SymInfer: Inferring Program Invariants using Symbolic States

ThanhVu (Vu) Nguyen*,
Matthew B. Dwyer*, Willem Visser†

*University of Nebraska-Lincoln, †Stellenbosch University

ASE 2017
Program invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

- Pre/Post conditions, loop invariants, assertions
Program invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

- Pre/Post conditions, loop invariants, assertions

Numerical invariants, e.g., relations among numerical variables

- E.g., $x = 2y + 3$, $0 \leq idx \leq |arr| - 1$, $x \leq y^2$, $x = qy + r$
- *Nonlinear* polynomial invariants: $x \leq y^2$, $x = qy + r$, ...
Introduction

Program invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

- Pre/Post conditions, loop invariants, assertions

Numerical invariants, e.g., relations among numerical variables

- E.g., \(x = 2y + 3 \), \(0 \leq idx \leq |arr| - 1 \), \(x \leq y^2 \), \(x = qy + r \)
- *Nonlinear* polynomial invariants: \(x \leq y^2 \), \(x = qy + r \), ...

Techniques for automatic invariant generation

- *Statically* examine program code, *dynamically* analyze concrete states (traces), or hybridization of dynamic inference and static checking
- *SymInfer*: hybridization using *symbolic states*
 - Symbolic states: obtained from symbolic execution, intermediate representation of states, consist of path conditions and local variables
 - Infer: use symbolic states to generate sample traces and infer invariants
 - Check: use symbolic states to check candidate invariants
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r ≥ y){
 int a=1;
 int b=y;
 while[L1](r ≥ 2*b){
 a = 2*a;
 b = 2*b;
 }
 r=r-b;
 q=q+a;
 }
 [L2]
 return q;
}
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r ≥ y){
 int a=1;
 int b=y;
 while[L1](r ≥ 2*b){
 a = 2*a;
 b = 2*b;
 }
 r=r-b;
 q=q+a;
 }
 [L2]
 return q;
}

What does this program do? What properties hold at L1 and L2?

SymInfer automatically generates

- **loop invariants at L1:**
 \[
 x = qy + r, \quad b = ya, \quad y ≤ b, \\
 b ≤ r, \quad r ≤ x, \quad a ≤ b, \quad 2 ≤ a + y
 \]

- **postconditions at L2:**
 \[
 x = qy + r, \quad 1 ≤ q + r, \\
 r ≤ y − 1, \quad 0 ≤ r, \quad r ≤ x
 \]
Example: Numerical Invariants

What does this program do? What properties hold at \textbf{L1} and \textbf{L2}?

SymInfer automatically generates

- loop invariants at \textbf{L1}:
 \[x = qy + r, \quad b = ya, \quad y \leq b, \]
 \[b \leq r, \quad r \leq x, \quad a \leq b, \quad 2 \leq a + y \]

- postconditions at \textbf{L2}:
 \[x = qy + r, \quad 1 \leq q + r, \]
 \[r \leq y - 1, \quad 0 \leq r, \quad r \leq x \]

- Invariants describe program’s semantic, e.g., \(x = qy + r \) for integer division and reveal useful information, e.g., remainder \(r \) is non-negative

```c
int cohendiv(int x, int y){
    assert(x>0 && y>0);
    int q=0; int r=x;
    while(r \geq y){
        int a=1;
        int b=y;
        while[L1](r \geq 2*b){
            a = 2*a;
            b = 2*b;
        }
        r=r-b;
        q=q+a;
    }
    [L2]
    return q;
}
```
int cohendiv(int x, int y) {
 assert(x > 0 && y > 0);
 int q = 0; int r = x;
 while (r ≥ y) {
 int a = 1;
 int b = y;
 while [L1] (r ≥ 2*b) {
 a = 2*a;
 b = 2*b;
 }
 r = r - b;
 q = q + a;
 }
 [L2]
 return q;
}

Run *symbolic execution* to obtain

- **Path conditions** over input variables
- Relationships among **local variables**
Symbolic States

int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r ≥ y){
 int a=1;
 int b=y;
 while[L1](r ≥ 2*b){
 a = 2*a;
 b = 2*b;
 }
 r=r-b;
 q=q+a;
 }
 [L2]
 return q;
}

Run *symbolic execution* to obtain

- **Path conditions** over input variables
- **Relationships among local variables**
- **At L1:**

