SymInfer: Inferring Program Invariants using Symbolic States

ThanhVu (Vu) Nguyen*,
Matthew B. Dwyer*, Willem Visser†

*University of Nebraska-Lincoln, †Stellenbosch University

ASE 2017
Introduction

Invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

- Pre/Post conditions, Loop invariants, Assertions
Introduction

Invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

- Pre/Post conditions, Loop invariants, Assertions

Numerical invariants, e.g., relations among numerical variables

- E.g., $x = 2y + 3, 0 \leq idx \leq |arr| - 1, x \leq y^2, x = qy + r$
- **Nonlinear polynomial invariants**: $x \leq y^2, x = qy + r, \ldots$
Invariants are asserted properties, such as relations among variables that always hold at certain locations in a program

- Pre/Post conditions, Loop invariants, Assertions

Numerical invariants, e.g., relations among numerical variables

- E.g., $x = 2y + 3$, $0 \leq idx \leq |arr| - 1$, $x \leq y^2$, $x = qy + r$
- Nonlinear polynomial invariants: $x \leq y^2$, $x = qy + r$, ...

Techniques for automatic invariant generation

- Statically examine program code, dynamically analyze concrete states (traces), or hybridization of dynamic inference and static checking
- SymInfer: hybridization using symbolic states
 - Symbolic states: obtained from symbolic execution, intermediate representation of states, consist of program paths and local variables
 - Infer: use symbolic states to generate sample traces and infer invariants
 - Check: use symbolic states to check candidate invariants
Example: Numerical Invariants

```c
int cohendiv(int x, int y){
    assert(x>0 && y>0);
    int q=0; int r=x;
    while(r ≥ y){
        int a=1;
        int b=y;
        while[L1](r ≥ 2*b){
            a = 2*a;
            b = 2*b;
        }
        r=r-b;
        q=q+a;
    }
    [L2]
    return q;
}
```

What does this program do? What properties hold at L1 and L2?

SymInfer automatically generates loop invariants at L1:
- \(x = qy + r\),
- \(b = ya\),
- \(y ≤ b\),
- \(b ≤ r\),
- \(r ≤ x\),
- \(a ≤ b\),
- \(2 ≤ a + y\)

Postconditions at L2:
- \(x = qy + r\),
- \(1 ≤ q + r\),
- \(r ≤ y - 1\),
- \(0 ≤ r\),
- \(r ≤ x\)

Invariants describe program's semantic, e.g., \(x = qy + r\) for integer division and reveal useful information, e.g., remainder \(r\) is non-negative.
What does this program do? What properties hold at L1 and L2?

SymInfer automatically generates

- **loop invariants at L1:**

 \[
 \begin{align*}
 x &= qy + r, \\
 b &= ya, \\
 y &\leq b, \\
 b &\leq r, \\
 r &\leq x, \\
 a &\leq b, \\
 2 &\leq a + y
 \end{align*}
 \]

- **postconditions at L2:**

 \[
 \begin{align*}
 x &= qy + r, \\
 1 &\leq q + r, \\
 r &\leq y - 1, \\
 0 &\leq r, \\
 r &\leq x
 \end{align*}
 \]
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r ≥ y){
 int a=1;
 int b=y;
 while[L1](r ≥ 2*b){
 a = 2*a;
 b = 2*b;
 }
 r=r-b;
 q=q+a;
 }
 [L2]
 return q;
}

What does this program do? What properties hold at L1 and L2?

SymInfer automatically generates

- loop invariants at L1:
 \[x = qy + r, \quad b = ya, \quad y ≤ b, \]
 \[b ≤ r, \quad r ≤ x, \quad a ≤ b, \quad 2 ≤ a + y \]

- postconditions at L2:
 \[x = qy + r, \quad 1 ≤ q + r, \]
 \[r ≤ y − 1, \quad 0 ≤ r, \quad r ≤ x \]

- Invariants describe program's semantic, e.g., \(x = qy + r \) for integer division and reveal useful information, e.g., remainder \(r \) is non-negative
Examples: Symbolic States

Use symbolic execution to obtain

- Path conditions over input variables
- Relationships among local variables

```c
int cohendiv(int x, int y){
    assert(x>0 && y>0);
    int q=0; int r=x;
    while(r >= y){
        int a=1;
        int b=y;
        while[L1](r >= 2*b){
            a = 2*a;
            b = 2*b;
        }
        r=r-b;
        q=q+a;
    }
    return q;
}
```
int cohendiv(int x, int y){
 assert(x>0 && y>0);
 int q=0; int r=x;
 while(r ≥ y){
 int a=1;
 int b=y;
 while[L1](r ≥ 2*b){
 a = 2*a;
 b = 2*b;
 }
 r=r-b;
 q=q+a;
 }
 [L2]
 return q;
}

