CSCE 970 Lecture 6: System Evaluation and Combining Classifiers

Stephen D. Scott
(Adapted partially from Tom Mitchell’s slides)

March 13, 2003

Introduction

• Once features generated/selected and classifier built, need to assess its performance on new data

• Assume all data drawn i.i.d. according to some prob. distribution D and try to estimate classifier’s prediction error on new data drawn according to D

• If error estimate unacceptable, need to select/gen. new features and/or build new classifier
 – Change features used
 – Change size/structure of neural network
 – Change assumptions in Bayesian classifier
 – Choose new learning method, e.g. decision tree

Introduction (cont’d)

• Can’t use error on training set to estimate ability to generalize, because it’s too optimistic

• So use independent testing set to estimate error

• Can use statistical hypothesis testing techniques to:
 – Give confidence intervals for error estimate
 – Contrast performance of two classifiers (see if the difference in their error estimates is statistically significant)

• Sometimes need to train and test with a small data set

• Will also look at improving a classifier’s performance

Outline

• Sample error vs. true error

• Confidence intervals for observed hypothesis error

• Estimators

• Binomial distribution, Normal distribution, Central Limit Theorem

• Paired t tests

• Comparing learning methods

• Combining classifiers to improve performance: Weighted Majority, Bagging, Boosting
Two Definitions of Error

• Denote the learned classifier by the hypothesis h and the target function (that labels examples) by f.

• The true error of hypothesis h with respect to target function f and distribution D is the probability that h will misclassify an instance drawn at random according to D.

\[error_D(h) \equiv \Pr_{x \in D}[f(x) \neq h(x)] \]

• The sample error of h with respect to target function f and data sample S is the proportion of examples h misclassifies

\[error_S(h) \equiv \frac{1}{|S|} \sum_{x \in S} \delta(f(x) \neq h(x)) \]

Where $\delta(f(x) \neq h(x))$ is 1 if $f(x) \neq h(x)$, and 0 otherwise.

• How well does $error_S(h)$ estimate $error_D(h)$?

Problems Estimating Error

• Bias: If S is training set, $error_S(h)$ is optimistically biased

\[bias \equiv E[error_S(h)] - error_D(h) \]

For unbiased estimate, h and S must be chosen independently

• Variance: Even with unbiased S, $error_S(h)$ may still vary from $error_D(h)$

Estimators

Experiment:

1. Choose sample S of size n according to distribution D

2. Measure $error_S(h)$

$error_S(h)$ is a random variable (i.e., result of an experiment)

$error_S(h)$ is an unbiased estimator for $error_D(h)$

Given observed $error_S(h)$, what can we conclude about $error_D(h)$?

Confidence Intervals

If

• S contains n examples (feature vectors), drawn independently of h and each other

• $n \geq 30$

Then

• With approximately 95% probability, $error_D(h)$ lies in interval

\[error_S(h) \pm 1.96 \sqrt{\frac{error_S(h)(1 - error_S(h))}{n}} \]

E.g. hypothesis h misclassifies 12 of the 40 examples in test set S:

\[error_S(h) = \frac{12}{40} = 0.30 \]

Then with approx. 95% confidence, $error_D(h) \in [0.158, 0.442]$
Confidence Intervals (cont’d)

If
• S contains n examples, drawn independently of h and each other
• $n \geq 30$

Then
• With approximately $N\%$ probability, $\text{error}_D(h)$ lies in interval
 $$\text{error}_S(h) \pm z_N \sqrt{\frac{\text{error}_S(h)(1-\text{error}_S(h))}{n}}$$
 where

\begin{align*}
N\%: & \quad 50\% \quad 68\% \quad 80\% \quad 90\% \quad 95\% \quad 98\% \quad 99\% \\
z_N: & \quad 0.67 \quad 1.00 \quad 1.28 \quad 1.64 \quad 1.96 \quad 2.33 \quad 2.58
\end{align*}

Why?

error$_S(h)$ is a Random Variable

Repeatedly run the experiment, each with different randomly drawn S (each of size n)

Probability of observing r misclassified examples:

$$P(r) = \binom{n}{r} \text{error}_D(h)^r (1-\text{error}_D(h))^{n-r}$$

I.e. let $\text{error}_D(h)$ be probability of heads in biased coin, the $P(r)$ = prob. of getting r heads out of n flips

What kind of distribution is this?