 Pathconds
 - \(x ≥ y \land y > 0\)
 - \(x ≥ 2y \land y > 0\)
 - \(4y > x ≥ 2y + y \land y > 0\)

 Locals
 - \(q = 0 \land r = x \land a = 1 \land b = y\)
 - \(q = 0 \land r = x \land a = 2 \land b = 2y\)
 - \(q = 2 \land r = x - 2y \land a = 1 \land b = y\)
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r ≥ y){
 int a=1;
 int b=y;
 while[L1](r ≥ 2*b){
 a = 2*a;
 b = 2*b;
 }
 r=r-b;
 q=q+a;
 }
 [L2]
 return q;
}

Run *symbolic execution* to obtain

- **Path conditions** over input variables
- **Relationships among local variables**
- **At L1:**
 - **Pathconds**
 - $x ≥ y ∧ y > 0$
 - $x ≥ 2y ∧ y > 0$
 - $4y > x ≥ 2y + y ∧ y > 0$
 - **Locals**
 - $q = 0 ∧ r = x ∧ a = 1 ∧ b = y$
 - $q = 0 ∧ r = x ∧ a = 2 ∧ b = 2y$
 - $q = 2 ∧ r = x − 2y ∧ a = 1 ∧ b = y$

Symbolic states at L1

- Disjunctions of pathconds and locals
 - $(x ≥ y ∧ y > 0 ∧ q = 0 ∧ r = x ∧ a = 1 ∧ b = y) \lor$
 - $(x ≥ 2y ∧ y > 0 ∧ q = 0 ∧ r = x ∧ a = 2 ∧ b = 2y) \lor \ldots$
- An intermediate representation of states
SymInfer: Invariants Inference using Symbolic States

- Use symbolic states for both inference and checking
- An iterative approach
 - Inferring: use symbolic states to generate traces, then apply DIG's algorithms to infer numerical invariants from traces
 - Checking: use symbolic states to check candidate invariants and generate counterexample traces

Symbols and arrows indicating flow:
- Program
- Inputs
- Symbolic States
- Run
- Traces
- Infer
- Invs
- CEX
- No
- Check
- Yes
- Invs
SymInfer: Invariants Inference using Symbolic States

- Use symbolic states for both inference and checking
- An iterative approach
 - Inferring: use symbolic states to generate traces, then apply DIG’s algorithms to infer numerical invariants from traces
 - Checking: use symbolic states to check candidate invariants and generate counterexample traces
Example: Dynamic Inference using DIG

```
int cohenDiv(int x, int y){
    assert(x>0 ; y>0);
    int q=0; int r=x;
    while(r >= y){
        int a=1; int b=y;
        while(L1)(r >= 2*b){
            a = 2*a; b = 2*b;
        }
        r=r-b; q=q+a;
    }
    return q;
}
```

Traces:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>7</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>6</td>
<td>7</td>
</tr>
</tbody>
</table>

Loop invariants at L1:

Equations:

\[x = qy + r \]

\[b = ya \]

Inequalities:

\[2 \leq a + y \]

\[a \leq b \]

\[b \leq r \]

\[r \leq x \]
Example: Dynamic Inference using DIG

```c
int cohendiv(int x, int y){
    assert(x>0 ; y>0);
    int q=0; int r=x;
    while(r >= y){
        int a=1; int b=y;
        while[r >= 2*b]{
            a = 2*a; b = 2*b;
        }
        r=r-b; q=q+a;
    }
    return q;
}
```

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Loop invariants at L1:

- Equations:
 - \(x = qy + r \)
 - \(b = ya \)

- Inequalities:
 - \(2 \leq a + y \)
 - \(a \leq b \)
 - \(y \leq b \)
 - \(b \leq r \)
 - \(r \leq x \)
Example: Dynamic Inference using DIG

int cohendiv(int x, int y){
 assert(x>0 ; y>0);
 int q=0; int r=x;
 while(r >= y){
 int a=1; int b=y;
 while[r >= 2*b]{
 a = 2*a; b = 2*b;
 }
 r=r-b; q=q+a;
 }
 return q;
}

Traces:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Loop invariants at L1:

equations: \(x = qy + r \) \(b = ya \)

inequalities: \(2 \leq a + y \) \(a \leq b \) \(y \leq b \)
\(b \leq r \) \(r \leq x \)
Infer Nonlinear Equations using Equation Solver

\[V = \{ r, y, a \}; \quad \text{deg} = 2 \]

\[T = \{ 1, r, y, a, ry, ra, ya, r^2, y^2, a^2 \} \]