Use symbolic execution to obtain

- Path conditions over input variables
- Relationships among local variables

At L1:

<table>
<thead>
<tr>
<th>PathConds</th>
<th>Locals</th>
</tr>
</thead>
<tbody>
<tr>
<td>x ≥ y ∧ y > 0</td>
<td>q = 0 ∧ r = x ∧ a = 1 ∧ b = y</td>
</tr>
<tr>
<td>x ≥ 2y ∧ y > 0</td>
<td>q = 0 ∧ r = x ∧ a = 2 ∧ b = 2y</td>
</tr>
<tr>
<td>4y > x ≥ 2y + y ∧ y > 0</td>
<td>q = 2 ∧ r = x − 2y ∧ a = 1 ∧ b = y</td>
</tr>
<tr>
<td></td>
<td>:</td>
</tr>
<tr>
<td></td>
<td>:</td>
</tr>
</tbody>
</table>
Examples: Symbolic States

```c
int cohendiv(int x, int y){
    assert(x>0 && y>0);
    int q=0; int r=x;
    while(r ≥ y){
        int a=1;
        int b=y;
        while[L1](r ≥ 2*b){
            a = 2*a;
            b = 2*b;
        }
        r=r-b;
        q=q+a;
    }
    [L2]
    return q;
}
```

Use symbolic execution to obtain

- Path conditions over input variables
- Relationships among local variables
- At L1:
 - PathConds
 - \(x \geq y \land y > 0 \)
 - LocalConds
 - \(q = 0 \land r = x \land a = 1 \land b = y \)

Symbolic states at L1

- Disjunctions of pathconds and locals
 - \((x \geq y \land y > 0 \land q = 0 \land r = x \land a = 1 \land b = y) \lor \ldots \)
 - An intermediate representation of states
Use Symbolic States for both inference and checking.

- **Run**:
 - Traces
 - Inputs

- **Infer**:
 - Invs

- **Check**:
 - No
 - Yes
 - Invs

- **CEX**:
 - No
 - Yes
 - Invs

Flow:
- Program → Run → Infer → Check → Invs
- Inputs → Run → Inferences → CEX → Check → Invs
- Use symbolic states for both inference and checking
- Use an iterative approach
 - Inferring: use symbolic states to generate traces, then use DIG’s algorithms to infer numerical invariants from traces
 - Checking: use symbolic states to check candidate invariants and generate counterexample traces
Example: Dynamic Inference using DIG

```c
int cohen_div(int x, int y){
    assert(x>0 ; y>0);
    int q=0; int r=x;
    while(r >= y){
        int a=1; int b=y;
        while[L1](r >= 2*b){
            a = 2*a; b = 2*b;
        }
        r=r-b; q=q+a;
    }
    return q;
}
```

Traces:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Loop invariants at L1:

- Equations:
 - \(x = qy + r \)
 - \(b = ya \)

- Inequalities:
 - \(2 \leq a + y \)
 - \(a \leq b \)
 - \(y \leq b \)
 - \(b \leq r \)
 - \(r \leq x \)
Example: Dynamic Inference using DIG

```c
int cohendiv(int x, int y){
    assert(x>0 ; y>0);
    int q=0; int r=x;
    while(r >= y){
        int a=1; int b=y;
        while[r >= 2*b]{
            a = 2*a; b = 2*b;
        }
        r=r-b; q=q+a;
    }
    return q;
}
```

Traces:

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>a</th>
<th>b</th>
<th>q</th>
<th>r</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>15</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Loop invariants at L1:

<table>
<thead>
<tr>
<th>equations</th>
</tr>
</thead>
<tbody>
<tr>
<td>x = qy + r</td>
</tr>
<tr>
<td>b = ya</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>inequalities</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 ≤ a + y</td>
</tr>
<tr>
<td>a ≤ b</td>
</tr>
<tr>
<td>b ≤ r</td>
</tr>
<tr>
<td>r ≤ x</td>
</tr>
</tbody>
</table>
int cohendiv(int x, int y){
 assert(x>0; y>0);
 int q=0; int r=x;
 while(r >= y){
 int a=1; int b=y;
 while[r >= 2*b]{
 a = 2*a; b = 2*b;
 }
 r=r-b; q=q+a;
 }
 return q;
}

