CSCE 970 Lecture 6: System Evaluation and Combining Classifiers Stephen D. Scott (Adapted partially from Tom Mitchell's slides) March 13, 2003	 Introduction Once features generated/selected and classifier built, need to assess its performance on new data Assume all data drawn i.i.d. according to some prob. distribution D and try to estimate classifier's prediction error on new data drawn according to D If error estimate unacceptable, need to select/gen. new features and/or build new classifier Change features used Change size/structure of neural network Change assumptions in Bayesian classifier Choose new learning method, e.g. decision tree
1	2
Introduction (cont'd)	Outline
 Can't use error on training set to estimate abil- ity to generalize, because it's too optimistic 	• Sample error vs. true error
 So use independent <u>testing set</u> to estimate error 	 Confidence intervals for observed hypothesis error
 Can use statistical hypothesis testing techniques to: 	• Estimators
 Give <u>confidence intervals</u> for error estimate 	 Binomial distribution, Normal distribution, Cen- tral Limit Theorem
 Contrast performance of two classifiers (see if the difference in their error estimates is statistically significant) 	• Paired t tests
 Sometimes need to train and test with a <u>small</u> <u>data set</u> 	Comparing learning methods
 Will also look at improving a classifier's per- formance 	 Combining classifiers to improve performance: Weighted Majority, Bagging, Boosting

Confidence Intervals (cont'd)

If

- S contains n examples, drawn independently of h and each other
- $n \ge 30$

Then

• With approximately N% probability, $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h) \pm z_{N} \sqrt{\frac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

where

<i>N</i> %:	50%	68%	80%	90%	95%	98%	99%
z_N :	0.67	1.00	1.28	1.64	1.96	2.33	2.58

Why?

Binomial Probability Distribution Binomial distribution for n = 40, p = 0.30.14 0.12 0.14 0.14 0.12 0.14 0.14 0.12 0.14 0.14 0.12 0.14 0.14 0.12 0.14 0.14 0.12 0.14 0.14 0.12 0.14 0.14 0.12 0.14 0.14 0.12 0.14 0.08 0.06 0.04 0.06 0.04 0.05 0.06 0.05 0.06 0.02 0.05 0.05 0.06 0.02 0.05 0.0

$$P(r) = \binom{n}{r} p^{r} (1-p)^{n-r} = \frac{n!}{r!(n-r)!} p^{r} (1-p)^{n-r}$$

Probability P(r) of r heads in n coin flips, if $p = \Pr(heads)$

• Expected, or mean value of X, E[X], is

$$E[X] \equiv \sum_{i=0}^{n} iP(i) = np$$

• Variance of X is

$$Var(X) \equiv E[(X - E[X])^2] = np(1 - p)$$

• Standard deviation of X, σ_X , is

$$\sigma_X \equiv \sqrt{E[(X - E[X])^2]} = \sqrt{np(1 - p)}$$
11

$error_{S}(h)$ is a Random Variable

Repeatedly run the experiment, each with different randomly drawn S (each of size n)

n ≥ 30

Then

• With approximately 95% probability, $error_S(h)$ lies in interval

$$error_{\mathcal{D}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

Equivalently, $error_{\mathcal{D}}(h)$ lies in interval

$$error_{S}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{n}}$$

which is approximately

$$error_{S}(h) \pm 1.96 \sqrt{rac{error_{S}(h)(1 - error_{S}(h))}{n}}$$

(One-sided bounds yield upper or lower error bounds)

15

Consider a set of independent, identically distributed random variables $Y_1 \ldots Y_n$, all governed by an arbitrary probability distribution with mean μ and finite variance σ^2 . Define the sample mean,

$$\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^{n} Y_i$$

Note that \overline{Y} is itself a random variable, i.e. the result of an experiment (e.g. $error_S(h) = r/n$)

<u>Central Limit Theorem</u>: As $n \to \infty$, the distribution governing \bar{Y} approaches a Normal distribution, with mean μ and variance σ^2/n

Thus the distribution of $error_S(h)$ is approximately normal for large n, and its expected value is $error_D(h)$

(Rule of thumb: $n \ge 30$ when estimator's distribution is binomial, might need to be larger for other distributions)