Nonlinear equation template

\[c_1 + c_2 r + c_3 y + c_4 a + c_5 ry + c_6 ra + c_7 ya + c_8 r^2 + c_9 y^2 + c_{10} a^2 = 0 \]

System of linear equations

<table>
<thead>
<tr>
<th>(x)</th>
<th>(y)</th>
<th>(a)</th>
<th>(b)</th>
<th>(q)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>
Infer Nonlinear Equations using Equation Solver

- Terms and degrees

\[V = \{r, y, a\}; \quad \text{deg} = 2 \]

\[T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\} \]

\[
\begin{array}{c|c|c|c|c|c}
 x & y & a & b & q & r \\
\hline
15 & 2 & 1 & 2 & 0 & 15 \\
15 & 2 & 2 & 4 & 0 & 15 \\
15 & 2 & 1 & 2 & 4 & 7 \\
\hline
4 & 1 & 1 & 1 & 0 & 4 \\
4 & 1 & 2 & 2 & 0 & 4 \\
\end{array}
\]
Infer Nonlinear Equations using Equation Solver

- Terms and degrees

\[V = \{r, y, a\}; \quad \text{deg} = 2 \]

\[\downarrow \]

\[T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\} \]

- Nonlinear equation template

\[c_1 + c_2 r + c_3 y + c_4 a + c_5 ry + c_6 ra + c_7 ya + c_8 r^2 + c_9 y^2 + c_{10} a^2 = 0 \]
Infer Nonlinear Equations using Equation Solver

- Terms and degrees

\[V = \{r, \, y, \, a\}; \quad \text{deg} = 2 \]

\[T = \{1, \, r, \, y, \, a, \, ry, \, ra, \, ya, \, r^2, \, y^2, \, a^2\} \]

- Nonlinear equation template

\[c_1 + c_2 r + c_3 y + c_4 a + c_5 ry + c_6 ra + c_7 ya + c_8 r^2 + c_9 y^2 + c_{10} a^2 = 0 \]

- System of linear equations

\[
\begin{array}{c|ccccc}
 x & y & a & b & q & r \\
\hline
 15 & 2 & 1 & 2 & 0 & 15 \\
 15 & 2 & 2 & 4 & 0 & 15 \\
 15 & 2 & 1 & 2 & 4 & 7 \\
 4 & 1 & 1 & 1 & 0 & 4 \\
 4 & 1 & 2 & 2 & 0 & 4 \\
\end{array}
\]

\[
\begin{align*}
\text{trace 1} & \rightarrow \quad \{r = 15, \, y = 2, \, a = 1\} \\
\text{eq 1} & \rightarrow \quad c_1 + 15c_2 + 2c_3 + c_4 + 30c_5 + 15c_6 + 2c_7 + 225c_8 + 4c_9 + c_{10} = 0 \\
& \vdots
\end{align*}
\]
Infer Nonlinear Equations using Equation Solver

- **Terms and degrees**
 \[V = \{ r, y, a \}; \deg = 2 \]
 \[\downarrow \]
 \[T = \{ 1, r, y, a, ry, ra, ya, r^2, y^2, a^2 \} \]

- **Nonlinear equation template**
 \[c_1 + c_2 r + c_3 y + c_4 a + c_5 ry + c_6 ra + c_7 ya + c_8 r^2 + c_9 y^2 + c_{10} a^2 = 0 \]

- **System of \textit{linear} equations**
 \[
 \begin{array}{|c|c||c|c|c|c|}
 \hline
 x & y & a & b & q & r \\
 \hline
 15 & 2 & 1 & 2 & 0 & 15 \\
 15 & 2 & 2 & 4 & 0 & 15 \\
 15 & 2 & 1 & 2 & 4 & 7 \\
 4 & 1 & 1 & 1 & 0 & 4 \\
 4 & 1 & 2 & 2 & 0 & 4 \\
 \hline
 \end{array}
 \]

- **Solve for coefficients** \(c_i \)
 \[V = \{ x, y, a, b, q, r \}; \deg = 2 \quad \rightarrow \quad x = qy + r, \ b = ya \]
Checking Using Symbolic States

General Idea

- **Goal**: prove/refute candidate invariants (I) using symbolic states (S)
- **Approach**: call SMT solver to check for validity of $S \Rightarrow I$
 - **valid**: invariant is valid and accepted
 - **invalid**: invariant is spurious and rejected, solver produces cex’s to help inference