Approximate Binomial Dist. with Normal

$\text{error}_S(h) = r/n$ is binomially distributed, with
• mean $\mu_{\text{error}_S(h)} = \text{error}_D(h)$ (i.e. unbiased est.)
• standard deviation $\sigma_{\text{error}_S(h)}$

$$\sigma_{\text{error}_S(h)} = \sqrt{\frac{\text{error}_D(h)(1-\text{error}_D(h))}{n}}$$

(i.e. increasing n decreases variance)

Want to compute confidence interval = interval centered at $\text{error}_D(h)$ containing $N\%$ of the weight under the distribution (difficult for binomial)

Approximate binomial by normal (Gaussian) dist:
• mean $\mu_{\text{error}_S(h)} = \text{error}_D(h)$
• standard deviation $\sigma_{\text{error}_S(h)}$

$$\sigma_{\text{error}_S(h)} = \sqrt{\frac{\text{error}_D(h)(1-\text{error}_D(h))}{n}}$$
Normal Probability Distribution

\[p(x) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2\right) \]

- Defined completely by \(\mu \) and \(\sigma \)
- The probability that \(X \) will fall into the interval \((a, b)\) is given by
 \[\int_a^b p(x)\,dx \]
- Expected, or mean value of \(X \), \(E[X] \), is
 \[E[X] = \mu \]
- Variance of \(X \) is \(Var(X) = \sigma^2 \)
- Standard deviation of \(X \), \(\sigma_X \), is
 \[\sigma_X = \sigma \]

80% of area (probability) lies in \(\mu \pm 1.28\sigma \)

\(N \)% of area (probability) lies in \(\mu \pm z_N \sigma \)

\[
\begin{array}{cccccccc}
N\%: & 50 & 68 & 80 & 90 & 95 & 98 & 99 \\
z_N: & 0.67 & 1.00 & 1.28 & 1.64 & 1.96 & 2.33 & 2.58 \\
\end{array}
\]

Can also have \textbf{one-sided} bounds:

\(N \)% of area lies \(< \mu + z'_N \sigma \) or \(> \mu - z'_N \sigma \), where \(z'_N = z_{100-2(100-N)} \)

\[
\begin{array}{cccccccc}
N\%: & 50 & 68 & 80 & 90 & 95 & 98 & 99 \\
z'_N: & 0.0 & 0.47 & 0.84 & 1.28 & 1.64 & 2.05 & 2.33 \\
\end{array}
\]

Central Limit Theorem

How can we justify approximation?

Consider a set of independent, identically distributed random variables \(Y_1 \ldots Y_n \), all governed by an arbitrary probability distribution with mean \(\mu \) and finite variance \(\sigma^2 \). Define the sample mean,

\[\bar{Y} \equiv \frac{1}{n} \sum_{i=1}^n Y_i \]

Note that \(\bar{Y} \) is itself a random variable, i.e. the result of an experiment (e.g. \(error_S(h) = r/n \))

Central Limit Theorem: As \(n \to \infty \), the distribution governing \(\bar{Y} \) approaches a Normal distribution, with mean \(\mu \) and variance \(\sigma^2/n \)

Thus the distribution of \(error_S(h) \) is approximately normal for large \(n \), and its expected value is \(error_D(h) \)

(Rule of thumb: \(n \geq 30 \) when estimator’s distribution is binomial, might need to be larger for other distributions)
Calculating Confidence Intervals

1. Pick parameter p to estimate
 - $\text{error}_D(h)$
2. Choose an estimator
 - $\text{error}_S(h)$
3. Determine probability distribution that governs estimator
 - $\text{error}_S(h)$ governed by binomial distribution, approximated by normal when $n \geq 30$
4. Find interval (L, U) such that $N\%$ of probability mass falls in the interval
 - Could have $L = -\infty$ or $U = \infty$
 - Use table of z_N or z_N' values

Difference Between Hypotheses

Test h_1 on sample S_1, test h_2 on S_2

1. Pick parameter to estimate
 $$d \equiv \text{error}_D(h_1) - \text{error}_D(h_2)$$
2. Choose an estimator
 $$\hat{d} \equiv \text{error}_{S_1}(h_1) - \text{error}_{S_2}(h_2)$$
 (unbiased)
3. Determine probability distribution that governs estimator (difference between two normals is also normal, variances add)
 $$\sigma_{\hat{d}} \approx \sqrt{\frac{\text{error}_{S_1}(h_1)(1 - \text{error}_{S_1}(h_1))}{n_1} + \frac{\text{error}_{S_2}(h_2)(1 - \text{error}_{S_2}(h_2))}{n_2}}$$
4. Find interval (L, U) such that $N\%$ of probability mass falls in the interval: $\hat{d} \pm Z_n \sigma_{\hat{d}}$