Loop invariants at L1:

equations: \(x = qy + r \) \(b = ya \)
inequalities: \(2 \leq a + y \) \(a \leq b \) \(y \leq b \)
\(b \leq r \) \(r \leq x \)
Infer Nonlinear Equations using Equation Solver

\[V = \{ r, y, a \} \]
\[\text{deg} = 2 \]

\[T = \{ 1, r, y, a, ry, ra, ya, r^2, y^2, a^2 \} \]

Nonlinear equation template

\[c_1 + c_2 r + c_3 y + c_4 a + c_5 ry + c_6 ra + c_7 ya + c_8 r^2 + c_9 y^2 + c_{10} a^2 = 0 \]

System of linear equations

\[\begin{align*}
T & \rightarrow \{ r = 15, y = 2, a = 1 \} \\
\begin{array}{c|cccc}
 x & y & a & b & q & r \\
\hline
15 & 2 & 1 & 2 & 0 & 15 \\
15 & 2 & 2 & 4 & 0 & 15 \\
15 & 2 & 1 & 2 & 4 & 7 \\
4 & 1 & 1 & 1 & 0 & 4 \\
4 & 1 & 2 & 2 & 0 & 4 \\
\end{array}
\end{align*} \]
Infer Nonlinear Equations using Equation Solver

- Terms and degrees

\[V = \{r, y, a\}; \text{ deg } = 2 \]

\[T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\} \]
Infer Nonlinear Equations using Equation Solver

- Terms and degrees

\[V = \{r, y, a\}; \text{ deg } = 2 \]

\[T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\} \]

- Nonlinear equation template

\[c_1 + c_2 r + c_3 y + c_4 a + c_5 ry + c_6 ra + c_7 ya + c_8 r^2 + c_9 y^2 + c_{10} a^2 = 0 \]
Infer Nonlinear Equations using Equation Solver

- Terms and degrees

 \[V = \{ r, y, a \}; \text{ deg} = 2 \]

 \[T = \{ 1, r, y, a, ry, ra, ya, r^2, y^2, a^2 \} \]

- Nonlinear equation template

 \[c_1 + c_2 r + c_3 y + c_4 a + c_5 ry + c_6 ra + c_7 ya + c_8 r^2 + c_9 y^2 + c_{10} a^2 = 0 \]

- System of linear equations

 trace 1 \[\rightarrow \{ r = 15, y = 2, a = 1 \} \]

 eq 1 \[\rightarrow c_1 + 15c_2 + 2c_3 + c_4 + 30c_5 + 15c_6 + 2c_7 + 225c_8 + 4c_9 + c_{10} = 0 \]

 \[\vdots \]
Infer Nonlinear Equations using Equation Solver

- Terms and degrees
 \[V = \{r, y, a\}; \text{ deg } = 2 \]
 \[T = \{1, r, y, a, ry, ra, ya, r^2, y^2, a^2\} \]

- Nonlinear equation template
 \[c_1 + c_2 r + c_3 y + c_4 a + c_5 ry + c_6 ra + c_7 ya + c_8 r^2 + c_9 y^2 + c_{10} a^2 = 0 \]

- System of linear equations
 \[\text{trace 1} \rightarrow \{r = 15, y = 2, a = 1\} \]
 \[\text{eq 1} \rightarrow c_1 + 15 c_2 + 2 c_3 + c_4 + 30 c_5 + 15 c_6 + 2 c_7 + 225 c_8 + 4 c_9 + c_{10} = 0 \]

- Solve for coefficients \(c_i \)
 \[V = \{x, y, a, b, q, r\}; \text{ deg } = 2 \rightarrow x = qy + r, b = ya \]
Checking Using Symbolic States

General Idea

- **Goal**: prove/refute candidate invariants \(I \) using symbolic states \(S \)
- **Approach**: use SMT solver to check for validity of \(S \Rightarrow I \)
 - *valid*: invariant is valid and accepted
 - *invalid*: invariant is spurious and rejected, solver produces cex’s to help inference
Checking Using Symbolic States

General Idea

- **Goal**: prove/refute candidate invariants (I) using symbolic states (S)
- **Approach**: use SMT solver to check for validity of $S \Rightarrow I$
 - **valid**: invariant is valid and accepted
 - **invalid**: invariant is spurious and rejected, solver produces cex’s to help inference

Specific Implementation: use JPF/SPF to obtain symbolic states

- Bounded by depth k: invariants only valid over symbolic states S computed with k
- If I is valid with S_k, then check again if I is also valid with S_{k+1}
- SymInfer can be *unsound* (will not attempt all possible depths), but in practice is *very effective* in refuting bad invariants and finding cex’s
Evaluation

Setup

- SymInfer is implemented in SAGE/Python (with JPF/SPF and Z3 SMT solver)
- Test machine: 10-core 2.4GHZ CPU, 128GB Ram, Linux OS