Implementation: use JPF/SPF to obtain symbolic states

Bounded by depth k: invariants only valid over symbolic states S computed with k

If I is valid with S_k, then check again if I is also valid with S_{k+1} to gain confidence

Can be unsound (will not attempt all possible depths), but in practice is very effective in refuting bad invariants and finding cex’s to help inference
Checking Using Symbolic States

General Idea

- **Goal**: prove/refute candidate invariants \((I)\) using symbolic states \((S)\)

- **Approach**: call SMT solver to check for validity of \(S \Rightarrow I\)
 - **valid**: invariant is valid and accepted
 - **invalid**: invariant is spurious and rejected, solver produces cex’s to help inference

Implementation: use JPF/SPF to obtain symbolic states

- Bounded by depth \(k\): invariants only valid over symbolic states \(S\) computed with \(k\)
- If \(I\) is valid with \(S_k\), then check again if \(I\) is also valid with \(S_{k+1}\) to gain confidence
- Can be **unsound** (will not attempt all possible depths), but in practice is very effective in refuting bad invariants and finding cex’s
Evaluation

Setup

- SymInfer works with Java programs, implemented in SAGE/Python (with JPF/SPF and Z3 SMT solver),
- Test machine: 10-core 2.4GHZ CPU, 128GB Ram, Linux OS

Benchmark (3 objectives)

1. Program Understanding: NLA testsuite, 27 programs with nonlinear invariants
2. Complexity Analysis: 19 programs collected from static complexity analysis work
3. Program Verification: HOLA benchmark, 46 programs with assertions, compare against PIE
Example: Program Understanding

```c
int cohendiv(int x, int y){
    assert(x>0 && y>0);
    int q=0; int r=x;
    while(r ≥ y){
        int a=1;
        int b=y;
        while[L1](r ≥ 2*b){
            a = 2*a;
            b = 2*b;
        }
        r=r-b;
        q=q+a;
    }
    [L2]
    return q;
}
```

What does this program do? What properties hold at L1 and L2?

SymInfer automatically generates

- loop invariants at L1:

 \[
 \begin{align*}
 x &= qy + r, & b &= ya, & y \leq b, \\
 b &\leq r, & r &\leq x, & a \leq b, & 2 \leq a + y
 \end{align*}
 \]

- postconditions at L2:

 \[
 \begin{align*}
 x &= qy + r, & 1 \leq q + r, \\
 r &\leq y - 1, & 0 \leq r, & r \leq x
 \end{align*}
 \]

- Invariants describe program’s semantic, e.g., integer division and reveal useful information, e.g., remainder is non-negative
Results: Program Understanding

<table>
<thead>
<tr>
<th>Prog</th>
<th>Locs</th>
<th>Invs</th>
<th>Time (s)</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohendiv</td>
<td>2</td>
<td>10</td>
<td>21.05</td>
<td>✓</td>
</tr>
<tr>
<td>divbin</td>
<td>2</td>
<td>11</td>
<td>58.97</td>
<td>✓</td>
</tr>
<tr>
<td>manna</td>
<td>1</td>
<td>6</td>
<td>35.33</td>
<td>✓</td>
</tr>
<tr>
<td>hard</td>
<td>2</td>
<td>6</td>
<td>29.40</td>
<td>✓</td>
</tr>
<tr>
<td>sqrt1</td>
<td>1</td>
<td>5</td>
<td>20.03</td>
<td>✓</td>
</tr>
<tr>
<td>dijkstra</td>
<td>2</td>
<td>16</td>
<td>93.01</td>
<td>✓</td>
</tr>
<tr>
<td>freire1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>freire2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cohen cu</td>
<td>1</td>
<td>4</td>
<td>21.90</td>
<td>✓</td>
</tr>
<tr>
<td>egcd1</td>
<td>1</td>
<td>14</td>
<td>122.22</td>
<td>✓</td>
</tr>
<tr>
<td>egcd2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>egcd3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>prodbin</td>
<td>1</td>
<td>7</td>
<td>56.17</td>
<td>✓</td>
</tr>
<tr>
<td>prod4br</td>
<td>1</td>
<td>9</td>
<td>84.37</td>
<td>✓</td>
</tr>
<tr>
<td>knuth</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fermat1</td>
<td>3</td>
<td>17</td>
<td>60.26</td>
<td>✓</td>
</tr>
<tr>
<td>fermat2</td>
<td>1</td>
<td>8</td>
<td>36.83</td>
<td>✓</td>
</tr>
<tr>
<td>lcm1</td>
<td>3</td>
<td>24</td>
<td>248.17</td>
<td>✓</td>
</tr>
<tr>
<td>lcm2</td>
<td>1</td>
<td>7</td>
<td>34.17</td>
<td>✓</td>
</tr>
<tr>
<td>geo1</td>
<td>1</td>
<td>8</td>
<td>158.27</td>
<td>✓</td>
</tr>
<tr>
<td>geo2</td>
<td>1</td>
<td>9</td>
<td>147.75</td>
<td>✓</td>
</tr>
<tr>
<td>geo3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ps2</td>
<td>1</td>
<td>3</td>
<td>18.39</td>
<td>✓</td>
</tr>
<tr>
<td>ps3</td>
<td>1</td>
<td>3</td>
<td>19.69</td>
<td>✓</td>
</tr>
<tr>
<td>ps4</td>
<td>1</td>
<td>3</td>
<td>19.92</td>
<td>✓</td>
</tr>
<tr>
<td>ps5</td>
<td>1</td>
<td>3</td>
<td>46.19</td>
<td>✓</td>
</tr>
<tr>
<td>ps6</td>
<td>1</td>
<td>3</td>
<td>41.19</td>
<td>✓</td>
</tr>
</tbody>
</table>

