CSCE 428/828 HW 5

due via handin Monday 4/24/2017
1. (25 points) Prove that the set of rational number is **countably infinite**.

SOLUTION: See Example 4.15 in the text. The solution shows that we can have a correspondence \(f \) that maps (positive) rational numbers to natural numbers as follows: \(\frac{1}{1}, \frac{2}{1}, \frac{1}{2}, \frac{3}{1}, \frac{1}{3}, \frac{4}{1}, \frac{3}{2}, \frac{2}{3}, \frac{1}{4}, \ldots \mapsto 1, 2, 3, 4, 5, 6, 7, 8, 9, \ldots \) To consider 0 and negative rational numbers, we can insert these after the corresponding positive rational ones as follows: \(0/1, 1/1, -1/1, 2/1, -2/1, 1/2, -1/2, \ldots \).
2. (25 points) Prove that language $HALT_{LBA}$ is decidable by constructing a decider for the language.

$$HALT_{LBA} = \{< L, w > \mid L \text{ is an LBA and } L \text{ halts on string } w.\}$$

PROOF:

We construct a decider R with input $< L, w >$ for language $HALT_{LBA}$ as follows.

On input $< L, w >$

- R simulates L on input w for at most qng^n steps
 - If L halts and accepts w, then R accepts $< L, w >$;
 - if L halts and rejects w, then R accepts $< L, w >$;
 - if L does not halt within qng^n steps, then R halts and rejects $< L, w >$.

3. (25 points) Prove that language F_{TM} is undecidable by mapping reducing A_{TM} to language F_{TM}.

$$F_{TM} = \{ < M_1 > \mid \text{TM } M_1 \text{ halts on input string “Spring” and loops on input string “2017”} \}$$

PROOF:

Proof by contradiction. Assume that F_{TM} is decidable, and thus exists a decider D for F_{TM}. We can then use D to construct a decider S for A_{TM} (shown below). But this is a contradiction because A_{TM} is undecidable, thus our assumption is incorrect and that F_{TM} is undecidable.

S takes as input $< M, w >$:

- create a TM M_1 using by applying the map reduction function f on $< M, w >$ (described below)
- run D on M_1
 - if D accepts, then S accepts
 - if D rejects, then S rejects

Computable function f constructs a special TM M_1 so that

$$< M, w > \in A_{TM} \iff < M_1 > \in F_{TM}$$

More specifically, f does the following mapping.

<table>
<thead>
<tr>
<th>string $< M, w >$</th>
<th>string $< M_1 >$</th>
</tr>
</thead>
<tbody>
<tr>
<td>in the language</td>
<td>M accepts w \iff M_1 halts on “Spring” and loops on “2017”</td>
</tr>
<tr>
<td>not in the language</td>
<td>M rejects w \iff M_1 loops on “Spring” or halts on “2017” invalid encoding</td>
</tr>
</tbody>
</table>

TM M_1 works as follows on input string x.

- M_1 simulates M on w
- if M accepts w, then
 - if x is “Spring”, then M_1 accepts/rejects x, and if x is “2017”, then M_1 loops on x.
 - otherwise, it does not matter what M_1 does.
- if M rejects w, then
 - if x is “Spring”, then M_1 loops on x, or if x is “2017”, then M_1 accepts/rejects x.
 - otherwise, it does not matter what M_1 does.
- if M loops on w, then M_1 loops on every input string.
4. (25 points) Show that language E_{TM} is Turing unrecognizable by mapping reducing $\overline{A_{TM}}$ to E_{TM}.

$$E_{TM} = \{ <M_1> | M_1 \text{ is a TM, and } L(M_1) = \emptyset \}$$

PROOF:

For the purpose of contradiction, we assume that E_{TM} is Turing recognizable, and there exists a TM R for E_{TM}. We construct a TM S for $\overline{A_{TM}}$ as follows.

Mapping function f constructs a special Turing machine M_1, so that

$$<M, w> \in \overline{A_{TM}} \iff <M_1> \in E_{TM}$$

<table>
<thead>
<tr>
<th>String $<M, w>$</th>
<th>String $<M_1>$</th>
</tr>
</thead>
<tbody>
<tr>
<td>M rejects w</td>
<td>$L(M_1) = \emptyset$</td>
</tr>
<tr>
<td>M loops on w</td>
<td>invalid encoding</td>
</tr>
<tr>
<td>M accepts w</td>
<td>$L(M_1) = \Sigma^*$</td>
</tr>
<tr>
<td>invalid encoding</td>
<td></td>
</tr>
</tbody>
</table>

![Diagram](image)