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Introduction

Autoencoding is training a network to replicate its
input to its output
Applications:

Unlabeled pre-training for semi-supervised learning
Learning embeddings to support information retrieval
Generation of new instances similar to those in the
training set
Data compression

2 / 34



CSCE
496/896

Lecture 5:
Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive
AE

Variational AE

GAN

Outline

Basic idea
Stacking
Types of autoencoders

Denoising
Sparse
Contractive
Variational
Generative adversarial networks
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Basic Idea

Sigmoid activation functions, 5000 training epochs,
square loss, no regularization
What’s special about the hidden layer outputs?
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Basic Idea

An autoencoder is a network trained to learn the
identity function: output = input

Subnetwork called
encoder f (·) maps input
to an embedded
representation
Subnetwork called
decoder g(·) maps back
to input space

Can be thought of as lossy compression of input
Need to identify the important attributes of inputs to
reproduce faithfully

5 / 34



CSCE
496/896

Lecture 5:
Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive
AE

Variational AE

GAN

Basic Idea

General types of autoencoders based on size of hidden
layer

Undercomplete autoencoders have hidden layer size
smaller than input layer size
⇒ Dimension of embedded space lower than that of input

space
⇒ Cannot simply memorize training instances

Overcomplete autoencoders have much larger hidden
layer sizes
⇒ Regularize to avoid overfitting, e.g., enforce a sparsity

constraint
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Basic Idea
Example: Principal Component Analysis

A 3-2-3 autoencoder with linear units and square loss
performs principal component analysis: Find linear
transformation of data to maximize variance
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Stacked Autoencoders

A stacked
autoencoder
has multiple
hidden layers

Can share parameters to reduce their number by
exploiting symmetry: W4 = W>

1 and W3 = W>
2

weights1 = tf.Variable(weights1_init, dtype=tf.float32, name="weights1")
weights2 = tf.Variable(weights2_init, dtype=tf.float32, name="weights2")
weights3 = tf.transpose(weights2, name="weights3") # shared weights
weights4 = tf.transpose(weights1, name="weights4") # shared weights
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Stacked Autoencoders
Incremental Training

Can simplify training by starting with single hidden
layer H1

Then, train a second AE to mimic the output of H1

Insert this into first network
Can build by using H1’s output as training set for
Phase 2
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Stacked Autoencoders
Incremental Training (Single TF Graph)

Previous approach requires multiple TensorFlow graphs
Can instead train both phases in a single graph: First
left side, then right

10 / 34



CSCE
496/896

Lecture 5:
Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive
AE

Variational AE

GAN

Stacked Autoencoders
Visualization

Input MNIST Digit Network Output

Weights (features selected) for five nodes from H1:

11 / 34



CSCE
496/896

Lecture 5:
Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive
AE

Variational AE

GAN

Stacked Autoencoders
Semi-Supervised Learning

Can pre-train network with unlabeled data
⇒ learn useful features and then train “logic” of dense

layer with labeled data

TF code
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Transfer Learning from Trained Classifier

Can also
transfer from a
classifier
trained on
different task,
e.g., transfer a
GoogleNet
architecture to
ultrasound
classification

Often choose existing one from a model zoo
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Denoising Autoencoders
Vincent et al. (2010)

Can train an autoencoder to learn to denoise input by
giving input corrupted instance x̃ and targeting
uncorrupted instance x
Example noise models:

Gaussian noise: x̃ = x + z, where z ∼ N (0, σ2I)
Masking noise: zero out some fraction ν of
components of x
Salt-and-pepper noise: choose some fraction ν of
components of x and set each to its min or max value
(equally likely)
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Denoising Autoencoders
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Denoising Autoencoders
Example
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Denoising Autoencoders

How does it work?
Even though, e.g., MNIST data are in a
784-dimensional space, they lie on a low-dimensional
manifold that captures their most important features
Corruption process moves instance x off of manifold
Encoder fθ and decoder gθ′ are trained to project x̃ back
onto manifold
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Sparse Autoencoders

An overcomplete architecture
Regularize outputs of hidden layer to enforce sparsity:

