CSCE 428/828 HW 3

due in class Monday 3/13/2017
1. (15 pts) Design **CFG**’s for the following languages (10 pts). Briefly describe the strings derived by each variable in the grammars (5 pts).

\[L_1 = \{ a^i b^j \mid 3i < j, i \geq 0, j \geq 0 \} \]
\[L_2 = \{ a^i b^j \mid i \leq j \leq 3i, i \geq 0, j \geq 0 \} \]
\[L_3 = \{ a^i b^j \mid i < j < 3i, i \geq 0, j \geq 0 \} \]

CFG\((L_1) = \)

\[
S \rightarrow YB \\
Y \rightarrow aYbbb | \varepsilon \\
B \rightarrow bB | b
\]

Variable \(Y\) generates \(\{a^n b^{3n} \mid n \geq 0\}\). Variable \(B\) generates \(b^+\).

CFG\((L_2) = \)

\[
S \rightarrow aSb | aSbb | aSbbb | \varepsilon
\]

Basic idea: Let’s consider a string in \(L\) (e.g., \(\varepsilon, ab, abb, aabb\)). We can see that for each additional \(a\), there should be at least one and at most three additional \(b\)’s. The special case is the empty string.

CFG\((L_3) = \)

\[
S \rightarrow aSb | aSbb | aSbbb | abb
\]

Basic idea: Let’s consider a string in \(L\) (e.g., \(abb, aabbb, aabbbb, aabbbbb\)). We can see that for each additional \(a\), there should be at least one and at most three additional \(b\)’s. The special case is the \(abb\).
2. (10 points) Design a **CFG** for the following language (5 points). Briefly describe the strings derived by each variable of your grammar (5 points).

\[L = \{a^ib^j \mid i \neq j \text{ and } 3i \neq j, \ i \geq 0, \ j \geq 0\} \]

SOLUTION:

The following context-free grammar generates language \(L \), where

- \(S_1 \) generates language \(\{a^ib^j \mid j < i\} \),
- \(S_2 \) generates language \(\{a^ib^j \mid i < j < 3i\} \), and
- \(S_3 \) generates language \(\{a^ib^j \mid 3i < j\} \).

\[
S \rightarrow S_1 \mid S_2 \mid S_3 \\
S_1 \rightarrow AX \\
A \rightarrow aA \mid a \\
X \rightarrow aXb \mid \varepsilon \\
S_2 \rightarrow aS_2b \mid aS_2bb \mid aS_2bbb \mid abb \\
S_3 \rightarrow YB \\
Y \rightarrow aYbbb \mid \varepsilon \\
B \rightarrow bB \mid b
\]

Variable \(A \) generates \(a^+ \). Variable \(X \) generates \(\{a^n b^n \mid n \geq 0\} \). Variable \(Y \) generates \(\{a^n b^{3n} \mid n \geq 0\} \). Variable \(B \) generates \(b^+ \).
3. (10 pts) Convert the following CFG to an equivalent PDA.

\[
S \rightarrow aSb \\
S \rightarrow bSa \\
S \rightarrow SS \\
S \rightarrow \epsilon
\]

Diagram:

- **Start**
- **Loop**
- **Accept**

- \(\epsilon, S \rightarrow aSb \)
- \(\epsilon, S \rightarrow bSa \)
- \(\epsilon, S \rightarrow SS \)
- \(\epsilon, S \rightarrow \epsilon \)
- \(a, a \rightarrow \epsilon \)
- \(b, b \rightarrow \epsilon \)
- \(\epsilon, \epsilon \rightarrow S\$ \)
- \(\epsilon, \$ \rightarrow \epsilon \)
4. (10 points) Design a PDA recognizing the following language (5 points). Briefly describe how your PDA works (5 points). Directly design a PDA, and a PDA that is simply converted from a CFG is not allowed.

\[L = \{a^i b^j \mid i \leq j \leq 3i, \ i \geq 0, \ j \geq 0\} \]

SOLUTION 1:

Basic idea: Let’s consider a string in \(L \) (e.g., \(\varepsilon, ab, abb, abbb \)). We can see that for each additional \(a \), there should be at least one and at most three additional \(b \)'s. The special case is the empty string.

The transition from state 1 to 2 pushes the dollar sign to mark the bottom of the stack. The loopback transition at state 2 counts the number of symbol \(a \) using the stack. The transition from state 2 to 3 makes sure that there is at least one symbol \(a \). The top loopback transition at state 3 corresponds to the case where a single \(a \) maps to a single \(b \), the bottom two transitions at state 4 correspond to the case where a single \(a \) maps to two \(b \)'s, the bottom three transitions at states 5 and 6 correspond to the case where a single \(a \) maps to three \(b \)'s. The transition from state 3 to 7 makes sure that the constraints are satisfied.

Figure 1: Solution 1

SOLUTION 2: Another slightly different but equivalent PDA is

\[a, \varepsilon \rightarrow A \]
\[a, \varepsilon \rightarrow AA \]
\[a, \varepsilon \rightarrow AAA \]
\[b, A \rightarrow \varepsilon \]

Figure 2: Solution 2
5. (10 points) Design a PDA recognizing the following language (5 points). Briefly describe how your PDA works (5 points). Directly design a PDA, and a PDA that is simply converted from a CFG is not allowed.

\[L = \{a^i b^j \mid i < j < 3i, \ i \geq 0, \ j \geq 0\} \]

SOLUTION 1:

Similar to the PDA for previous question but with 2 extra states \(p, q \) to satisfy the strict less than \(i < j < 3i \).

