Introduction

- Sometimes probabilistic information unavailable or mathematically intractable
- Many alternatives to Bayesian classification, but optimality guarantee may be compromised!
- Linear classifiers use a decision hyperplane to perform classification
- Simple and efficient to train and use
- Optimality requires linear separability of classes

Linear Discriminant Functions

- Let \(w = [w_1, \ldots, w_L]^T \) be a weight vector and \(w_0 \) (a.k.a. \(\theta \)) be a threshold
- Decision surface is a hyperplane:
 \[
 w^T \cdot x + w_0 = 0
 \]
- E.g. predict \(\omega_2 \) if \(\sum_{i=1}^L w_i x_i > w_0 \), otherwise predict \(\omega_1 \)
- Focus of this lecture: How to find \(w_i \)'s
 - Perceptron algorithm
 - Winnow
 - Least squares methods (if classes not linearly separable)

The Perceptron Algorithm

- Assume linear separability, i.e. \(\exists w^* \) s.t.
 \[
 w^T \cdot x > 0 \quad \forall x \in \omega_1 \\
 w^T \cdot x \leq 0 \quad \forall x \in \omega_2
 \]
 \(w_0^* \) is included in \(w^* \)
- So \(\exists \) deterministic function classifying vectors
 (contrary to Ch. 2 assumptions)

 \[
 y(t+1) = \begin{cases}
 \omega_1 & \text{if } \sum w_j x_j > w_0 \\
 \omega_2 & \text{otherwise}
 \end{cases}
 \]

 May also use +1 and -1
- Given actual label \(y(t) \) for trial \(t \), update weights:
 \[
 w(t+1) = w(t) + \rho (y(t) - \hat{y}(t)) x(t)
 \]
 \(\rho > 0 \) is learning rate
 \((y(t) - \hat{y}(t)) \) moves weights toward correct prediction for \(x \)
The Perceptron Algorithm

Example

\[x_2 \]
\[x_1 \]
\[(\omega_1) \]
\[(\omega_2) \]

our dec. line

our new dec. line

opt. dec. line

The Perceptron Algorithm

Intuition

• Compromise between **correctiveness** and **conservativeness**

 – Correctiveness: Tendency to improve on \(x(t) \) if prediction error made

 – Conservativeness: Tendency to keep \(w(t+1) \) close to \(w(t) \)

• Use **cost function** that measures both:

\[
U(w) = \|w(t+1) - w(t)\|_2^2 + \eta (y(t) - w(t+1) \cdot x(t))^2
\]

\[
= \sum_{i=1}^{\ell} (w_i(t+1) - w_i(t))^2 + \eta \left(y(t) - \sum_{i=1}^{\ell} w_i(t+1) x_i(t) \right)^2
\]

The Perceptron Algorithm

Intuition (cont’d)

• Take gradient w.r.t. \(w(t+1) \) and set to 0:

\[0 = 2 \left(w_i(t+1) - w_i(t) \right) - 2\eta \left(y(t) - \sum_{i=1}^{\ell} w_i(t+1) x_i(t) \right) x_i(t) \]

• Approximate with

\[0 \approx 2 \left(w_i(t+1) - w_i(t) \right) - 2\eta \left(y(t) - \sum_{i=1}^{\ell} w_i(t) x_i(t) \right) x_i(t), \]

which yields

\[w_i(t+1) = w_i(t) + \eta \left(y(t) - \sum_{i=1}^{\ell} w_i(t) x_i(t) \right) x_i(t) \]

• Applying threshold to **summation** yields

\[w_i(t+1) = w_i(t) + \eta \left(y(t) - \hat{y}(t) \right) x_i(t) \]

The Perceptron Algorithm

Miscellany

• If classes linearly separable, then by cycling through vectors, guaranteed to converge in finite number of steps

• For real-valued output, can replace threshold function on sum with

 – Identity function: \(f(x) = x \)

 – Sigmoid function: e.g. \(f(x) = \frac{1}{1+\exp(-ax)} \)