Benchmark

- Program Understanding: NLA testsuite, 27 programs with nonlinear invariants
- Complexity Analysis: 19 programs collected from static complexity analysis work
- Program Verification: HOLA benchmark, 46 programs with assertions, compare against PIE
Example: Program Understanding

```c
int cohendiv(int x, int y){
    assert(x>0 && y>0);
    int q=0; int r=x;
    while(r ≥ y){
        int a=1;
        int b=y;
        while[L1](r ≥ 2*b){
            a = 2*a;
            b = 2*b;
        }
        r=r-b;
        q=q+a;
    }
    [L2]
    return q;
}
```

What does this program do? What properties hold at **L1** and **L2**?

SymInfer automatically generates

- **loop invariants at L1:**
 - $x = qy + r$, $b = ya$, $y ≤ b$,
 - $b ≤ r$, $r ≤ x$, $a ≤ b$, $2 ≤ a + y$

- **postconditions at L2:**
 - $x = qy + r$, $1 ≤ q + r$,
 - $r ≤ y − 1$, $0 ≤ r$, $r ≤ x$

- Invariants describe program’s semantic, e.g., integer division and reveal useful information, e.g., remainder is non-negative
Results: Program Understanding

<table>
<thead>
<tr>
<th>Prog</th>
<th>Locs</th>
<th>Invs</th>
<th>Time (s)</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohendiv</td>
<td>2</td>
<td>10</td>
<td>21.05</td>
<td>✓</td>
</tr>
<tr>
<td>divbin</td>
<td>2</td>
<td>11</td>
<td>58.97</td>
<td>✓</td>
</tr>
<tr>
<td>manna</td>
<td>1</td>
<td>6</td>
<td>35.33</td>
<td>✓</td>
</tr>
<tr>
<td>hard</td>
<td>2</td>
<td>6</td>
<td>29.40</td>
<td>✓</td>
</tr>
<tr>
<td>sqrt1</td>
<td>1</td>
<td>5</td>
<td>20.03</td>
<td>✓</td>
</tr>
<tr>
<td>dijkstra</td>
<td>2</td>
<td>16</td>
<td>93.01</td>
<td>✓</td>
</tr>
<tr>
<td>freire1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>freire2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cohen cu</td>
<td>1</td>
<td>4</td>
<td>21.90</td>
<td>✓</td>
</tr>
<tr>
<td>egcd1</td>
<td>1</td>
<td>14</td>
<td>122.22</td>
<td>✓</td>
</tr>
<tr>
<td>egcd2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>egcd3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>prodbin</td>
<td>1</td>
<td>7</td>
<td>56.17</td>
<td>✓</td>
</tr>
<tr>
<td>prod4br</td>
<td>1</td>
<td>9</td>
<td>84.37</td>
<td>✓</td>
</tr>
<tr>
<td>knuth</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fermat1</td>
<td>3</td>
<td>17</td>
<td>60.26</td>
<td>✓</td>
</tr>
<tr>
<td>fermat2</td>
<td>1</td>
<td>8</td>
<td>36.83</td>
<td>✓</td>
</tr>
<tr>
<td>lcm1</td>
<td>3</td>
<td>24</td>
<td>248.17</td>
<td>✓</td>
</tr>
<tr>
<td>lcm2</td>
<td>1</td>
<td>7</td>
<td>34.17</td>
<td>✓</td>
</tr>
<tr>
<td>geo1</td>
<td>1</td>
<td>8</td>
<td>158.27</td>
<td>✓</td>
</tr>
<tr>
<td>geo2</td>
<td>1</td>
<td>9</td>
<td>147.75</td>
<td>✓</td>
</tr>
<tr>
<td>geo3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ps2</td>
<td>1</td>
<td>3</td>
<td>18.39</td>
<td>✓</td>
</tr>
<tr>
<td>ps3</td>
<td>1</td>
<td>3</td>
<td>19.69</td>
<td>✓</td>
</tr>
<tr>
<td>ps4</td>
<td>1</td>
<td>3</td>
<td>19.92</td>
<td>✓</td>
</tr>
<tr>
<td>ps5</td>
<td>1</td>
<td>3</td>
<td>46.19</td>
<td>✓</td>
</tr>
<tr>
<td>ps6</td>
<td>1</td>
<td>3</td>
<td>41.19</td>
<td>✓</td>
</tr>
</tbody>
</table>

Experiment

- **NLA suite**: 27 programs
- Require nonlinear invariants
- Use documented invariants (loop invariants and postconds) as ground truths
- **Goal**: obtain invariants and compare to ground truths
Results: Program Understanding

