Program Verification using Hoare logic

ThanhVu Nguyen
CSCE 467
Adapted from Jonathan Aldrich’s Program Analysis slides

November 19, 2019
Big-Step Operational Semantics

E-Assign

\[
\frac{E \vdash a \downarrow n}{E \vdash x := a \downarrow E \{x \mapsto n\}}
\]

E-Skip

\[
E \vdash \text{skip} \downarrow E
\]

E-Seq

\[
\frac{E \vdash S_1 \downarrow E' \quad E' \vdash S_1 \downarrow E''}{E \vdash S_1; S_2 \downarrow E''}
\]

E-IfTrue

\[
\frac{E \vdash b \downarrow \text{True} \quad E \vdash S_1 \downarrow E'}{E \vdash \text{if } b \text{ then } S_1 \text{ else } S_2 \downarrow E'}
\]

E-IfFalse

\[
\frac{E \vdash b \downarrow \text{False} \quad E \vdash S_2 \downarrow E''}{E \vdash \text{if } b \text{ then } S_1 \text{ else } S_2 \downarrow E''}
\]

E-While

\[
\frac{E \vdash c \downarrow \text{True} \quad E \vdash S; \text{while } b \text{ do } S \downarrow E'}{E \vdash \text{while } b \text{ do } S \downarrow E'}
\]

\[
\frac{E \vdash c \downarrow \text{False}}{E \vdash \text{while } b \text{ do } S \downarrow E}
\]
Axiomatic Semantics

- Big step semantics: relates initial state to final one,
 - e.g., if we start the program with the env/state \(\{ x \mapsto 3, y \mapsto 4 \} \), we get the new env \(\{ x \mapsto 7, y \mapsto 2 \} \).

- Axiomantic Semantics: instead of single state (e.g., \(\{ x \mapsto 3, y \mapsto 4 \} \)), work with a set of states, described by a formula
 - e.g., if we start the program with variables having values satisfying \(x \geq 0, y \geq 0 \), we get a new state that satisfy \(x < 100, y = x^2 \).
Hoare Tripple

\[\{P\} \; S \; \{Q\} \]

• By Tony Hoare
• Reasoning about partial program correctness using pre- and post-conditions
• Hoare Tripple
 - P: a formula representing the precondition
 - Q: a formula representing the postcondition
 - Read: assume P holds, if S successfully executes, then Q holds
 - P and Q: specifications of the program S
• Partial Correctness: assume S terminates
• Total Correctness: require S terminates
Examples of Hoare Tripples

1. \{ True \} x:=5 \{ x \equiv 5 \}
2. \{ x \equiv y \} x := x + 3 \{ x \equiv y + 3 \}
3. \{ x > -1 \} x := 2x + 3 \{ x > 1 \}
4. \{ x \equiv a \} if x < 0 then x := -x \{ x \equiv |a| \}
5. \{ False \} x := 3 \{ x \equiv 8 \}
Examples of Hoare Tripples

1. \{ True \} x:=5 \{ x \equiv 5 \}
2. \{ x \equiv y \} x := x + 3 \{ x \equiv y + 3 \}
3. \{ x > -1 \} x:=2\times x + 3 \{ x > 1 \}
4. \{ x \equiv a \} if x < 0 then x := -x \{ x \equiv |a| \}
5. \{ False \} x:=3 \{ x \equiv 8 \}

In-class Questions:

- \{ x \equiv y \} ??? \{ x \equiv y \}
- \{ ??? \} x:= y - 3 \{ x \equiv 8 \}
- \{ x < 0 \} while(x! = 0) x:=x - 1 \{ ??? \}
Examples of Hoare Triples

1. \{ \text{True} \} \ x:=5 \ \{ x \equiv 5 \}
2. \{ x \equiv y \} \ x := x + 3 \ \{ x \equiv y + 3 \}
3. \{ x \gg -1 \} \ x:=2 \times x + 3 \ \{ x > 1 \}
4. \{ x \equiv a \} \text{ if } x < 0 \text{ then } x := -x \ \{ x \equiv |a| \}
5. \{ \text{False} \} \ x:=3 \ \{ x \equiv 8 \}

In-class Questions:

- \{ x \equiv y \} \ ??? \ \{ x \equiv y \}
- \{ ??? \} \ x:= y - 3 \ \{ x \equiv 8 \}
- \{ x<0 \} \text{ while}(x! = 0) \ x:=x - 1 \ \{ ??? \}
 - Not valid for Total Correctess
Strongest Postconditions

Which are valid?

- \(\{ x \equiv 5 \} \ x := x \ast 2 \ { \text{true} } \)
- \(\{ x \equiv 5 \} \ x := x \ast 2 \ { x > 0 } \)
- \(\{ x \equiv 5 \} \ x := x \ast 2 \ { x \equiv 10 \ \lor \ x \equiv 5 } \)
- \(\{ x \equiv 5 \} \ x := x \ast 2 \ { x \equiv 10 } \)
Strongest Postconditions

Which are valid?