 – Hyperbolic tangent: e.g. \(f(x) = c \tanh(ax) \)
Winnow/Exponentiated Gradient

- Same as Perceptron, but update weights:
 \[w_i(t+1) = w_i(t) \exp(-2\eta(y(t) - y(t))x_i(t)) \]

- If \(y(t), \hat{y}(t) \in \{0,1\} \forall t \), then set \(\eta = (\ln \alpha)/2 \) (\(\alpha > 1 \)) and get Winnow:
 \[
 w_i(t + 1) = \begin{cases}
 w_i(t)/\alpha^x_i(t) & \text{if } \hat{y}(t) = 1, y(t) = 0 \\
 w_i(t)\alpha^{x_i(t)} & \text{if } \hat{y}(t) = 0, y(t) = 1 \\
 w_i(t) & \text{if } \hat{y}(t) = y(t)
 \end{cases}
 \]

Intuition

- Measure distance in cost function with unnormalized relative entropy:
 \[
 U(w) = \sum_{i=1}^{\ell} \left(w_i(t) - w_i(t+1) + w_i(t+1) \ln \frac{w_i(t+1)}{w_i(t)} \right)
 \]

- Take gradient w.r.t. \(w(t+1) \) and set to 0:
 \[
 0 = \ln \frac{w_i(t+1)}{w_i(t)} - 2\eta \left(y(t) - \sum_{i=1}^{\ell} w_i(t+1)x_i(t) \right)x_i(t)
 \]

Miscellany

- Winnow and EG update wts by multiplying by a pos const: impossible to change sign
 - Weight vectors restricted to one quadrant

- Solution: Maintain wt vectors \(w^+(t) \) and \(w^-(t) \)
 - Predict \(\hat{y}(t) = (w^+(t) - w^-(t)) \cdot x(t) \)
 - Update:
 \[
 r_i^+(t) = \exp(-2\eta(\hat{y}(t) - y(t))x_i(t) U) \\
 r_i^-(t) = 1/r_i^+(t)
 \]
 \[
 w_i^+(t + 1) = U \cdot \frac{w_i^+(t) r_i^+(t)}{\sum_{j=1}^{\ell} (w_i^+(t) r_j^+(t) + w_i^-(t) r_j^-(t))}
 \]

- Winnow and EG are multiplicative weight update schemes versus additive weight update schemes, e.g. Perceptron

- Winnow and EG work well when most attributes (features) are irrelevant, i.e. optimal weight vector \(w^* \) is sparse (many 0 entries)

- E.g. \(x_i \in \{0,1\} \), \(x \)'s are labelled by a monotone \(k \)-disjunction over \(\ell \) attributes, \(k \ll \ell \)
 - Remaining \(\ell - k \) are irrelevant
 - E.g. \(x_5 \lor x_9 \lor x_{12} \), \(\ell = 150, k = 3 \)

- For disjunctions, number of on-line prediction mistakes is \(O(k \log \ell) \) for Winnow and worst-case \(\Omega(k \ell) \) for Perceptron

- So in worst case, need exponentially fewer updates for training in Winnow than Perceptron

- Other bounds exist for real-valued inputs and outputs
Non-Linearly Separable Classes

- What if no hyperplane completely separates the classes?
- Add extra inputs that are nonlinear combinations of original inputs (Section 4.14)
 - E.g. attrs. x_1 and x_2, so try $x = [x_1, x_2, x_1 x_2, x_1^2, x_2^2, x_1 x_2^3, x_2 x_1, x_1 x_1 x_2]^T$
 - Perhaps classes linearly separable in new feature space
 - Useful, especially with Winnow/EG logarithmic bounds
 - Kernel functions/SVMs
- Pocket algorithm (p. 63) guarantees convergence to a best hyperplane
- Winnow’s & EG’s agnostic results
- Least squares methods (Sec. 3.4)
- Networks of classifiers (Ch. 4)