<table>
<thead>
<tr>
<th>Prog</th>
<th>Locs</th>
<th>Invs</th>
<th>Time (s)</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>cohendiv</td>
<td>2</td>
<td>10</td>
<td>21.05</td>
<td>✓</td>
</tr>
<tr>
<td>divbin</td>
<td>2</td>
<td>11</td>
<td>58.97</td>
<td>✓</td>
</tr>
<tr>
<td>manna</td>
<td>1</td>
<td>6</td>
<td>35.33</td>
<td>✓</td>
</tr>
<tr>
<td>hard</td>
<td>2</td>
<td>6</td>
<td>29.40</td>
<td>✓</td>
</tr>
<tr>
<td>sqrt1</td>
<td>1</td>
<td>5</td>
<td>20.03</td>
<td>✓</td>
</tr>
<tr>
<td>dijkstra</td>
<td>2</td>
<td>16</td>
<td>93.01</td>
<td>✓</td>
</tr>
<tr>
<td>freire1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>freire2</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>cohencu</td>
<td>1</td>
<td>4</td>
<td>21.90</td>
<td>✓</td>
</tr>
<tr>
<td>egcd1</td>
<td>1</td>
<td>14</td>
<td>122.22</td>
<td>✓</td>
</tr>
<tr>
<td>egcd2</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>egcd3</td>
<td>3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>prodbin</td>
<td>1</td>
<td>7</td>
<td>56.17</td>
<td>✓</td>
</tr>
<tr>
<td>prod4br</td>
<td>1</td>
<td>9</td>
<td>84.37</td>
<td>✓</td>
</tr>
<tr>
<td>knuth</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>fermat1</td>
<td>3</td>
<td>17</td>
<td>60.26</td>
<td>✓</td>
</tr>
<tr>
<td>fermat2</td>
<td>1</td>
<td>8</td>
<td>36.83</td>
<td>✓</td>
</tr>
<tr>
<td>lcm1</td>
<td>3</td>
<td>24</td>
<td>248.17</td>
<td>✓</td>
</tr>
<tr>
<td>lcm2</td>
<td>1</td>
<td>7</td>
<td>34.17</td>
<td>✓</td>
</tr>
<tr>
<td>geo1</td>
<td>1</td>
<td>8</td>
<td>158.27</td>
<td>✓</td>
</tr>
<tr>
<td>geo2</td>
<td>1</td>
<td>9</td>
<td>147.75</td>
<td>✓</td>
</tr>
<tr>
<td>geo3</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ps2</td>
<td>1</td>
<td>3</td>
<td>18.39</td>
<td>✓</td>
</tr>
<tr>
<td>ps3</td>
<td>1</td>
<td>3</td>
<td>19.69</td>
<td>✓</td>
</tr>
<tr>
<td>ps4</td>
<td>1</td>
<td>3</td>
<td>19.92</td>
<td>✓</td>
</tr>
<tr>
<td>ps5</td>
<td>1</td>
<td>3</td>
<td>46.19</td>
<td>✓</td>
</tr>
<tr>
<td>ps6</td>
<td>1</td>
<td>3</td>
<td>41.19</td>
<td>✓</td>
</tr>
</tbody>
</table>

Experiment

- **NLA suite**: 27 programs
- Require nonlinear invariants
- Use documented invariants (loop invariants and postconds) as ground truths
- **Goal**: obtain invariants and compare to ground truths

Results: SymInfer found correct invariants in 21/27 (✓) programs

- Most results equivalent to or stronger than (imply) ground truths
- Several unexpected and undocumented invariants
- Some invariants reveal “how” program works in details
Example: Complexity Analysis

```c
void triple(int M, int N, int P){
    assert (0 <= M);
    assert (0 <= N);
    assert (0 <= P);
    int i = 0, j = 0, k = 0;
    int t = 0;
    while(i < N){
        j = 0; t++;
        while(j < M){
            j++; k = i; t++;
            while (k < P){
                k++; t++;
            }
            i = k;
        }
        i++;
    }
    [L]
}
```

Complexity of this program?

