1 DFA

A deterministic finite automaton (DFA) is a tuple

\[A = (Q, \sigma, \delta, q_I, F) \]

where

- \(Q \) is a finite set of states,
- \(\Sigma \) is a finite alphabet,
- \(\delta : Q \times \Sigma \rightarrow Q \) is the (total) transition function,
- \(q_I \in Q \) is the initial state, and
- \(F \subseteq Q \) is the set of final states.

Example:

\[A_1 = (Q, \sigma, \delta, q_I, F) \]

- \(Q : \{0, 1, 2, 4\} \)
- \(\Sigma : \{0, 1\} \)
- \(\delta \) : see diagram below
- \(q_I : 0 \)
- \(F : \{3\} \)
Figure 1: Automaton A_1

Example:
Figure 2: Automaton A_2