Winnow’s Agnostic Results

- Winnow’s total number of prediction mistakes loss (in on-line setting) provably not much worse than best linear classifier
 - Loss bound related to performance of best classifier and total distance under $|| \cdot ||_1$ that feature vectors must be moved to make best classifier perfect [Littlestone, COLT ’91]
- Similar bounds for EG [Kivinen & Warmuth]

Least Squares Methods

- Recall from Slide 7:
 \[w_i(t+1) = w_i(t) + \eta \left(y(t) - \sum_{i=1}^{t} w_i(t)x_i(t) \right) x_i(t) \]
 \[= w_i(t) + \eta \left(y(t) - w(t)^T \cdot x(t) \right) x_i(t) \]
- If we don’t threshold dot product during training and allow η to vary each trial (i.e. substitute η_t), get\(^*\) Eq. 3.38, p. 69:
 \[w(t+1) = w(t) + \eta_t x(t) \left(y(t) - w(t)^T \cdot x(t) \right) \]
- This is Least Mean Squares (LMS) Algorithm
- If e.g. $\eta_t = 1/t$, then
 \[\lim_{t \to \infty} P \left(w(t) = w^* \right) = 1, \]
 where
 \[w^* = \arg\min_{w \in \mathbb{R}^d} \left\{ E \left[|| y - w^T \cdot x ||^2 \right] \right\} \]
 is vector minimizing mean square error (MSE)
\(^*\)Note that here $w(t)$ is weight before trial t. In book it is weight after trial t.

Multiclass learning

Kessler’s Construction

- For\(^*\) $x = [2, 2, 1]^T$ of class ω_1, want
 \[\sum_{i=1}^{\ell+1} w_{1_i} x_i > \sum_{i=1}^{\ell+1} w_{2_i} x_i \quad \text{AND} \quad \sum_{i=1}^{\ell+1} w_{1_i} x_i > \sum_{i=1}^{\ell+1} w_{3_i} x_i \]
\(^*\)The extra 1 is added so threshold can be placed in w.

13

14
Multiclass learning
Kessler’s Construction (cont’d)

• So map x to
 $x_1 = \begin{bmatrix} 2, 2, 1, -2, -2, -1, 0, 0, 0 \end{bmatrix}^T$
 $x_2 = \begin{bmatrix} 2, 2, 1, 0, 0, 0, -2, -2, -1 \end{bmatrix}^T$
 (all labels = +1) and let
 $w = [w_{11}, w_{12}, w_{10}, w_{21}, w_{22}, w_{20}, w_{31}, w_{32}, w_{30}]^T$

• Now if $w^T \cdot x_1 > 0$ and $w^T \cdot x_2 > 0$, then
 $\ell + 1 \sum_{i=1}^{\ell+1} w_{1i}x_i > \ell + 1 \sum_{i=1}^{\ell+1} w_{2i}x_i$ AND
 $\ell + 1 \sum_{i=1}^{\ell+1} w_{1i}x_i > \sum_{i=1}^{\ell+1} w_{3i}x_i$

• In general, map $(\ell + 1) \times 1$ feature vector x to
 x_1, \ldots, x_{M-1}, each of size $(\ell + 1)M \times 1$

• $x \in \omega_i \Rightarrow x$ in ith block and $-x$ in jth block,
 (rest are 0s). Repeat for all $j \neq i$

• Now train to find weights for new vector space
 via perceptron, Winnow, etc.

Error-Correcting Output Codes (ECOC)

• Since Win. & Percep. learn binary functions, learn individual bits of binary encoding of classes

• E.g. $M = 4$, so use two linear classifiers:

<table>
<thead>
<tr>
<th>Class</th>
<th>Binary Encoding</th>
<th>Classifier 1</th>
<th>Classifier 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ω_1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ω_2</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ω_3</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>ω_4</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

and train simultaneously

• Problem: Sensitive to individual classifier errors, so use a set of encodings per class to improve robustness

• Similar to principle of error-correcting output codes used in communication networks
 [Dietterich & Bakiri, 1995]

• General-purpose, independent of learner

Topic summary due in 1 week!