- Use t to count loop iterations

At first glance:

\[t = O(MNP) \]

A more precise complexity bound:

\[t = O(N + NM + P) \]

SymInfer found a very unexpected inv:

\[P^2Mt + PM^2t - PMNt - M^2t - PMt^2 + MNt^2 + PMt - PNt - 2MNt + Pt^2 + Mt^2 + Nt^2 - t^3 - Nt + t^2 = 0 \]

Solve for t yields the most precise, unpublished bound:

- \[t = 0 \] when \[N = 0 \]
- \[t = P + M + 1 \] when \[N \leq P \]
- \[t = N - M(P - N) \] when \[N > P \]

Nonlinear invariants can represent disjunctive properties capturing different complexity bounds.
Example: Complexity Analysis

```c
void triple(int M, int N, int P){
    assert (0 <= M);
    assert (0 <= N);
    assert (0 <= P);
    int i = 0, j = 0, k = 0;
    int t = 0;
    while(i < N){
        j = 0; t++;
        while(j < M){
            j++; k = i; t++;
            while (k < P){
                k++; t++;
            }
            i = k;
        }
        i++;
    }
    [L]
}
```

Complexity of this program?

- Use t to count loop iterations
- At first glance: $t = O(MNP)$
- A more precise complexity bound: $t = O(N + NM + P)$

Nonlinear invariants can represent disjunctive properties capturing different complexity bounds.
Example: Complexity Analysis

```c
void triple(int M, int N, int P) {
    assert (0 <= M);
    assert (0 <= N);
    assert (0 <= P);
    int i = 0, j = 0, k = 0;
    int t = 0;
    while (i < N) {
        j = 0; t++;
        while (j < M) {
            j++; k = i; t++;
            while (k < P) {
                k++; t++;
            }
        }
        i = k;
    }
    i++;
}
```

Complexity of this program?

- Use \(t \) to count loop iterations
- At first glance: \(t = O(MNP) \)
- A more precise complexity bound: \(t = O(N + NM + P) \)
- SymInfer found a very unexpected inv:

 \[
 P^2Mt + PM^2t - PMNt - M^2Nt - PMt^2 + M^2t + PMt - PNt - 2MNt + Pt^2 + Mt^2 + Nt^2 - t^3 - Nt + t^2 = 0
 \]
Example: Complexity Analysis

```c
void triple(int M, int N, int P) {
    assert (0 <= M);
    assert (0 <= N);
    assert (0 <= P);
    int i = 0, j = 0, k = 0;
    int t = 0;
    while (i < N) {
        j = 0; t++;
        while (j < M) {
            j++; k = i; t++;
            while (k < P) {
                k++; t++;
            }
            i = k;
        }
        i++;
    }
    [L]
}
```

Complexity of this program?

- Use `t` to count loop iterations
- At first glance: $t = O(MNP)$
- A more precise complexity bound: $t = O(N + NM + P)$
- SymInfer found a very unexpected inv:

 \[
 P^2 Mt + PM^2 t - PMNt - M^2 Nt - PMt^2 + M^2 t^2 + PM - PNt - 2MNt + Pt^2 + Mt^2 + Nt^2 - t^3 - Nt + t^2 = 0
 \]

- Solve for `t` yields the most precise, unpublished bound:
 - $t = 0$ when $N = 0$,
 - $t = P + M + 1$ when $N \leq P$,
 - $t = N - M(P - N)$ when $N > P$

- Nonlinear invariants can represent disjunctive properties capturing different complexity bounds
Results: Complexity Analysis

<table>
<thead>
<tr>
<th>Prog</th>
<th>Invs</th>
<th>Time (s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>cav09_fig1a</td>
<td>1</td>
<td>12.41</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig1d</td>
<td>1</td>
<td>12.44</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig2d</td>
<td>3</td>
<td>58.40</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig3a</td>
<td>3</td>
<td>8.75</td>
<td>✓</td>
</tr>
<tr>
<td>cav09_fig5b</td>
<td>6</td>
<td>49.44</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_ex6</td>
<td>6</td>
<td>57.00</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig2</td>
<td>6</td>
<td>60.60</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>pldi09_fig4_1</td>
<td>3</td>
<td>56.24</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig4_2</td>
<td>5</td>
<td>28.32</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig4_3</td>
<td>3</td>
<td>59.19</td>
<td>✓</td>
</tr>
<tr>
<td>pldi09_fig4_4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>pldi09_fig4_5</td>
<td>3</td>
<td>103.70</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig2_1</td>
<td>2</td>
<td>50.86</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>popl09_fig2_2</td>
<td>2</td>
<td>53.48</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>popl09_fig3_4</td>
<td>4</td>
<td>58.62</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig4_1</td>
<td>4</td>
<td>65.19</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig4_2</td>
<td>2</td>
<td>51.24</td>
<td>✓ ✓</td>
</tr>
<tr>
<td>popl09_fig4_3</td>
<td>5</td>
<td>31.57</td>
<td>✓</td>
</tr>
<tr>
<td>popl09_fig4_4</td>
<td>3</td>
<td>36.89</td>
<td>✓</td>
</tr>
</tbody>
</table>