- \{ x \equiv 5 \} \ x:=x*2 \ \{ \text{true} \}
- \{ x \equiv 5 \} \ x:=x*2 \ \{ x >0 \}
- \{ x \equiv 5 \} \ x:=x*2 \ \{ x \equiv 10 \lor x\equiv 5 \}
- \{ x \equiv 5 \} \ x:=x*2 \ \{ x \equiv 10 \}
- All are valid, but which one is the most useful?
Strongest Postconditions

Which are valid?

- \{ x \equiv 5 \} \ x:=x*2 \ \{ \text{true} \}
- \{ x \equiv 5 \} \ x:=x*2 \ \{ \ x >0 \} \n- \{ x \equiv 5 \} \ x:=x*2 \ \{ \ x \equiv 10 \ \lor \ x \equiv 5 \} \n- \{ x \equiv 5 \} \ x:=x*2 \ \{ \ x \equiv 10 \} \n
All are valid, but which one is the most useful?

- x \equiv 10 \text{ is the strongest postcondition} \n- In general, we want strong postconditions

Definition

- In \{ P \} S \{ Q \} , Q is the strongest postcondition if \forall Q'.\{ P \} S \{ Q' \} , Q \Rightarrow Q' \n
Ex: x \equiv 10 \text{ is the strongest postcondition}

- x \equiv 10 \Rightarrow \text{true} \n- x \equiv 10 \Rightarrow x > 0 \n- x \equiv 10 \Rightarrow (x \equiv 10 \lor x \equiv 5) \n- x \equiv 10 \Rightarrow x \equiv 10
Weakest Preconditions

- \(\{ x \equiv 5 \land y \equiv 10 \} \ z:=x/y \ \{ z<1 \} \)
- \(\{ x < y \land y > 0 \} \ z:=x/y \ \{ z<1 \} \)
- \(\{ y \neq 0 \land x/y < 1 \ } \ z:=x/y \ \{ z<1 \} \)
- All are true, but which one is the most useful?

In general, we want weak preconditions (allowing us to run the program with fewer assumptions or restrictions).

Definition

In \(\{ P \} S \{ Q \} \), \(P \) is the weakest precondition if

\[\forall P'. \\{ P' \} S \{ Q' \} \Rightarrow P' \Rightarrow P \]
Weakest Preconditions

- \(\{ x \equiv 5 \land y \equiv 10 \} \) \(z:=x/y \) \(\{ z<1 \} \)
- \(\{ x < y \land y > 0 \} \) \(z:=x/y \) \(\{ z<1 \} \)
- \(\{ y \neq 0 \land x/y < 1 \} \) \(z:=x/y \) \(\{ z<1 \} \)
- All are true, but which one is the most useful?
 - \(y \neq 0 \land x/y < 1 \) is the *weakest* precondition
 - In general, we want *weak preconditions* (allowing us to run the program with fewer assumptions or restrictions)

Definition

- In \(\{ P \} \ S \{ Q \} \), \(P \) is the weakest precondition if
 - \(\forall P'. \{ P' \} \ S \{ Q' \} \), \(P' \Rightarrow P \)
Program Verification

Verification using Hoare Triples and Weakest Preconditions

- To prove \(\{ P \} \ S \ \{ Q \} \) is valid, we check \(P \Rightarrow wp(S, Q) \)
- \(wp \): a function returning the weakest precondition allowing the execution of \(S \) to achieve \(Q \)
- Need to define \(wp \) for different statements in WHILE
Find the weakest precondition P

- $\{ P \} \ x := 3 \ \{ x + y \equiv 10 \} \ ?$
WP for Assignment

Find the weakest precondition \(P \)

\[\{ P \} \ x := 3 \ { x + y \equiv 10 } \ ? \]

- A: \(y \equiv 7 \)
- Check \(\{ y \equiv 7 \} \ x := 3 \ { x + y \equiv 10 } \)
Find the weakest precondition P

- $\{ P \} \ x := 3 \ \{ x + y \equiv 10 \} \ ?$
 - $A: y \equiv 7$
 - Check $\{ y \equiv 7 \} \ x := 3 \ \{ x + y \equiv 10 \} $
- $\{ P \} \ x := 3 \ \{ x + y > 0 \} $
Find the weakest precondition P

- \{ P \} x := 3 \{ x + y \equiv 10 \}
 - A: y \equiv 7
 - Check \{ y \equiv 7 \} x := 3 \{ x + y \equiv 10 \}

- \{ P \} x := 3 \{ x + y > 0 \}
 - A: 3 + y > 0, (or y > -3)
 - Check \{ y > -3 \} x := 3 \{ x + y > 0 \}
Find the weakest precondition P

- \{ P \} x := 3 \{ x + y \equiv 10 \} ?
 - A: y \equiv 7
 - Check \{ y\equiv7 \} x := 3 \{ x + y \equiv 10 \}

- \{ P \} x := 3 \{ x + y > 0 \}
 - A: 3 + y > 0, (or y > -3)
 - Check \{ y > -3 \} x:=3 \{ x + y > 0 \}

