Let $L \in \text{NP}$ be decided by a 1-tape non-deterministic TM $M = (Q, \Gamma, \Sigma, q_s, q_a, q_r, \Delta)$ in time n^k for some integer k. For any input x, we will produce a Boolean formula ϕ_x so that $x \in L$ if an only if ϕ_x is satisfiable. ϕ_x will be the conjunction of several smaller formulae.

The formula ϕ_x will have the following variables.

- State variables: For $1 \le i \le n^k$ and $q \in Q$, $S_{i,q}$. These variables will be true if at time i, M is in state q. There will be $|Q|n^k$ of them.
- Head variables: For $1 \le i, j \le n^k H_{i,j}$. These variables will be true if at time i, the head is in cell j. There will be n^{2k} of them.
- Tape variables: For $1 \le i, j \le n^k$ and $\sigma \in \Gamma$ $T_{i,j,\sigma}$. These variables will be true if at time i cell j contains the symbol σ . There will be $|\Gamma| n^{2k}$ of them.

We can use these variables to express the computation of M on x as follows. The final formula ϕ_x will be conjuction of formulae $\mathcal{I}, \mathcal{S}, \mathcal{H}, \mathcal{T}, \mathcal{M}_1, \mathcal{M}_2$ and \mathcal{A} ; i.e., $\phi_x = \mathcal{I} \wedge \mathcal{S} \wedge \mathcal{H} \wedge \mathcal{T} \wedge \mathcal{M}_1 \wedge \mathcal{M}_2 \wedge \mathcal{A}$. Each of these sub formulae are described below. For the ease of description, we will use the operators \wedge (AND), \vee (OR), \neg (NOT), and \Rightarrow (Implication). We can easily see that by using the equivalence $P \Rightarrow Q \equiv \neg P \vee Q$, we can modify the formulae to get a Boolean formula (almost the same size) with operators \wedge , \vee , and \neg .

$$\mathcal{S}$$
: $\bigwedge_{i} \bigwedge_{q} \left(S_{i,q} \Rightarrow \neg(\bigvee_{q' \neq q} S_{i,q'}) \right)$

 \mathcal{S} asserts that at time i if M is in state q then it cannot be in any other state.

$$\mathcal{H} : \bigwedge_{i} \bigwedge_{j} \left(H_{i,j} \Rightarrow \neg(\bigvee_{j' \neq j} H_{i,j'}) \right)$$

 \mathcal{H} asserts that if at time i if the head is on the cell j then it cannot be on any other cell.

$$\mathcal{T} : \bigwedge_{i} \bigwedge_{j} \bigwedge_{\sigma} \left(T_{i,j,\sigma} \Rightarrow \neg(\bigvee_{\rho \neq \sigma} T_{i,j,\rho}) \right)$$

Tasserts that if at time i cell j contains σ , then it cannot contain any other symbol.

$$\mathcal{I} : S_{1,s} \wedge H_{1,0} \wedge T_{1,0,\triangleright} \bigwedge_{1 \leq j \leq n} T_{1,j,x_j} \bigwedge_{n+1 \leq j \leq n^k} T_{1,j,\sqcup}$$

 \mathcal{I} asserts that at time 1 M is in the initial configuration.

$$\mathcal{M}_{1} : \bigwedge_{i} \bigwedge_{j} \bigwedge_{j' \neq j} \bigwedge_{\sigma} (H_{i,j} \wedge T_{i,j',\sigma} \Rightarrow T_{i+1,j',\sigma})$$

$$\mathcal{M}_{2} : \bigwedge_{i} \bigwedge_{j} \bigwedge_{q} \bigwedge_{\sigma} \left(S_{i,q} \wedge H_{i,j} \wedge T_{i,j,\sigma} \Rightarrow \bigvee_{\Omega} (S_{i+1,p} \wedge H_{i+1,j'} \wedge T_{i+1,j,\rho}) \right)$$

 \mathcal{M}_1 and \mathcal{M}_1 are the part of the formula which implements one move of the machine M. \mathcal{M}_1 asserts that if at time i, the head is not on cell j' then at time i+1 the contents of that cell does not change. Here $\Omega = \{(q,\sigma), (p,\rho,D) | (q,\sigma), (p,\rho,D) \in \Delta\}$ is a finite set of choices for M, and j' = j if D = -, j' = j+1 if $D = \rightarrow$, and j' = j-1 if $D = \leftarrow$

$$\mathcal{A} : \bigvee_{i} S_{i,q_y}$$

Finally, \mathcal{A} asserts for at some time step i, M should move to state q_v .

Note that, by using the equivalence $P \Rightarrow Q \equiv \neg P \lor Q$, each of the formulae other than \mathcal{M}_2 can be expressed in CNF. For M_2 , the formula within parenthesis is of constant size and hence can be easily rewritten in CNF form with only a constant blow-up in the size. Hence the entire formula ϕ_x can be expressed as a CNF. This shows that CNF-SAT is NP-complete.