

CSCE 496/896 Lecture 5: Autoencoders Stephen Scott

Introduction Basic Idea Stacked AE Denoising AE Sparse AE Contractive AF

Variational AE

GAN

CSCE 496/896 Lecture 5: Autoencoders

Stephen Scott

(Adapted from Paul Quint and Ian Goodfellow)

sscott@cse.unl.edu

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

Introduction

496/896 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

- Autoencoding is training a network to replicate its input to its output
- Applications:
 - Unlabeled pre-training for semi-supervised learning
 - Learning embeddings to support information retrieval
 - Generation of new instances similar to those in the training set
 - Data compression

Outline

CSCE 496/896 Lecture 5: Autoencoders

Stephen Scott

Introduction

- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE
- Variational AE
- GAN

- Basic idea
- Stacking
- Types of autoencoders
 - Denoising
 - Sparse
 - Contractive
 - Variational
 - Generative adversarial networks

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Basic Idea

CSCE 496/896									
Lecture 5:	Inputs	Outputs	Input	Hidden				Output	
Autoencoders	<u>On</u>	P	Values						
Stephen Scott	A	AD	1000000	\rightarrow	.89	.04	.08	\rightarrow	10000000
		KH40	01000000	\rightarrow	.15	.99	.99	\rightarrow	01000000
Introduction			00100000	\rightarrow	.01	.97	.27	\rightarrow	00100000
Basic Idea			00010000	\rightarrow	.99	.97	.71	\rightarrow	00010000
Stacked AE			00001000	\rightarrow	.03	.05	.02	\rightarrow	00001000
Denoising AE			00000100	\rightarrow	.01	.11	.88	\rightarrow	00000100
Ŭ			00000010	\rightarrow	.80	.01	.98	\rightarrow	00000010
Sparse AE		Nº	00000001	\rightarrow	.60	.94	.01	\rightarrow	00000001
Contractive AE	0	U						- 27.	

- Sigmoid activation functions, 5000 training epochs, square loss, no regularization
 - What's special about the hidden layer outputs?

Variational AE

GAN

Basic Idea

496/896 Lecture 5: Autoencoders Stephen Scott

Introduction Basic Idea Stacked AE

Denoising AE

Sparse AE

Contractive AE Variational AE

GAN

 An autoencoder is a network trained to learn the identity function: output = input

- Subnetwork called
 encoder f(·) maps input
 to an embedded
 representation
- Subnetwork called decoder g(⋅) maps back to input space

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

- Can be thought of as lossy compression of input
- Need to identify the important attributes of inputs to reproduce faithfully

Basic Idea

496/896 Lecture 5: Autoencoders

Stephen Scott

- Introduction
- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE
- Variational AE
- GAN

- General types of autoencoders based on size of hidden layer
 - **Undercomplete** autoencoders have hidden layer size smaller than input layer size
 - ⇒ Dimension of embedded space lower than that of input space
 - ⇒ Cannot simply memorize training instances
 - Overcomplete autoencoders have much larger hidden layer sizes
 - ⇒ Regularize to avoid overfitting, e.g., enforce a sparsity constraint

Basic Idea Example: Principal Component Analysis

Variational AE

Nebraska

CSCE 496/896

Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Sparse AE

Contractive

Denoising AE

GAN

 A 3-2-3 autoencoder with linear units and square loss performs principal component analysis: Find linear transformation of data to maximize variance

Nebraska

CSCE

Stacked Autoencoders

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

A stacked autoencoder has multiple hidden layers

• Can share parameters to reduce their number by exploiting symmetry: $W_4 = W_1^{\top}$ and $W_3 = W_2^{\top}$

```
weights1 = tf.Variable(weights1_init, dtype=tf.float32, name="weights1")
weights2 = tf.Variable(weights2_init, dtype=tf.float32, name="weights2")
weights3 = tf.transpose(weights2, name="weights3")  # shared weights
weights4 = tf.transpose(weights1, name="weights4")  # shared weights
```

Stacked Autoencoders

Incremental Training

Contractive AE

Nebraska

- Variational AE
- Can simplify training by starting with single hidden layer *H*₁
- Then, train a second AE to mimic the output of H₁
- Insert this into first network
- Can build by using H₁'s output as training set for Phase 2

Stacked Autoencoders Incremental Training (Single TF Graph)

Previous approach requires multiple TensorFlow graphs

<ロト < 同ト < 三ト < 三ト < 三ト < ○へ</p>

• Can instead train both phases in a single graph: First left side, then right

Nebraska

Stacked Autoencoders Visualization

CSCE 496/896 Lecture 5: Autoencoders Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

Input MNIST Digit

Network Output

Weights (features selected) for five nodes from H_1 :