Experiment

- **NLA suite**: 27 programs
- Require nonlinear invariants
- Use documented invariants (loop invariants and postconds) as ground truths
- **Goal**: obtain invariants and compare to ground truths
Results: Program Understanding

<table>
<thead>
<tr>
<th>Prog</th>
<th>Locs</th>
<th>Invs</th>
<th>Time (s)</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohendiv</td>
<td>2</td>
<td>10</td>
<td>21.05</td>
<td>✓</td>
</tr>
<tr>
<td>divbin</td>
<td>2</td>
<td>11</td>
<td>58.97</td>
<td>✓</td>
</tr>
<tr>
<td>manna</td>
<td>1</td>
<td>6</td>
<td>35.33</td>
<td>✓</td>
</tr>
<tr>
<td>hard</td>
<td>2</td>
<td>6</td>
<td>29.40</td>
<td>✓</td>
</tr>
<tr>
<td>sqrt1</td>
<td>1</td>
<td>5</td>
<td>20.03</td>
<td>✓</td>
</tr>
<tr>
<td>dijkstra</td>
<td>2</td>
<td>16</td>
<td>93.01</td>
<td>✓</td>
</tr>
<tr>
<td>freire1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>freire2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cohen1u</td>
<td>1</td>
<td>4</td>
<td>21.90</td>
<td>✓</td>
</tr>
<tr>
<td>egcd1</td>
<td>1</td>
<td>14</td>
<td>122.22</td>
<td>✓</td>
</tr>
<tr>
<td>egcd2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>egcd3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>prodbin</td>
<td>1</td>
<td>7</td>
<td>56.17</td>
<td>✓</td>
</tr>
<tr>
<td>prod4br</td>
<td>1</td>
<td>9</td>
<td>84.37</td>
<td>✓</td>
</tr>
<tr>
<td>knuth</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fermat1</td>
<td>3</td>
<td>17</td>
<td>60.26</td>
<td>✓</td>
</tr>
<tr>
<td>fermat2</td>
<td>1</td>
<td>8</td>
<td>36.83</td>
<td>✓</td>
</tr>
<tr>
<td>lcm1</td>
<td>3</td>
<td>24</td>
<td>248.17</td>
<td>✓</td>
</tr>
<tr>
<td>lcm2</td>
<td>1</td>
<td>7</td>
<td>34.17</td>
<td>✓</td>
</tr>
<tr>
<td>geo1</td>
<td>1</td>
<td>8</td>
<td>158.27</td>
<td>✓</td>
</tr>
<tr>
<td>geo2</td>
<td>1</td>
<td>9</td>
<td>147.75</td>
<td>✓</td>
</tr>
<tr>
<td>geo3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ps2</td>
<td>1</td>
<td>3</td>
<td>18.39</td>
<td>✓</td>
</tr>
<tr>
<td>ps3</td>
<td>1</td>
<td>3</td>
<td>19.69</td>
<td>✓</td>
</tr>
<tr>
<td>ps4</td>
<td>1</td>
<td>3</td>
<td>19.92</td>
<td>✓</td>
</tr>
<tr>
<td>ps5</td>
<td>1</td>
<td>3</td>
<td>46.19</td>
<td>✓</td>
</tr>
<tr>
<td>ps6</td>
<td>1</td>
<td>3</td>
<td>41.19</td>
<td>✓</td>
</tr>
</tbody>
</table>

