

Overview:

Abstract
This topic review will cover concept learning. More specifically, we discussed
the Find-S Algorithm, the List-Then-Eliminate Algorithm, and the Candidate
Elimination Theorem, in addition to general concept learning. We finished our
discussion with an overview of inductive bias and its necessity in learning
algorithms.

The Find-S Algorithm

The Find-S Algorithm was the first algorithm we addressed. This algorithm tries to find the
most specific target concept. To do so, it assumes that the target concept exists in the hypothesis
class and that the most specific representation will yield the best results (it is the best
representation).
 How does it work? We begin by initializing our hypothesis h to the most specific
hypothesis in our hypothesis class H [1]. We then proceed through our training examples. If we
find a negative example, we discard it, making no changes to h. If, however, we have a positive
example, we then alter h so that it accepts this new example (as well as all previous training
examples) but remains as specific as possible. We then continue this process until we have seen
all of the training data.
 There are some shortcomings to this method, however. Although it will find a hypothesis
consistent with the data, there is no way to determine that this hypothesis is the only target
concept consistent with the data. Further, there is no way to determine how many consistent
hypotheses exist within the hypothesis class [1]. In addition, the Find-S Algorithm is very
sensitive to incorrect data (or noise) that may be in the training examples. Further, the only
contributors to the hypothesis are the positive examples in the training data [2].

The List-Then-Eliminate Algorithm

The List-Then-Eliminate Algorithm is another learning algorithm. This algorithm begins with a
full Version Space (a list containing every hypothesis in H). Then for every training example,
we remove every hypothesis (from the Version Space) that does not agree with the training
example. Once we are finished with our training examples, we output the list of remaining
hypotheses. The problem with this algorithm is that it takes Ω(|H|) to enumerate all the
hypotheses [2].

The Candidate Elimination Algorithm

The third learning algorithm we considered was the Candidate Elimination Algorithm. This
algorithm addresses several of the limitations of Find-S [1]. The goal of this algorithm is to
output a set of all hypotheses that are consistent with the data. With this algorithm, we can do
this without explicitly enumerating all of the members of the hypothesis set.
 This method begins with a maximally general set of hypotheses as well as a maximally
specific set of hypotheses. Call them G and S respectively and define them such that G⊆ H ;

S⊆ H. Then, for each training example dε D, we consider the following operations on G. If d is a
positive example, we remove from G any hypothesis that is inconsistent with G. Then for any
hypothesis s ε S that is not consistent with d, remove s from S and add to S all minimal
generalizations of h of s such that h is consistent with d, and some member of G is more general
than h. In other words, we remove any hypothesis that is not consistent with G and make S more
general (“minimal generalization”) [2]. If d is negative, we perform a similar operation, but we
make G more specific and remove from S any hypothesis that is inconsistent with d [2].

Inductive Bias

We also learned that any algorithm that does not assume anything about the structure of its target
function degrades to a method of rote memorization. If this happens, the algorithm is unable to
make any predictions on data that it has not seen (we always have a 50/50 split). Thus, it is
impossible to generalize without some sort of bias.

Most and Least Interesting Concepts:

We feel the most interesting concept we covered was the concept of bias in learning. We found
it very interesting that an algorithm that lacked bias also lacked the ability to make decisions
(Essentially, it became a “Rote Learner.”).

The least interesting concept was the concept was the List-Then-Eliminate Algorithm.
Maybe I just need to review it a bit more to get a better understanding of it.

Questions on the Material (2-3):

Can we create a learning algorithm that can make predictions on presented data as well as use
this new data as new training examples? More specifically, can we create an algorithm that is
always learning or are forced to simply give it some data and then let it fend for itself, never to
learn again?

Currently, I would be unable to code an algorithm capable of asking it’s own questions (queries).
Are we going to explore this topic in more detail?

Research Ideas (2-3):

Two research ideas that seemed interesting would be to implement both the Candidate
Elimination and Find-S algorithms and do a comparative study of each one’s effectiveness. The
second would be to create some sort of game playing algorithm (perhaps Poker, e.g. No Limit
Texas Hold ‘Em – in the spirit of “Rounders”). Even though it may be a problem that has an
existing solution, it is a problem that I have not personally solved.

The Version Space Method (Another Way of Viewing Candidate Elimination)

Introduction

A version space is a hierarchical representation of knowledge that enables you to keep track of
all the useful information supplied by a sequence of learning examples without remembering any

of the examples [3]. The version space method is a concept learning process accomplished by
managing multiple models within a version space [3]. The version space also represents all
possible hypotheses.

The Depiction

 It is important to note that the version space represents two complementary sets. One set
contains all nodes (or sets) that are overly general and the other contains all nodes that are overly
specific. Our bias for this representation is as follows. We assume that all training data is
correct. In addition, the correct result occurs in the version space. The version space can be
depicted as a tree (see Fig 1). Note that each of the nodes is a model (or hypothesis) in the
version space. Each model consists of attributes that are representative of our target concept.

Fig 1. Tree representation of a version space [3].

 “The key idea in version space learning is that specialization of the general models and
generalization of the specific models may ultimately lead to just one correct model that matches
all observed positive examples and does not match any negative examples” [3]. This means that

At the top of the tree we have the most general
hypotheses.

The next row is an expanded version of the first.
This row of hypotheses is slightly more specific
than the root node.

As training data (positive examples) is
processed, inconsistent nodes are removed from
the general specification.

Eventually we converge to a solution.

Any hypothesis that is inconsistent with the
training data (negative instances) is removed
from the tree.

The specific hypothesis is expanded to form
more nodes that are slightly more general.

This is the most specific hypothesis.

each time a positive example is used to generalize a “more specific” hypothesis, the general
hypotheses (nodes) are removed.

The Downside of this Method (and the Candidate Elimination Algorithm)

Even though it is quite fast “close to linear,” it still has some problems [3]. This algorithm
assumes that if it has worked, it will likely work again. Therefore, it is sensitive to errors in the
training data. For example, an error in the training data could cause a node to be pruned
(removed) from the tree even though it should have remained. Obviously, the further up
(towards the root) this occurs, the more likely it is to cause errors in the final hypothesis.

Conclusion

We have tried to present a different conceptual model of the Candidate Elimination Algorithm as
well as provide a few new facts about the algorithm itself. While both methods effectively
follow the same logic, it can be useful to consider each representation.

References:

[1] Tom M. Mitchell. Machine Learning. McGraw Hill. 1997.
[2] Stephen D. Scott. Lecture 2 Slides
[3] Dr. Howard Hamilton, Ergun Gurak, Leah Findlater, and Wayne Olive. Version Spaces.

http://www.cs.uregina.ca/~dbd/cs831/notes/ml/vspace/3_vspace.html. 2001.

	Abstract
	The Version Space Method (Another Way of Viewing Candidate Elimination)