・ロト ・ 同ト ・ ヨト ・ ヨト

ъ

Stacked Autoencoders

- Can pre-train network with unlabeled data
- ⇒ learn useful features and then train "logic" of dense layer with labeled data

Nebraska

Transfer Learning from Trained Classifier

CSCE 496/896 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

Can also transfer from a classifier trained on different task. e.g., transfer a GoogleNet architecture to ultrasound classification

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Often choose existing one from a model zoo

Denoising Autoencoders Vincent et al. (2010)

CSCE 496/896 Lecture 5: Autoencoders

Nebraska

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

- Can train an autoencoder to learn to denoise input by giving input corrupted instance x and targeting uncorrupted instance x
- Example noise models:
 - Gaussian noise: $\tilde{x} = x + z$, where $z \sim \mathcal{N}(0, \sigma^2 I)$
 - Masking noise: zero out some fraction ν of components of x
 - Salt-and-pepper noise: choose some fraction ν of components of x and set each to its min or max value (equally likely)

・ロト ・ 戸 ト ・ ヨ ト ・ ヨ ・ つ へ ()

Denoising Autoencoders

Denoising Autoencoders Example

CSCE 496/896 Lecture 5: Autoencoders Stephen Scott

Ctophen Cook

Introduction Basic Idea

Stacked AE

Denoising AE

Sparse AE Contractive

AE Variational AE

GAN

Original Images

Noisy Input

Autoencoder Output

Nebraska Denoising Autoencoders

- CSCE 496/896 Lecture 5: Autoencoders
- Stephen Scott
- Introduction
- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE
- Variational AE
- GAN

- How does it work?
- Even though, e.g., MNIST data are in a 784-dimensional space, they lie on a low-dimensional manifold that captures their most important features
 - Corruption process moves instance *x* off of manifold
 - Encoder *f_θ* and decoder *g_{θ'}* are trained to project *x* back onto manifold

Nebiaska Sparse Autoencoders

CSCE 496/896 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE Variational AE

GAN

• An overcomplete architecture

• Regularize outputs of hidden layer to enforce **sparsity**:

$$\tilde{\mathcal{J}}(\boldsymbol{x}) = \mathcal{J}(\boldsymbol{x}, g(f(\boldsymbol{x}))) + \alpha \, \Omega(\boldsymbol{h}) \;\;,$$

where \mathcal{J} is loss function, f is encoder, g is decoder, h = f(x), and Ω penalizes non-sparsity of h

- E.g., can use $\Omega(h) = \sum_{i} |h_i|$ and ReLU activation to force many zero outputs in hidden layer
- Can also measure average activation of h_i across mini-batch and compare it to user-specified target sparsity value p (e.g., 0.1) via square error or Kullback-Leibler divergence:

$$p\log\frac{p}{q} + (1-p)\log\frac{1-p}{1-q}$$
,

where q is average activation of h_i over mini-batch

Contractive Autoencoders

CSCE 496/896 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE GAN • Similar to sparse autoencoder, but use

$$\Omega(\boldsymbol{h}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \left(\frac{\partial h_i}{\partial x_j}\right)^2$$

- I.e., penalize large partial derivatives of encoder outputs wrt input values
- This contracts the output space by mapping input points in a neighborhood near *x* to a smaller output neighborhood near *f*(*x*)

 \Rightarrow Resists perturbations of input *x*

 If *h* has sigmoid activation, encoding near binary and a CE pushes embeddings to corners of a hypercube

Variational Autoencoders

496/896 Lecture 5: Autoencoders

Stephen Scott

- Introduction
- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE

Variational AE

GAN

- VAE is an autoencoder that is also generative model
 - ⇒ Can generate new instances according to a probability distribution
 - E.g., hidden Markov models, Bayesian networks
 - Contrast with discriminative models, which predict classifications
- Encoder f outputs $[\mu, \sigma]^{\top}$
 - Pair (μ_i, σ_i) parameterizes Gaussian distribution for dimension i = 1,...,n
 - Draw $z_i \sim \mathcal{N}(\mu_i, \sigma_i)$
 - Decode this **latent variable** *z* to get *g*(*z*)

Variational Autoencoders Latent Variables

CSCE 496/896 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

- Independence of z dimensions makes it easy to generate instances wrt complex distributions via decoder g
- Latent variables can be thought of as values of attributes describing inputs
 - E.g., for MNIST, latent variables might represent "thickness", "slant", "loop closure"

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

Variational Autoencoders

Nebraska

Variational Autoencoders

CSCE 496/896 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

- Maximum likelihood (ML) approach for training generative models: find a model (θ) with maximum probability of generating the training set *X*
- Achieve this by minimizing the sum of:
 - End-to-end AE loss (e.g., square, cross-entropy)
 - Regularizer measuring distance (K-L divergence) from latent distribution $q(z \mid x)$ and $\mathcal{N}(\mathbf{0}, I)$ (= standard multivariate Gaussian)