Experiment

- **19 progs from static complexity work**
- Obtain postconds representing complexity
- **Goal**: compare against results from prev work
Results: Complexity Analysis

<table>
<thead>
<tr>
<th>Prog</th>
<th>Invs</th>
<th>Time (s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cav09_fig1a</td>
<td>1</td>
<td>12.41</td>
</tr>
<tr>
<td>cav09_fig1d</td>
<td>1</td>
<td>12.44</td>
</tr>
<tr>
<td>cav09_fig2d</td>
<td>3</td>
<td>58.40</td>
</tr>
<tr>
<td>cav09_fig3a</td>
<td>3</td>
<td>8.75</td>
</tr>
<tr>
<td>cav09_fig5b</td>
<td>6</td>
<td>49.44</td>
</tr>
<tr>
<td>pldi09_ex6</td>
<td>6</td>
<td>57.00</td>
</tr>
<tr>
<td>pldi09_fig2</td>
<td>6</td>
<td>60.60</td>
</tr>
<tr>
<td>pldi09_fig4_1</td>
<td>3</td>
<td>56.24</td>
</tr>
<tr>
<td>pldi09_fig4_2</td>
<td>5</td>
<td>28.32</td>
</tr>
<tr>
<td>pldi09_fig4_3</td>
<td>3</td>
<td>59.19</td>
</tr>
<tr>
<td>pldi09_fig4_4</td>
<td></td>
<td>-</td>
</tr>
<tr>
<td>pldi09_fig4_5</td>
<td>3</td>
<td>103.70</td>
</tr>
<tr>
<td>popl09_fig2_1</td>
<td>2</td>
<td>50.86</td>
</tr>
<tr>
<td>popl09_fig2_2</td>
<td>2</td>
<td>53.48</td>
</tr>
<tr>
<td>popl09_fig3_4</td>
<td>4</td>
<td>58.62</td>
</tr>
<tr>
<td>popl09_fig4_1</td>
<td>4</td>
<td>65.19</td>
</tr>
<tr>
<td>popl09_fig4_2</td>
<td>2</td>
<td>51.24</td>
</tr>
<tr>
<td>popl09_fig4_3</td>
<td>5</td>
<td>31.57</td>
</tr>
<tr>
<td>popl09_fig4_4</td>
<td>3</td>
<td>36.89</td>
</tr>
</tbody>
</table>

Experiment

- 19 progs from static complexity work
- Obtain postconds representing complexity

Goal: compare against results from prev work

Results: Obtain equivalent (14 ✓) or more precise bounds (4 ✓✓) in 18/19 progs
Example: Verification

```c
void f(int u1, int u2) {
    assert(u1 > 0 && u2 > 0);
    int a = 1, b = 1, c = 2, d = 2;
    int x = 3, y = 3;
    int i1 = 0, i2 = 0;
    while (i1 < u1) {
        i1++;
        x = a + c; y = b + d;
        if ((x + y) % 2 == 0) {
            a++; d++;
        } else { a--;}
    i2 = 0;
    while (i2 < u2 ) {
        i2++; c--; b--;}
}
[L] //SymInfer found:
//b + 1 = c, a + 1 = d,
//a + b <= 2, 2 <= a
assert(a + c == b + d);
}
```

```c
void g(int n, int u1) {
    assert(u1 > 0);
    int x = 0;
    int m = 0;
    while (x < n) {
        if (u1) {
            m = x;
        }
        x = x + 1;
    }
[L] //SymInfer found:
//m^2 = nx - m - x, mn = x^2 - x
//-m <= x, x <= m + 1, n <= x
if (n > 0){
    assert(0 <= m && m < n);
}
```
Results: Verification

Experiment

- HOLA benchmark: 46 programs
- Various assertions (mostly postconds)

Goal:

- Obtain and compare invariants: if match or imply assertions, then assertions hold
- Also compare with existing tool PIE
Results: Verification

Experiment

- HOLA benchmark: 46 programs
- Various assertions (mostly postconds)
- **Goal:**
 - Obtain and compare invariants: if match or imply assertions, then assertions hold
 - Also compare with existing tool PIE

Results: Found equiv or stronger invariants in 40/46 programs

- Time: median 9.3s, mean 5.4s
- Nonlinear invariants can prove many nontrivial and *unsupported* properties
Conclusion

SymInfer

- Iterative approach using symbolic states to generate invariants
 - Inferring: use DIG to dynamically infer nonlinear invariants
 - Checking: use symbolic states to check invariants and obtain cex’s