SOLUTION 2: Another slightly different but equivalent PDA is

\[
\begin{align*}
a, \varepsilon &\rightarrow A \\
a, \varepsilon &\rightarrow AA \\
a, \varepsilon &\rightarrow AAA \\
b, A &\rightarrow \varepsilon
\end{align*}
\]
6. (10 points) Design a **PDA** for the following language. Briefly describe how your PDA works. Directly design a PDA, and a PDA that is simply converted from a CFG is not allowed.

\[
\{a^i b^j c^k d^l \mid (2i + l) \leq (k - 3j), \ i \geq 0, j \geq 0, k \geq 0, l \geq 0\}
\]

SOLUTION:

We have the following PDA for \(L \). We calculate the value of \(2i + 3j - k + l \) by using \(X \) to denote +1 and using \(Y \) to denote −1. There are three possibilities in the stack:

- Only \(X \) (one or multiple): the value is greater than 0, and is the number of \(X \)'s.
- Only \(Y \) (one or multiple): the value is less than 0, and is the negative number of \(Y \)'s.
- Only \(\$ \) (just one): the value is 0.

Finally, we check whether \(2i + 3j - k + l \leq 0 \), that is, whether we have \(Y \) in the stack or an empty stack.
7. (10 points) Let L be the language of all palindromes over $\{0, 1\}$ containing an equal number of 0s and 1s. Show that L is not context free using the **pumping lemma**.

SOLUTION:

String $0^p1^p0^p \in L$. Let’s consider the decomposition of $s = uvxyz$ with $|vy| > 0$ and $|vxy| \leq p$. Since $|vxy| \leq p$, it cannot contain both 0’s before 1’s and after 1’s at the same time. Let’s consider the following three cases:

- vy contains some 0’s before 1’s, and might contain some 1’s. String uv^2xy^2z contains more 0’s before 1’s than after 1’s, so it is not a member of L.
- vy contains some 0’s after 1’s, and might contain some 1’s. String uv^2xy^2z contains more 0’s after 1’s than before 1’s, so it is not a member of L.
- vy contains only 1’s. String uv^2xy^2z contains more 1’s than 0’s, so it is not a member of L.

Because $0^p1^p0^p$ cannot be pumped without violating the pumping lemma conditions, L is not context free.
8. (10 points) Prove that the following language is not context free using **pumping lemma**.

\[\{x_1\#x_2\#\ldots\#x_n \mid n \geq 3, \text{ each } x_i \in (a \cup b)^*, \text{ and } x_j = x_k \text{ for some } j \neq k \} \]

Examples: strings `aab#aab#`, `ab#aab#a#aab#b`, `a##b`, and `#a#` belong to the language.

PROOF:

String \(s = a^p b^p \# a^p b^p \) in the language. Let’s consider the decomposition of \(s = uvxyz \) with \(|vy| > 0 \) and \(|vxy| \leq p \). Let’s consider the following two cases:

- **Case 1:** \(vy \) does not contain any \#.
 - Case 1.1: \(vy \) contains only some symbols before the first \#.
 - Case 1.2: \(vy \) contains some symbol \(b \)'s before the first \# and some symbol \(a \)'s after the second \#.
 - Case 1.3: \(vy \) contains only some symbols after the second \#.

- **Case 2:** \(vy \) contains at least one \# and possibly some other symbols. String \(uxz \) contains less than two \#’s, so it is not a member of the language. Note that \(uv^2xy^2z \) does not work in this case.

Because \(a^p b^p \# a^p b^p \) cannot be pumped without violating the pumping lemma conditions, the language is not context free.

The following strings also work for the proof.

- strings \(a^p b^p \# a^p b^p \), \#a^p b^p

common mistakes: the following strings do **not** work for the proof.

- strings \(a^p b^p \# a \# a^p b^p \), \(a^p b^p \# a^p b^p \# a \)
- strings \(a^p \# a^p, a^p \# a^p, a^p \# a \# a^p \)
- strings \(a^p b \# a^p b, a^p b \# a^p b \#, a^p b \# a \# a^p b \)
- any string with more than two \#’s, such as string \(a^p b^p \# a^p b^p \# a \# \)
9. **(EXTRA CREDIT: 15 points)** Prove or disprove that \(L \) is a CFL. If prove, then use either a CFG or PDA (and as before, provide some brief descriptions). If disprove, then use the Pumping Lemma.

\[L = \text{the complement of} \ \{ a^n b^n \mid n \geq 0 \} \ \text{over alphabet} \ \{ a, b \} \]

SOLUTION:

Observe that \(L \) is the union of the following three languages.

\[
\begin{align*}
L_1 &= \{ a^i b^j \mid i > j \geq 0 \} \\
L_2 &= \{ a^i b^j \mid 0 \leq i < j \} \\
L_3 &= \Sigma^* ba \Sigma^*
\end{align*}
\]

We have the following the context free grammar for language \(L \).

- \(S \to S_1 \mid S_2 \mid S_3 \)
- \(S_1 \to AT \)
- \(S_2 \to TB \)
- \(S_3 \to E ba E \)
- \(A \to aA \mid a \)
- \(B \to bB \mid b \)
- \(T \to aTb \mid \epsilon \)
- \(E \to aE \mid bE \mid \epsilon \)

\(S_1 \) generates all strings in language \(L_1 \). \(S_2 \) generates all strings in language \(L_2 \). \(S_3 \) generates all strings in language \(L_3 \). \(A \) generates all non-empty strings with only symbol \(a \). \(B \) generates all non-empty strings with only symbol \(b \). \(T \) generates \(a^n b^n \) with \(n \geq 0 \). Finally, \(E \) generates all strings over alphabet \(\{ a, b \} \).