◆□▶ ◆□▶ ◆□▶ ◆□▶ → □ ・ つくぐ

N(0, *I*) also considered the prior distribution over *z* (= distribution when no *x* is known)

Variational Autoencoders Reparameterization Trick

496/896 Lecture 5: Autoencoders

- Stephen Scott
- Introduction
- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE
- Variational AE
- GAN

- Cannot backprop error signal through random samples
- **Reparameterization trick** emulates $z \sim \mathcal{N}(\mu, \sigma)$ with $\epsilon \sim \mathcal{N}(0, 1), z = \epsilon \sigma + \mu$

Variational Autoencoders Example Generated Images: Random

CSCE 496/896 Lecture 5: Autoencoders Stephen Scott

- Introduction
- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE
- Variational AE

GAN

• Draw $z \sim \mathcal{N}(\mathbf{0}, I)$ and display g(z)

9363828365 6483142839 964893405 800093544 614091313 860870293

Variational Autoencoders Example Generated Images: Manifold

CSCE 496/896 Lecture 5: Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

• Uniformly sample points in *z* space and decode

э

Variational Autoencoders 2D Cluster Analysis

496/896 Lecture 5: Autoencoders Stephen Scott

CSCE

- Introduction
- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE
- Variational AE
- GAN

• Cluster analysis by digit

Nebraska

Generative Adversarial Network

496/896 Lecture 5: Autoencoders

Stephen Scott

- Introduction
- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE
- Variational AE
- GAN

- GANs are also generative models, like VAEs
- Models a game between two players
 - **Generator** creates samples intended to come from training distribution
 - **Discriminator** attempts to discern the "real" (original training) samples from the "fake" (generated) ones
- Discriminator trains as a binary classifier, generator trains to fool the discriminator

Generative Adversarial Network How the Game Works

CSCE 496/896 Lecture 5: Autoencoders

Nebraska

- Stephen Scott
- Introduction
- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE
- Variational AE
- GAN

- Let $D(\mathbf{x})$ be discriminator parameterized by $\theta^{(D)}$
 - Goal: Find $\theta^{(D)}$ minimizing $J^{(D)}\left(\theta^{(D)}, \theta^{(G)}\right)$
- Let G(z) be generator parameterized by θ^(G)
 Goal: Find θ^(G) minimizing J^(G) (θ^(D), θ^(G))
- A Nash equilibrium of this game is $(\theta^{(D)}, \theta^{(G)})$ such that each $\theta^{(i)}, i \in \{D, G\}$ yields a local minimum of its corresponding *J*

Nebraska Lincon Generative Adversarial Network

496/896 Lecture 5: Autoencoders

Stephen Scott

- Introduction
- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE
- Variational AE
- GAN

Each training step:

- Draw a minibatch of x values from dataset
- Draw a minibatch of z values from prior (e.g., $\mathcal{N}(\mathbf{0}, I)$)
- Simultaneously update $\theta^{(G)}$ to reduce $J^{(G)}$ and $\theta^{(D)}$ to reduce $J^{(D)}$, via, e.g., Adam
- For *J*^(*D*), common to use cross-entropy where label is 1 for real and 0 for fake
- Since generator wants to trick discriminator, can use $J^{(G)} = -J^{(D)}$
 - Others exist that are generally better in practice, e.g., based on ML

Generative Adversarial Network DCGAN: Radford et al. (2015)

- CSCE 496/896 Lecture 5: Autoencoders
- Stephen Scott
- Introduction
- Basic Idea
- Stacked AE
- Denoising AE
- Sparse AE
- Contractive AE
- Variational AE
- GAN

- "Deep, convolution GAN"
- Generator uses transposed convolutions (e.g.,
 - tf.layers.conv2d_transpose) without pooling to upsample images for input to discriminator

Generative Adversarial Network DCGAN Generated Images: Bedrooms

CSCE 496/896 Lecture 5: Autoencoders Stephen Scott

Introduction Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

Trained from LSUN dataset, sampled z space

Generative Adversarial Network DCGAN Generated Images: Adele Facial Expressions

CSCE 496/896 Lecture 5: Autoencoders Stephen Scott

Introduction Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

Trained from frame grabs of interview, sampled z space

Generative Adversarial Network DCGAN Generated Images: Latent Space Arithmetic

CSCE 496/896 Lecture 5: Autoencoders Stephen Scott

Introduction Basic Idea Stacked AE

Denoising AE

Sparse AE

Contractive AE

Variational AE

GAN

Performed semantic arithmetic in *z* space!

(Non-center images have noise added in z space; center is noise-free)