Γ \ C between Q 1 and Q 2. This
implies that C is a non-separating cycle. Hence by Lemma 9, there exists some i ∈ [2g], such that I(C, Ci) ≡ 1 (mod 2), thus
contradicting the hypothesis.

Consider a path from Q 1 to C . Let Q ′
1 be the point on this path that is infinitesimally close to C , without intersecting C .

Similarly define a point Q ′
2 corresponding to Q 2. Note that it is sufficient for us to construct a path between Q ′

1 and Q ′
2

in Γ \ C . If both Q ′
1 and Q ′

2 locally lie on the same side of C , then we get a path from Q ′
1 to Q ′

2 not intersecting C , by
traversing along the boundary of C . Now suppose Q ′

1 and Q ′
2 lie on opposite sides (w.l.o.g. assume that Q ′

1 lies on the right
side) of C . From Q ′

1 start traversing the cycle until you reach cycle C j (point P1 in Fig. 14). Continue along cycle C j towards
the adjacent intersection point of C and C j , going as close to C as possible, without intersecting it (point P2 in Fig. 14).
Essentially this corresponds to switching from one side of C to the other side without intersecting it. Next traverse along C
to reach Q ′

2. Thus we have a path from Q ′
1 to Q ′

2 in Γ \ C (an example of this traversal in Fig. 14). �
Lemma 11. Let G be an orientable, bipartite graph, given as an embedding on a polygonal schema of some surface. Let C be a simple
cycle in G and EC

1 be the set of edges of C that lie on the side T1 (a side of the polygon on which the embedding of the graph is given).
Assume |EC

1 | is even and the edges in EC
1 alternate between going out and coming into the polygon. Let i1 < i2 < · · · < i2p−1 < i2p be

the distinct indices on T1 where C is incident upon. Then, |w ′
1(EC

1)| = |∑p
k=1(i2k − i2k−1)| and thus non-zero unless EC

1 is empty.

Proof. Let e j = (u j, v j) for j ∈ [2p] be the 2p edges of G incident on the side T1. If u1 lies on T1 (that is, the edge e1
is directed away from the side T1), then by Lemma 10, for every i in [2p] such that i is odd, ui is incident on T1 (that
is, the edge ei is directed away from the side T1) and for every i such that i is even, vi is incident on T1 (that is, the
edge ei is directed towards the side T1). Hence w ′

1(EC
1) = i1 − i2 + i3 − i4 + · · · − i2p . Similarly, if v1 lies on T1, then

w ′
1(EC

1) = −(i1 − i2 + i3 − i4 + · · · − i2p). Therefore, in either case w ′
1(EC

1) is non-zero. �
4.2. Complexity upper bounds

Theorem 12. Let g be a fixed constant. Then given a graph G ∈ BddBipGenusg ,

(a) Decision-BPM is in SPL,
(b) Search-BPM is in FLSPL and
(c) Unique-BPM is in SPL.

S. Datta et al. / Journal of Computer and System Sciences 78 (2012) 765–779 779
Proof. As a result of Theorem 7, we can assume that our input graph G is orientable, has an embedding on a polygonal
schema of genus g′ where g′ = O (g) and no edge of G has both its endpoints on the boundary of the polygon. This
implies that the directed graph

−→
G is in the class DirBddBipGenusg with the above properties as well. Using Theorem 8

and Lemma 1 we get a polynomially bounded, log-space computable weight function W , such that the minimum weight
perfect matching in G with respect to W is unique. Moreover, for any subset E ′ ⊆ E , Theorem 8 is valid for the subgraph−→
G \ E ′ also, with respect to the same weight function W . Now (a) and (b) follow from Lemma 2. To check the uniqueness,
compute a perfect matching M in G . Now M is unique if and only if for every e ∈ M , G \ {e} has no perfect matching. �

Theorem 8 also gives an alternative proof of directed graph reachability for constant genus graphs.

Theorem 13. (See [6,10].) Directed graph reachability for constant genus graphs is in UL.

The proof of Theorem 13 follows from Theorem 8 and [6], since a path-preserving version of Theorem 7 is easily seen to
hold.

Acknowledgments

The third author would like to thank Prof. Mark Brittenham from the Mathematics Department at the University of
Nebraska–Lincoln, for numerous discussions that they had and for providing valuable insight into topics in algebraic topol-
ogy. We thank the reviewers for their very useful comments which substantially improved the presentation of this paper.