Experiment

- **NLA suite**: 27 programs
- Require nonlinear invariants
- Use documented invariants (loop invariants and postconds) as ground truths
- **Goal**: obtain invariants and compare to ground truths

Results:

SymInfer found correct invariants in 21/27 (✓) programs

- Most results equivalent to or stronger than (imply) ground truths
- Several unexpected and undocumented invariants
- Some invariants reveal “how” program works in details
void triple(int M, int N, int P){
 assert (0 <= M);
 assert (0 <= N);
 assert (0 <= P);
 int i = 0, j = 0, k = 0;
 int t = 0;
 while(i < N){
 j = 0; t++;
 while(j < M){
 j++; k = i; t++;
 while (k < P){
 k++; t++;
 }
 i = k;
 }
 i++;
 }
 [L]
}
Example: Complexity Analysis

```c
void triple(int M, int N, int P){
    assert (0 <= M);
    assert (0 <= N);
    assert (0 <= P);
    int i = 0, j = 0, k = 0;
    int t = 0;
    while(i < N){
        j = 0; t++;
        while(j < M){
            j++; k = i; t++;
            while (k < P){
                k++; t++;
            }
        i = k;
    }
    i++;
    }
    [L]
}
```

Complexity of this program?

- Use t to count loop iterations
- At first glance: $t = O(MNP)$
- A more precise complexity bound: $t = O(N + NM + P)$

Nonlinear invariants can represent disjunctive properties capturing different complexity bounds.
Example: Complexity Analysis

```c
void triple(int M, int N, int P) {
    assert (0 <= M);
    assert (0 <= N);
    assert (0 <= P);
    int i = 0, j = 0, k = 0;
    int t = 0;
    while (i < N) {
        j = 0; t++;
        while (j < M) {
            j++; k = i; t++;
            while (k < P) {
                k++; t++;
            }
        }
        i = k;
    }
    i++;
}
```

Complexity of this program?

- Use t to count loop iterations
- At first glance: $t = O(MNP)$
- A more precise complexity bound: $t = O(N + NM + P)$
- SymInfer found a very unexpected inv:

\[
P^2Mt + PM^2t - PMNt - M^2Nt - PMt^2 + MNt^2 + PMt - PNt - 2MNt + Pt^2 + Mt^2 + Nt^2 - t^3 - Nt + t^2 = 0
\]

Nonlinear invariants can represent disjunctive properties capturing different complexity bounds.
Example: Complexity Analysis

```c
void triple(int M, int N, int P){
  assert (0 <= M);
  assert (0 <= N);
  assert (0 <= P);
  int i = 0, j = 0, k = 0;
  int t = 0;
  while(i < N){
    j = 0; t++;
    while(j < M){
      j++; k = i; t++;
      while (k < P){
        k++; t++;
      }
    }
    i = k;
  }
  i++;
}[L]
}
```

Complexity of this program?

- Use \(t \) to count loop iterations
- At first glance: \(t = O(MNP) \)
- A more precise complexity bound:
 \(t = O(N + NM + P) \)
- SymInfer found a very unexpected inv:
 \[
 P^2Mt + PM^2t - PMNt - M^2Nt - PMt^2 + M^2t^2 + PMt - Pmt - 2M^2t + Pt^2 + M^2t + Nt^2 - t^3 - Nt + t^2 = 0
 \]
- Solve for \(t \) yields the most precise, unpublished bound:
 \[
 t = 0 \quad \text{when} \quad N = 0,
 \]
 \[
 t = P + M + 1 \quad \text{when} \quad N \leq P,
 \]
 \[
 t = N - M(P - N) \quad \text{when} \quad N > P
 \]
- Nonlinear invariants can represent disjunctive properties capturing different complexity bounds
Results: Complexity Analysis