Calculating Confidence Intervals	Difference Between Hypotheses
1. Pick parameter p to estimate	Test h_1 on sample S_1 , test h_2 on S_2
• $error_{\mathcal{D}}(h)$	1. Pick parameter to estimate
2. Choose an estimator	$d \equiv error_{\mathcal{D}}(h_1) - error_{\mathcal{D}}(h_2)$
• $error_S(h)$	2. Choose an estimator
 Determine probability distribution that governs estimator 	$\label{eq:def} \hat{d} \equiv error_{S_1}(h_1) - error_{S_2}(h_2)$ (unbiased)
• $error_S(h)$ governed by binomial distribution, approximated by normal when $n \ge 30$	 Determine probability distribution that governs estimator (difference between two normals is also normal, variances add)
4. Find interval (L, U) such that $N\%$ of probabil- ity mass falls in the interval	$\sigma_{\tilde{d}} \approx \sqrt{\frac{error_{S_1}(h_1)(1 - error_{S_1}(h_1))}{n_1}} + \frac{error_{S_2}(h_2)(1 - error_{S_2}(h_2))}{n_2}$
• Could have $L = -\infty$ or $U = \infty$ • Use table of z_N or z'_N values	4. Find interval (L,U) such that $N\%$ of prob. mass falls in the interval: $\hat{d}\pm Z_n\sigma_{\hat{d}}$
17	18
Paired t test to compare h_A , h_B	Comparing Learning Algorithms L_A and L_B
1. Partition data into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.	What we'd like to estimate:
2. For i from 1 to k , do	$E_{S \subset \mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$
$\delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$	where $L(S)$ is the hypothesis output by learner L using training set S
3. Return the value $\bar{\delta}$, where $\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^k \delta_i$	I.e., the expected difference in true error between hypotheses output by learners L_A and L_B , when trained using randomly selected training sets S drawn according to distribution \mathcal{D}
$N\%$ confidence interval estimate for d : $\overline{\delta}\pm t_{N,k-1}\ s_{\overline{\delta}}$	But, given limited data D_0 , what is a good estimator?
$s_{ar{\delta}} \equiv \sqrt{rac{1}{k(k-1)}\sum\limits_{i=1}^k \left(\delta_i - ar{\delta} ight)^2}$	• Could partition D_0 into training set S_0 and testing set T_0 , and measure
t (student's t dist. with $k-1$ degrees of freedom)	$error_{T_0}(L_A(S_0)) - error_{T_0}(L_B(S_0))$
t (student's t dist. with $k - 1$ degrees of freedom) plays role of z, s plays role of σ t test gives more accurate results since std. devi- ation approximated and test sets not independent	 Even better, repeat this many times and aver- age the results (next slide)
19	20

Comparing learning algorithms L_A and L_B (cont'd)

- 1. Partition data D_0 into k disjoint test sets T_1, T_2, \dots, T_k of equal size, where this size is at least 30.
- 2. For i from 1 to k, do

(use T_i for the test set, and the remaining data for training set S_i)

- $S_i \leftarrow \{D_0 T_i\}$
- $h_A \leftarrow L_A(S_i)$
- $h_B \leftarrow L_B(S_i)$
- $\delta_i \leftarrow error_{T_i}(h_A) error_{T_i}(h_B)$
- 3. Return the value $\overline{\delta}$, where

$$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

Comparing learning algorithms L_A and L_B (cont'd)

- Notice we'd like to use the paired t test on $\overline{\delta}$ to obtain a confidence interval
- Not really correct, because the training sets in this algorithm are not independent (they over-lap!)
- More correct to view algorithm as producing an estimate of

 $E_{S \subset D_0}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$

instead of

$$E_{S \subset \mathcal{D}}[error_{\mathcal{D}}(L_A(S)) - error_{\mathcal{D}}(L_B(S))]$$

• But even this approximation is better than no comparison

22

Combining Classifiers

- Sometimes a single classifier (e.g. neural network, decision tree) won't perform well, but a weighted combination of them will
- Each classifier (or <u>expert</u>) in the <u>pool</u> has its own weight
- When asked to predict the label for a new example, each expert makes its own prediction, and then the <u>master algorithm</u> combines them using the weights for its own prediction (i.e. the "official" one)
- If the classifiers themselves cannot learn (e.g. heuristics) then the best we can do is to learn a good set of weights
- If we are using a learning algorithm (e.g. NN, dec. tree), then we can rerun the algorithm on different subsamples of the training set and set the classifiers' weights during training

Weighted Majority Algorithm (WM) [Mitchell, Sec. 7.5.4]

Weighted Majority Mistake Bound (cont'd)

- Thus for <u>any</u> arbitrary sequence of examples, WM guaranteed to not perform much worse than best expert in pool plus log of number of experts
 - Implicitly agnostic
- Other results:
 - Bounds hold for general values of $\beta \in [0, 1)$
 - Better bounds hold for more sophisticated algorithms, but only better by a constant factor (worst-case lower bound: $\Omega(k + \log n)$)
 - Get bounds for real-valued labels and predictions
 - Can track shifting concept, i.e. where best expert can suddenly change in S; key: don't let any weight get too low relative to other weights, i.e. don't overcommit