Paired t test to compare h_A, h_B

1. Partition data into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.
2. For i from 1 to k, do
 $$\delta_i \leftarrow \text{error}_{T_i}(h_A) - \text{error}_{T_i}(h_B)$$
3. Return the value $\bar{\delta}$, where
 $$\bar{\delta} \equiv \frac{1}{k} \sum_{i=1}^{k} \delta_i$$

$N\%$ confidence interval estimate for d:
 $$\bar{\delta} \pm t_{N,k-1} s\bar{\delta}$$
 $$s\bar{\delta} \equiv \sqrt{\frac{1}{k(k-1)} \sum_{i=1}^{k} (\delta_i - \bar{\delta})^2}$$

t (student’s t dist. with $k - 1$ degrees of freedom) plays role of z, s plays role of σ

t test gives more accurate results since std. deviation approximated and test sets not independent

Comparing Learning Algorithms L_A and L_B

What we’d like to estimate:
 $$E_{S \sim \mathcal{D}}[\text{error}_D(L_A(S)) - \text{error}_D(L_B(S))]$$
where $L(S)$ is the hypothesis output by learner L using training set S

I.e., the expected difference in true error between hypotheses output by learners L_A and L_B, when trained using randomly selected training sets S drawn according to distribution \mathcal{D}

But, given limited data D_0, what is a good estimator?
- Could partition D_0 into training set S_0 and testing set T_0, and measure
 $$\text{error}_{T_0}(L_A(S_0)) - \text{error}_{T_0}(L_B(S_0))$$
- Even better, repeat this many times and average the results (next slide)
Comparing learning algorithms L_A and L_B (cont'd)

1. Partition data D_0 into k disjoint test sets T_1, T_2, \ldots, T_k of equal size, where this size is at least 30.

2. For i from 1 to k, do

 (use T_i for the test set, and the remaining data for training set S_i)

 $\bullet \quad S_i \leftarrow \{D_0 - T_i\}$

 $\bullet \quad h_A \leftarrow L_A(S_i)$

 $\bullet \quad h_B \leftarrow L_B(S_i)$

 $\bullet \quad \delta_i \leftarrow error_{T_i}(h_A) - error_{T_i}(h_B)$

3. Return the value $\bar{\delta}$, where

 $\bar{\delta} = \frac{1}{k} \sum_{i=1}^{k} \delta_i$

Comparing learning algorithms L_A and L_B (cont’d)

- Notice we’d like to use the paired t test on $\bar{\delta}$ to obtain a confidence interval

- Not really correct, because the training sets in this algorithm are not independent (they overlap!)

- More correct to view algorithm as producing an estimate of

 $E_{S \subseteq D_0}[error_D(L_A(S)) - error_D(L_B(S))]$

 instead of

 $E_{S \subseteq D}[error_D(L_A(S)) - error_D(L_B(S))]$

- But even this approximation is better than no comparison

Combining Classifiers

- Sometimes a single classifier (e.g. neural network, decision tree) won’t perform well, but a **weighted combination** of them will

- Each classifier (or **expert**) in the **pool** has its own weight

- When asked to predict the label for a new example, each expert makes its own prediction, and then the **master algorithm** combines them using the weights for its own prediction (i.e. the “official” one)

- If the classifiers themselves cannot learn (e.g. heuristics) then the best we can do is to learn a good set of weights

- If we are using a learning algorithm (e.g. NN, dec. tree), then we can rerun the algorithm on different subsamples of the training set and set the classifiers’ weights during training

Weighted Majority Algorithm (WM)
[Mitchell, Sec. 7.5.4]

![Weighted Majority Algorithm Diagram]
Weighted Majority Algorithm (WM) (cont’d)

- \(a_i\) is \(i\)th pred. algorithm in pool \(A\) of alg; each alg is arbitrary function from \(X\) to \(\{0, 1\}\) or \(\{-1, 1\}\).
- \(w_i\) is weight the master alg associates with \(a_i\).
- \(\beta \in [0, 1)\) is parameter
 - \(\forall i \text{ set } w_i \leftarrow 1\)
 - For each training example (or trial) \(\langle x, c(x) \rangle\)
 - Set \(q_0 \leftarrow q_1 \leftarrow 0\)
 - For each algorithm \(a_i\)
 - If \(a_i(x) = 0\) then \(q_0 \leftarrow q_0 + w_i\)
 - else \(q_1 \leftarrow q_1 + w_i\)
 - If \(q_1 > q_0\) then predict 1 for \(c(x)\), else predict 0 (case for \(q_1 = q_0\) is arbitrary)
 - For each \(a_i \in A\)
 - If \(a_i(x) \neq c(x)\) then \(w_i \leftarrow \beta w_i\)

Setting \(\beta = 0\) yields **Halving algorithm** over \(A\).