<table>
<thead>
<tr>
<th>Prog</th>
<th>Invs</th>
<th>Time (s)</th>
<th>✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>cav09_fig1a</td>
<td>1</td>
<td>12.41</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig1d</td>
<td>1</td>
<td>12.44</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig2d</td>
<td>3</td>
<td>58.40</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig3a</td>
<td>3</td>
<td>8.75</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig5b</td>
<td>6</td>
<td>49.44</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_ex6</td>
<td>6</td>
<td>57.00</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig2</td>
<td>6</td>
<td>60.60</td>
<td>✓✓</td>
</tr>
<tr>
<td>pldi09_fig4_1</td>
<td>3</td>
<td>56.24</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig4_2</td>
<td>5</td>
<td>28.32</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig4_3</td>
<td>3</td>
<td>59.19</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig4_4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pldi09_fig4_5</td>
<td>3</td>
<td>103.70</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig2_1</td>
<td>2</td>
<td>50.86</td>
<td>✓✓</td>
</tr>
<tr>
<td>popl09_fig2_2</td>
<td>2</td>
<td>53.48</td>
<td>✓✓</td>
</tr>
<tr>
<td>popl09_fig3_4</td>
<td>4</td>
<td>58.62</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig4_1</td>
<td>4</td>
<td>65.19</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig4_2</td>
<td>2</td>
<td>51.24</td>
<td>✓✓</td>
</tr>
<tr>
<td>popl09_fig4_3</td>
<td>5</td>
<td>31.57</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig4_4</td>
<td>3</td>
<td>36.89</td>
<td>✓</td>
</tr>
</tbody>
</table>

Experiment

- 19 progs from static complexity work
- Obtain postconds representing complexity
- **Goal**: compare against results from prev work
Results: Complexity Analysis

<table>
<thead>
<tr>
<th>Prog</th>
<th>Invs</th>
<th>Time (s)</th>
<th>✓ ✓</th>
</tr>
</thead>
<tbody>
<tr>
<td>cav09_fig1a</td>
<td>1</td>
<td>12.41</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig1d</td>
<td>1</td>
<td>12.44</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig2d</td>
<td>3</td>
<td>58.40</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig3a</td>
<td>3</td>
<td>8.75</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig5b</td>
<td>6</td>
<td>49.44</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_ex6</td>
<td>6</td>
<td>57.00</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig2</td>
<td>6</td>
<td>60.60</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>pldi09_fig4_1</td>
<td>3</td>
<td>56.24</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig4_2</td>
<td>5</td>
<td>28.32</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig4_3</td>
<td>3</td>
<td>59.19</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig4_4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pldi09_fig4_5</td>
<td>3</td>
<td>103.70</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig2_1</td>
<td>2</td>
<td>50.86</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>popl09_fig2_2</td>
<td>2</td>
<td>53.48</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>popl09_fig3_4</td>
<td>4</td>
<td>58.62</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig4_1</td>
<td>4</td>
<td>65.19</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig4_2</td>
<td>2</td>
<td>51.24</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>popl09_fig4_3</td>
<td>5</td>
<td>31.57</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig4_4</td>
<td>3</td>
<td>36.89</td>
<td>✓</td>
</tr>
</tbody>
</table>

Experiment

- 19 progs from static complexity work
- Obtain postconds representing complexity
 - **Goal**: compare against results from prev work

Results: Obtain equivalent (14 ✓) or more precise bounds (4 ✓ ✓) in 18/19 progs
Example: Verification

```c
void f(int u1, int u2) {
    assert(u1 > 0 && u2 > 0);
    int a = 1, b = 1, c = 2, d = 2;
    int x = 3, y = 3;
    int i1 = 0, i2 = 0;
    while (i1 < u1) {
        i1++;
        x = a + c; y = b + d;
        if ((x + y) % 2 == 0) {
            a++; d++;
        } else { a--; }
        i2 = 0;
        while (i2 < u2) {
            i2++; c--; b--; }
    }
    [L] //SymInfer found:
    //b + 1 = c, a + 1 = d,
    //a + b <= 2, 2 <= a
    assert(a + c == b + d);
}
```

```c
void g(int n, int u1) {
    assert(u1 > 0);
    int x = 0;
    int m = 0;
    while (x < n) {
        if (u1) {
            m = x;
        }
        x = x + 1;
    }
    [L] //SymInfer found:
    //m^2 = nx - m - x, mn = x^2 - x
    //m <= x, x <= m + 1, n <= x
    if (n > 0) {
        assert(0 <= m && m < n);
    }
}
```
Results: Verification