Bagging Classifiers

[Breiman, ML Journal, '96]

Bagging = \underline{B} ootstrap \underline{agg} regating

Bootstrap sampling: given a set D containing m training examples:

- Create D_i by drawing m examples uniformly at random with replacement from D
- Expect D_i to omit \approx 37% of examples from D

Bagging:

- Create k bootstrap samples D_1, \ldots, D_k
- Train a classifier on each D_i
- Classify new instance x ∈ X by majority vote of learned classifiers (equal weights)

Bagging Experiment

[Breiman, ML Journal, '96]

Given sample S of labeled data, Breiman did the following 100 times and reported avg:

- 1. Divide S randomly into test set T (10%) and training set D (90%)
- 2. Learn decision tree from D and let e_{S} be its error rate on T
- 3. Do 50 times: Create bootstrap set D_i , learn decision tree and let e_B be the error of a majority vote of the trees on T

Results

Data Set	\overline{e}_S	\overline{e}_B	Decrease
waveform	29.0	19.4	33%
heart	10.0	5.3	47%
breast cancer	6.0	4.2	30%
ionosphere	11.2	8.6	23%
diabetes	23.4	18.8	20%
glass	32.0	24.9	27%
soybean	14.5	10.6	27%

When Does Bagging Help?

When learner is <u>unstable</u>, i.e. if small change in training set causes large change in hypothesis produced

- Decision trees, neural networks
- <u>Not</u> nearest neighbor

Experimentally, bagging can help substantially for unstable learners; can somewhat degrade results for stable learners

Bagging Experiment (cont'd)

Same experiment, but using a nearest neighbor classifier, where prediction of new feature vector \mathbf{x} 's label is that of \mathbf{x} 's nearest neighbor in training set, where distance is e.g. Euclidean distance

Results

Data Set	\overline{e}_S	\overline{e}_B	Decrease
waveform	26.1	26.1	0%
heart	6.3	6.3	0%
breast cancer	4.9	4.9	0%
ionosphere	35.7	35.7	0%
diabetes	16.4	16.4	0%
glass	16.4	16.4	0%

What happened?

30

Boosting Classifiers

[Freund & Schapire, ICML '96; many more]

Similar to bagging, but don't always sample uniformly; instead adjust resampling distribution over D to focus attention on previously misclassified examples

Final classifier weights learned classifiers, but not uniform; instead weight of classifier h_t depends on its performance on data it was trained on

Repeat for $t = 1, \ldots, T$:

- 1. Run learning algorithm on examples randomly drawn from training set D according to distribution \mathcal{D}_t ($\mathcal{D}_1 =$ uniform)
- 2. Output of learner is hypothesis $h_t: X \to \{-1, +1\}$
- 3. Compute expected error of h_t on examples drawn according to \mathcal{D}_t (can compute exactly)
- 4. Create \mathcal{D}_{t+1} from \mathcal{D}_t by increasing weight of examples that h_t mispredicts

Final classifier is weighted combination of h_1, \ldots, h_T , where h_t 's weight depends on its error w.r.t. \mathcal{D}_t

(cont'd)

- <u>Preliminaries</u>: $D = \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_m, y_m)\}, y_i \in \{-1, +1\}, D_t(i) = \text{weight of } (\mathbf{x}_i, y_i) \text{ under } D_t$
- Initialization: $\mathcal{D}_1(i) = 1/m$
- Error Computation: $\epsilon_t = \Pr_{\mathcal{D}_t} [h_t(\mathbf{x}_i) \neq y_i]$ (easy to do since we know \mathcal{D}_t)
- If $\epsilon_t > 1/2$ then halt; else:
- Weighting Factor: $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$ (grows as ϵ_t decreases)
- <u>Update</u>: $\mathcal{D}_{t+1}(i) = \frac{\mathcal{D}_t(i) \exp(-\alpha_t y_i h_t(\mathbf{x}_i))}{\underbrace{Z_t}_{\text{normalization factor}}}$

(increase wt. of mispredicted exs, decr. wt of correctly pred.)

• Final Hypothesis: $H(\mathbf{x}) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(\mathbf{x})\right)$

Boosting Example (cont'd)

+0.65

+

+0.92

 $H_{\text{final}} = \text{sign} \left(0.42 \right)$

 $(\epsilon_t \text{ large} \Rightarrow \text{flip } h_t$'s prediction strongly)

33

Topic summary due in 1 week!