Weighted Majority Mistake Bound (On-Line Model)

- Let \(a_{opt} \in A\) be expert that makes fewest mistakes on arbitrary sequence \(S\) of exs; let \(k\) is its number of mistakes
- Let \(\beta = 1/2\) and \(W_t = \sum_{i=1}^{n} w_{i,t} = \text{sum of wts at trial } t\) \((W_0 = n)\)
- On trial \(t\) such that WM makes a mistake, the total weight reduced is \(W_{t+1} = (W_t - W_t^{mis}) + W_t^{mis}/2 = W_t - W_t^{mis}/2 \leq 3W_t/4\)
- After seeing all of \(S\), \(w_{opt,S} = (1/2)^k\) and \(W_{|S|} \leq n(3/4)^M\) where \(M = \text{total number of mistakes, yielding}\)
 - \(\left(\frac{1}{2}\right)^k \leq n \left(\frac{3}{4}\right)^M\)
 - So \(M \leq \frac{k + \log_2 n}{- \log_2(3/4)} \leq 2.41 (k + \log_2 n)\)

Weighted Majority Mistake Bound (cont’d)

- Thus for any arbitrary sequence of examples, WM guaranteed to not perform much worse than best expert in pool plus log of number of experts
 - Implicitly agnostic
- Other results:
 - Bounds hold for general values of \(\beta \in [0, 1)\)
 - Better bounds hold for more sophisticated algorithms, but only better by a constant factor (worst-case lower bound: \(\Omega (k + \log n)\))
 - Get bounds for real-valued labels and predictions
 - Can track shifting concept, i.e. where best expert can suddenly change in \(S\); key: don’t let any weight get too low relative to other weights, i.e. don’t overcommit

Bagging Classifiers

[Breiman, ML Journal, ’96]

Bagging = **Bootstrap aggregating**

Bootstrap sampling: given a set \(D\) containing \(m\) training examples:
- Create \(D_i\) by drawing \(m\) examples uniformly at random with replacement from \(D\)
- Expect \(D_i\) to omit \(\approx 37\%\) of examples from \(D\)

Bagging:
- Create \(k\) bootstrap samples \(D_1, \ldots, D_k\)
- Train a classifier on each \(D_i\)
- Classify new instance \(x \in X\) by majority vote of learned classifiers (equal weights)
Bagging Experiment
[Breiman, ML Journal, '96]

Given sample S of labeled data, Breiman did the following 100 times and reported avg:

1. Divide S randomly into test set T (10%) and training set D (90%)
2. Learn decision tree from D and let e_S be its error rate on T
3. Do 50 times: Create bootstrap set D_i, learn decision tree and let e_B be the error of a majority vote of the trees on T

Results

<table>
<thead>
<tr>
<th>Data Set</th>
<th>\bar{e}_S</th>
<th>\bar{e}_B</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveform</td>
<td>29.0</td>
<td>19.4</td>
<td>33%</td>
</tr>
<tr>
<td>heart</td>
<td>10.0</td>
<td>5.3</td>
<td>47%</td>
</tr>
<tr>
<td>breast cancer</td>
<td>6.0</td>
<td>4.2</td>
<td>30%</td>
</tr>
<tr>
<td>ionosphere</td>
<td>11.2</td>
<td>8.6</td>
<td>23%</td>
</tr>
<tr>
<td>diabetes</td>
<td>23.4</td>
<td>18.8</td>
<td>20%</td>
</tr>
<tr>
<td>glass</td>
<td>32.0</td>
<td>24.9</td>
<td>27%</td>
</tr>
<tr>
<td>soybean</td>
<td>14.5</td>
<td>10.6</td>
<td>27%</td>
</tr>
</tbody>
</table>

When Does Bagging Help?