Experiment

- HOLA benchmark: 46 programs
- Various assertions (mostly postconds)
- Goal:
 - Obtain and compare invariants: if match or imply assertions, then assertions hold
 - Also compare with existing tool PIE
Results: Verification

Experiment

- HOLA benchmark: 46 programs
- Various assertions (mostly postconds)

Goal:

- Obtain and compare invariants: if match or imply assertions, then assertions hold
- Also compare with existing tool PIE

Results: Found equiv or stronger invariants in 40/46 programs

- Time: median 9.3s, mean 5.4s
- Nonlinear invariants can prove many nontrivial and unsupported properties
documentation, code, benchmark programs

https://bitbucket.org/nguyenthanhvuh/symtraces/
Extra Slides
Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)

- E.g., real inv: $t \leq 1000$
- Basic CEGIR: iter 1: $t \leq 2$, iter 2: $t \leq 3$, iter 3: $t \leq 7$, ...
- Not terminating if t has no bounds
Inferring Octagonal Inequalities

- Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)
 - E.g., real inv: $t \leq 1000$
 - Basic CEGIR: iter 1: $t \leq 2$, iter 2: $t \leq 3$, iter 3: $t \leq 7$, ...
 - Not terminating if t has no bounds

- **Approach**: Divide and Conquer
 - Only consider invariants within fixed bounds, e.g., $-k \leq t \leq k$, where $k = 100000$
Inferring Octagonal Inequalities

- Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)
 - E.g., real inv: $t \leq 1000$
 - Basic CEGIR: iter 1: $t \leq 2$, iter: 2 $t \leq 3$, iter 3: $t \leq 7$, ...
 - Not terminating if t has no bounds

- **Approach**: Divide and Conquer
 - Only consider invariants within fixed bounds, e.g., $-k \leq t \leq k$, where $k = 100000$
 - Finding upperbound (ub): check if $t \leq k$
 - If no (i.e., $t > k$) then will not find ub of t
Inferring Octagonal Inequalities

- Basic CEGIR does not work well for inequalities (e.g., \(t \leq 1000 \))
 - E.g., real inv: \(t \leq 1000 \)
 - Basic CEGIR: iter 1: \(t \leq 2 \), iter: 2 \(t \leq 3 \), iter 3: \(t \leq 7 \), ...
 - Not terminating if \(t \) has no bounds

- **Approach**: Divide and Conquer
 - Only consider invariants within fixed bounds, e.g., \(-k \leq t \leq k\), where \(k = 100000 \)
 - Finding upperbound (ub): check if \(t \leq k \)
 - If no (i.e., \(t > k \)) then will not find ub of \(t \)
 - Otherwise use divide and conquer to find ub of \(t \) within range \([-k, k]\)
 - Compute mid value \(mv = (-k + k)/2 \), check if \(t \leq mv \)
 - If yes, find ub of \(t \) within the range \([-k, mv]\)
 - If no, find ub of \(t \) within the range \([mv, k]\)
Inferring Octagonal Inequalities

- Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)
 - E.g., real inv: $t \leq 1000$
 - Basic CEGIR: iter 1: $t \leq 2$, iter: 2 $t \leq 3$, iter 3: $t \leq 7$, ...
 - Not terminating if t has no bounds

- **Approach**: Divide and Conquer
 - Only consider invariants within fixed bounds, e.g., $-k \leq t \leq k$, where $k = 100000$
 - Finding upperbound (ub): check if $t \leq k$
 - If no (i.e., $t > k$) then will not find ub of t
 - Otherwise use divide and conquer to find ub of t within range $[-k, k]$
 - Compute mid value $mv = (−k + k)/2$, check if $t \leq mv$
 - If yes, find ub of t within the range $[-k, mv]$
 - If no, find ub of t within the range $[mv, k]$

- Support **octagonal** invariants: term t represent $x, y, x - y, x + y, -x - y, ...$
Using Symbolic States for Invariant Inference

- Reusability: pre-compute and reuse symbolic states at L, e.g., for checking
- Expressiveness: a symbolic state (e.g., $x \geq 0, y \geq x$) represents many concrete states and also encodes relationships among variables (e.g., $y \geq x$)
- Diversity: each symbolic state represents a different program “path”, produce better traces
- Usability and Optimization: encoded logical formulas, checked with different solvers and optimized (e.g., perform slicing when checking)