WP for Assignment

\[\text{wp}(x:= E, Q) = Q^{E}_x \]
WP for Assignment

Find the weakest precondition P

- \{P\} x := 3 \{x + y \equiv 10\} ?
 - A: \ y \equiv 7
 - Check \ \{y \equiv 7\} x := 3 \{x + y \equiv 10\}

- \{P\} x := 3 \{x + y > 0\}
 - A: 3 + y > 0, (or \ y > -3)
 - Check \ \{y > -3\} x:=3 \{x + y > 0\}

WP for Assignment

\[
wp(x := E, Q) = Q^{E}_x
\]

- \ wp(x:=3, x + y \equiv 10) = (x + y \equiv 10)^3_x = 3 + y = 10 = y = 7
- \ wp(x:=3, x + y > 0) = (x + y > 0)^3_x = 3 + y > 0
WP for While statements

<table>
<thead>
<tr>
<th>Statement</th>
<th>S</th>
<th>wp(S, Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment</td>
<td>x:= e</td>
<td>Q_x^e</td>
</tr>
<tr>
<td>Skip</td>
<td>skip</td>
<td>Q</td>
</tr>
<tr>
<td>Sequential</td>
<td>S1;S2</td>
<td>wp(S1, wp(S2, Q))</td>
</tr>
<tr>
<td>Conditional</td>
<td>if b then S1 else S2</td>
<td>b \Rightarrow wp(S1, Q) \land \neg b \Rightarrow wp(S2, Q)</td>
</tr>
</tbody>
</table>
WP for While statements

<table>
<thead>
<tr>
<th>Statement</th>
<th>S</th>
<th>wp(S, Q)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assignment</td>
<td>x:= e</td>
<td>Q_x^e</td>
</tr>
<tr>
<td>Skip</td>
<td>skip</td>
<td>Q</td>
</tr>
<tr>
<td>Sequential</td>
<td>S1;S2</td>
<td>wp(S1, wp(S2, Q))</td>
</tr>
<tr>
<td>Conditional</td>
<td>if b then S1 else S2</td>
<td>$b \Rightarrow wp(S1, Q) \land \neg b \Rightarrow wp(S2, Q)$</td>
</tr>
</tbody>
</table>

In-class Exercise

Find the weakest preconditions for

1. \{ ?? \} x := x + 3 \{ x \equiv z \}
2. \{ ?? \} x := x + 1; y := y \times x \{ y \equiv 2 \times z \}
3. \{ ?? \} if (x > 0) then y := x else y := 0 \{ y > 0 \}
Loops

- $wp(\text{while } b \text{ do } S) = ??$
- Idea: use loop invariant
 - holds when the loop is entered
 - preserves after the loop body is executed
Loops

- $\text{wp(while } b \text{ do } S) = ??$
- Idea: use loop invariant
 - holds when the loop is entered
 - preserves after the loop body is executed

Example

\begin{verbatim}
{N \geq 0}
i := 0;
while (i < N)
i := N;
\end{verbatim}

Which ones are loop invariants? For those that are not, explain why

1. $i \equiv 0$
2. $i \equiv N$
3. $N \geq 0$
4. $i \leq N$
WP for Loop

\[
wp(\text{while } b \text{ do } S) = (I) \land (I \land b \Rightarrow wp(S, I)) \land (I \land \neg b \Rightarrow Q)
\]

Find/Guess a loop invariant \(I \):

- \(P \Rightarrow I \): initially \(I \) is true wrt \(P \) (base case)
- \(I \land b \Rightarrow I \): \(I \) is preserved after each execution (inductive case)
- \(I \land \neg B \Rightarrow Q \): if the loop terminates, the post condition holds (Partial correctness)

\[
\{ N \geq 0 \} \\
i := 0; \\
\textbf{while } (i < N) \\
\quad i := N; \\
\{ i \equiv N \}
\]

- Which ones would be good invariant to find the \(wp \)?
 1. \(N \geq 0 \)
 2. \(i \leq N \)
WP for Loop

\[
wp(\text{while } b \text{ do } S) = (I) \land (I \land b \Rightarrow wp(S, I)) \land (I \land \neg b \Rightarrow Q)
\]

Find/Guess a loop invariant \(I\):

- \(P \Rightarrow I\): initially \(I\) is true wrt \(P\) (base case)
- \(I \land b \Rightarrow I\): \(I\) is preserved after each execution (inductive case)
- \(I \land \neg B \Rightarrow Q\): if the loop terminates, the post condition holds
 (Partial correctness)

\{N \geq 0\}

\begin{verbatim}
i := 0;
while (i < N)
 i := N;
\end{verbatim}

\{i \equiv N\}

- Which ones would be good invariant to find the wp?
 1. \(N \geq 0\)
 2. \(i \leq N\)

- Find the wp for the loop
- Prove the program is correct (show that \(P \Rightarrow wp\))
In-class Exercise

\{x \leq 10\}

\textbf{while} \ x \neq 10 \\
\hspace{1cm} x := x + 1

\{x \equiv 10\}

- Find an invariant I for the loop
- Find the wp of the loop
- Prove the program is correct