When learner is unstable, i.e. if small change in training set causes large change in hypothesis produced

- Decision trees, neural networks
- Not nearest neighbor

Experimentally, bagging can help substantially for unstable learners; can somewhat degrade results for stable learners

Bagging Experiment (cont’d)

Same experiment, but using a nearest neighbor classifier, where prediction of new feature vector x’s label is that of x’s nearest neighbor in training set, where distance is e.g. Euclidean distance

Results

<table>
<thead>
<tr>
<th>Data Set</th>
<th>\bar{e}_S</th>
<th>\bar{e}_B</th>
<th>Decrease</th>
</tr>
</thead>
<tbody>
<tr>
<td>waveform</td>
<td>26.1</td>
<td>26.1</td>
<td>0%</td>
</tr>
<tr>
<td>heart</td>
<td>6.3</td>
<td>6.3</td>
<td>0%</td>
</tr>
<tr>
<td>breast cancer</td>
<td>4.9</td>
<td>4.9</td>
<td>0%</td>
</tr>
<tr>
<td>ionosphere</td>
<td>35.7</td>
<td>35.7</td>
<td>0%</td>
</tr>
<tr>
<td>diabetes</td>
<td>16.4</td>
<td>16.4</td>
<td>0%</td>
</tr>
<tr>
<td>glass</td>
<td>16.4</td>
<td>16.4</td>
<td>0%</td>
</tr>
</tbody>
</table>

What happened?

Boosting Classifiers
[Freund & Schapire, ICML ’96; many more]

Similar to bagging, but don’t always sample uniformly; instead adjust resampling distribution over D to focus attention on previously misclassified examples

Final classifier weights learned classifiers, but not uniform; instead weight of classifier h_t depends on its performance on data it was trained on

Repeat for $t = 1, \ldots , T$:

1. Run learning algorithm on examples randomly drawn from training set D according to distribution D_t (D_1 = uniform)
2. Output of learner is hypothesis $h_t : X \to \{-1, +1\}$
3. Compute expected error of h_t on examples drawn according to D_t (can compute exactly)
4. Create D_{t+1} from D_t by increasing weight of examples that h_t mispredicts

Final classifier is weighted combination of h_1, \ldots , h_T, where h_t’s weight depends on its error w.r.t. D_t
Boosting (cont’d)

Preliminaries: \(D = \{(x_1, y_1), \ldots, (x_m, y_m)\}, y_i \in \{-1, +1\}, D_t(i) = \text{weight of } (x_i, y_i) \text{ under } D_t \)

Initialization: \(D_1(i) = 1/m \)

Error Computation: \(\epsilon_t = \Pr_{D_t}[h_t(x_i) \neq y_i] \) (easy to do since we know \(D_t \))

If \(\epsilon_t > 1/2 \) then halt; else:

Weighting Factor: \(\alpha_t = \frac{1}{2} \ln \left(\frac{1 - \epsilon_t}{\epsilon_t} \right) \) (grows as \(\epsilon_t \) decreases)

Update: \(D_{t+1}(i) = \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t} \) (normalization factor)

(increase wt. of mispredicted exs, decr. wt of correctly pred.)

Final Hypothesis: \(H(x) = \text{sign} \left(\sum_{t=1}^{T} \alpha_t h_t(x) \right) \) (\(\epsilon_t \) large \(\Rightarrow \) flip \(h_t \)'s prediction strongly)

Boosting Example

Example (cont’d)

\[H_{\text{final}} = \text{sign} \left(\begin{array}{ccc}
0.42 & + & - \\
+ & 0.65 & + \\
+ & - & - \\
\end{array} \right) \]

\[\epsilon_1 = 0.30 \quad \alpha_1 = 0.42 \]

\[\epsilon_2 = 0.21 \quad \alpha_2 = 0.65 \]

\[\epsilon_3 = 0.14 \quad \alpha_3 = 0.92 \]

Boosting Miscellany

Miscellany

- If each \(\epsilon_t < 1/2 - \gamma_t \), error of \(H(\cdot) \) on \(D \) drops exponentially in \(\sum_{t=1}^{T} \gamma_t \) (what does \(\gamma \) correspond to?)

- Can also bound generalization error of \(H(\cdot) \) independent of \(T \)

- Also successful empirically on neural network and decision tree learners
 - Empirically, generalization sometimes improves if training continues after \(H(\cdot) \)'s error on \(D \) drops to 0
 - Contrary to intuition; expect overfitting
 - Related to increasing the combined classifier's margin (confidence in prediction)

Topic summary due in 1 week!