- *Unsound* (bounded by depth), but experience shows practical and effective in removing invalid results and can handle complex invariants
Conclusion

SymInfer

- Iterative approach using symbolic states to generate invariants
 - Inferring: use DIG to dynamically infer nonlinear invariants
 - Checking: use symbolic states to check invariants and obtain cex’s
- *Unsound* (bounded by depth), but experience shows practical and effective in removing invalid results and can handle complex invariants

Results

- SymInfer is effective in generating numerical invariants
 - Discover necessary nonlinear invariants to understand programs
 - Find useful invariants capturing nontrivial runtime complexity
 - Compete well with existing work
- SymInfer’s invariants (e.g., nonlinear properties) can *surprisingly* represent/prove many nontrivial, complex, and *unsupported* properties

https://bitbucket.org/nguyenthanhvuh/symtraces/
Inferring Octagonal Inequalities

- Basic CEGIR does not work well for inequalities (e.g., \(t \leq 1000 \))
 - E.g., real inv: \(t \leq 1000 \)
 - Basic CEGIR: iter 1: \(t \leq 2 \), iter: 2 \(t \leq 3 \), iter 3: \(t \leq 7 \), ...
 - Not terminating if \(t \) has no bounds
Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)

- E.g., real inv: $t \leq 1000$
- Basic CEGIR: iter 1: $t \leq 2$, iter 2: $t \leq 3$, iter 3: $t \leq 7$, ...
- Not terminating if t has no bounds

Approach: Divide and Conquer

- Only consider invariants within fixed bounds, e.g., $-k \leq t \leq k$, where $k = 100000$
Inferring Octagonal Inequalities

- Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)
 - E.g., real inv: $t \leq 1000$
 - Basic CEGIR: iter 1: $t \leq 2$, iter: 2 $t \leq 3$, iter 3: $t \leq 7$, ...
 - Not terminating if t has no bounds

- **Approach**: Divide and Conquer
 - Only consider invariants within fixed bounds, e.g., $-k \leq t \leq k$, where $k = 100000$
 - Finding upperbound (ub): check if $t \leq k$
 - If no (i.e., $t > k$) then will not find ub of t
Inferring Octagonal Inequalities

- Basic CEGIR does not work well for inequalities (e.g., $t \leq 1000$)
 - E.g., real inv: $t \leq 1000$
 - Basic CEGIR: iter 1: $t \leq 2$, iter: 2 $t \leq 3$, iter 3: $t \leq 7$, ...
 - Not terminating if t has no bounds

- **Approach**: Divide and Conquer

 - Only consider invariants within fixed bounds, e.g., $-k \leq t \leq k$, where $k = 100000$
 - Finding upperbound (ub): check if $t \leq k$
 - If no (i.e., $t > k$) then will not find ub of t
 - Otherwise use divide and conquer to find ub of t within range $[-k, k]$
 - Compute mid value $mv = (-k + k)/2$, check if $t \leq mv$
 - If yes, find ub of t within the range $[-k, mv]$
 - If no, find ub of t within the range $[mv, k]$
Inferring Octagonal Inequalities

- Basic CEGIR does not work well for inequalities (e.g., \(t \leq 1000 \))
 - E.g., real inv: \(t \leq 1000 \)
 - Basic CEGIR: iter 1: \(t \leq 2 \), iter 2: \(t \leq 3 \), iter 3: \(t \leq 7 \), ...
 - Not terminating if \(t \) has no bounds

Approach: Divide and Conquer

- Only consider invariants within fixed bounds, e.g., \(-k \leq t \leq k\), where \(k = 100000 \)
- Finding upperbound (ub): check if \(t \leq k \)
- If no (i.e., \(t > k \)) then will not find ub of \(t \)
- Otherwise use divide and conquer to find ub of \(t \) within range \([-k, k]\)
 - Compute mid value \(mv = (-k + k)/2 \), check if \(t \leq mv \)
 - If yes, find ub of \(t \) within the range \([-k, mv]\)
 - If no, find ub of \(t \) within the range \([mv, k]\)

- Support *octagonal* invariants: term \(t \) represent \(x, y, x - y, x + y, -x - y, \ldots \)
Using Symbolic States for Invariant Inference

- Reusability: pre-compute and reuse symbolic states at L, e.g., for checking
- Expressiveness: a symbolic state (e.g., $x \geq 0, y \geq x$) represents many concrete states and also encodes relationships among variables (e.g., $y \geq x$)
- Diversity: each symbolic state represent a different program “path”, produce better traces
- Usability and Optimization: encoded logical formulas, checked with different solvers and optimized (e.g., perform slicing when checking)