References

[1] K. Mulmuley, U. Vazirani, V. Vazirani, Matching is as easy as matrix inversion, Combinatorica 7 (1987) 105–113.
[2] K. Reinhardt, E. Allender, Making nondeterminism unambiguous, SIAM J. Comput. 29 (2000) 1118–1131; An earlier version appeared in FOCS 1997,

pp. 244–253.
[3] A. Gal, A. Wigderson, Boolean complexity classes vs. their arithmetic analogs, Random Structures Algorithms 9 (1996) 1–13.
[4] E. Allender, K. Reinhardt, S. Zhou, Isolation, matching, and counting: Uniform and nonuniform upper bounds, J. Comput. System Sci. 59 (1999) 164–181.
[5] V. Arvind, P. Mukhopadhyay, Derandomizing the isolation lemma and lower bounds for circuit size, in: Proceedings of RANDOM ’08, 2008, pp. 276–289.
[6] C. Bourke, R. Tewari, N.V. Vinodchandran, Directed planar reachability is in unambiguous log-space, ACM Trans. Comput. Theory 1 (2009) 1–17.
[7] S. Datta, R. Kulkarni, S. Roy, Deterministically isolating a perfect matching inbipartite planar graphs, Theory Comput. Syst. 47 (2010) 737–757,

doi:10.1007/s00224-009-9204-8.
[8] R. Tewari, N.V. Vinodchandran, Green’s theorem and isolation in planar graphs, Technical Report TR10-151, Electronic Colloquium on Computational

Complexity, 2010.
[9] T.M. Hoang, On the matching problem for special graph classes, in: IEEE Conference on Computational Complexity, 2010, pp. 139–150.

[10] J. Kynčl, T. Vyskočil, Logspace reduction of directed reachability for bounded genus graphs to the planar case, ACM Trans. Comput. Theory 1 (2010)
1–11.

[11] G.L. Miller, J. Naor, Flow in planar graphs with multiple sources and sinks, SIAM J. Comput. 24 (1995) 1002–1017.
[12] R. Kulkarni, M. Mahajan, K.R. Varadarajan, Some perfect matchings and perfect half-integral matchings in NC, Chic. J. Theoret. Comput. Sci. 2008 (2008).
[13] C. Thomassen, The graph genus problem is NP-complete, J. Algorithms 10 (1989) 568–576.
[14] W.S. Massey, A Basic Course in Algebraic Topology, Springer-Verlag, 1991.
[15] B. Mohar, C. Thomassen, Graphs on Surfaces, John Hopkins University Press, 2001.
[16] S. Arora, B. Barak, Computational Complexity: A Modern Approach, first ed., Cambridge University Press, 2009.
[17] H. Vollmer, Introduction to Circuit Complexity – A Uniform Approach, Springer-Verlag, 1999.
[18] O. Reingold, Undirected connectivity in log-space, J. ACM 55 (2008) 1–24.
[19] E. Allender, D.A.M. Barrington, T. Chakraborty, S. Datta, S. Roy, Planar and grid graph reachability problems, Theory Comput. Syst. 45 (2009) 675–723.
[20] H.R. Brahana, Systems of circuits on two-dimensional manifolds, Ann. of Math. 23 (1921) 144–168.
[21] M. Dehn, P. Heegaard, Analysis situs, Enzyklopädie Math. Wiss. Einschluß Anwend. III.AB (1907) 153–220.
[22] G. Vegter, C.-K. Yap, Computational complexity of combinatorial surfaces, in: Proceedings of the 6th Annual Symposium on Computational Geometry,

1990, pp. 102–111.
[23] S. Cabello, B. Mohar, Finding shortest non-separating and non-contractible cycles for topologically embedded graphs, Discrete Comput. Geom. 37 (2007)

213–235.

http://dx.doi.org/10.1007/s00224-009-9204-8

	Space complexity of perfect matching in bounded genus bipartite graphs
	1 Introduction
	1.1 Our contribution
	1.2 Proof outline
	1.3 Organization of the paper

	2 Preliminaries
	2.1 Topological graph theory
	2.2 Complexity theory
	2.3 Necessary prior results

	3 Embedding on a polygonal schema in normal form
	3.1 Combinatorial embedding to a polygonal schema
	3.2 Normalizing a polygonal schema
	3.3 Reducing the non-orientable case to the orientable case
	3.4 Matching-preserving reduction to a graph in the required form

	4 New upper bounds
	4.1 Main technical theorem
	4.2 Complexity upper bounds

	Acknowledgments
	References