J̃ (x) = J (x, g(f (x))) + αΩ(h) ,

where J is loss function, f is encoder, g is decoder,
h = f (x), and Ω penalizes non-sparsity of h
E.g., can use Ω(h) =

∑
i |hi| and ReLU activation to

force many zero outputs in hidden layer
Can also measure average activation of hi across
mini-batch and compare it to user-specified target
sparsity value p (e.g., 0.1) via square error or
Kullback-Leibler divergence:

p log
p
q

+ (1− p) log
1− p
1− q

,

where q is average activation of hi over mini-batch
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Contractive Autoencoders

Similar to sparse autoencoder, but use

Ω(h) =

m∑
j=1

n∑
i=1

(
∂hi

∂xj

)2

I.e., penalize large partial derivatives of encoder
outputs wrt input values
This contracts the output space by mapping input
points in a neighborhood near x to a smaller output
neighborhood near f (x)

⇒ Resists perturbations of input x

If h has sigmoid activation, encoding near binary and a
CE pushes embeddings to corners of a hypercube
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Variational Autoencoders

VAE is an autoencoder that is also generative model
⇒ Can generate new instances according to a probability

distribution
E.g., hidden Markov models, Bayesian networks
Contrast with discriminative models, which predict
classifications

Encoder f outputs [µ,σ]>

Pair (µi, σi) parameterizes
Gaussian distribution for
dimension i = 1, . . . , n
Draw zi ∼ N (µi, σi)
Decode this latent variable z
to get g(z)
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Variational Autoencoders
Latent Variables

Independence of z dimensions makes it easy to
generate instances wrt complex distributions via
decoder g
Latent variables can be thought of as values of
attributes describing inputs

E.g., for MNIST, latent variables might represent
“thickness”, “slant”, “loop closure”
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Variational Autoencoders
Architecture
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Variational Autoencoders
Optimization

Maximum likelihood (ML) approach for training
generative models: find a model (θ) with maximum
probability of generating the training set X
Achieve this by minimizing the sum of:

End-to-end AE loss (e.g., square, cross-entropy)
Regularizer measuring distance (K-L divergence) from
latent distribution q(z | x) and N (0, I) (= standard
multivariate Gaussian)

N (0, I) also considered the prior distribution over z (=
distribution when no x is known)

eps = 1e-10
latent_loss = 0.5 * tf.reduce_sum(

tf.square(hidden3_sigma) + tf.square(hidden3_mean)
- 1 - tf.log(eps + tf.square(hidden3_sigma)))
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Variational Autoencoders
Reparameterization Trick

Cannot backprop error signal through random samples
Reparameterization trick emulates z ∼ N (µ, σ) with
ε ∼ N (0, 1), z = εσ + µ

24 / 34



CSCE
496/896

Lecture 5:
Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive
AE

Variational AE

GAN

Variational Autoencoders
Example Generated Images: Random

Draw z ∼ N (0, I) and display g(z)

25 / 34



CSCE
496/896

Lecture 5:
Autoencoders

Stephen Scott

Introduction

Basic Idea

Stacked AE

Denoising AE

Sparse AE

Contractive
AE

Variational AE

GAN

Variational Autoencoders
Example Generated Images: Manifold

Uniformly sample points in z space and decode
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Variational Autoencoders
2D Cluster Analysis

Cluster analysis by digit
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Generative Adversarial Network

GANs are also generative models, like VAEs
Models a game between two players

Generator creates samples intended to come from
training distribution
Discriminator attempts to discern the “real” (original
training) samples from the “fake” (generated) ones

Discriminator trains as a binary classifier, generator
trains to fool the discriminator
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Generative Adversarial Network
How the Game Works

Let D(x) be discriminator parameterized by θ(D)

Goal: Find θ(D) minimizing J(D)
(
θ(D),θ(G)

)
Let G(z) be generator parameterized by θ(G)

Goal: Find θ(G) minimizing J(G)
(
θ(D),θ(G)

)
A Nash equilibrium of this game is

(
θ(D),θ(G)

)
such

that each θ(i), i ∈ {D,G} yields a local minimum of its
corresponding J
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Generative Adversarial Network
Training

Each training step:
Draw a minibatch of x values from dataset
Draw a minibatch of z values from prior (e.g., N (0, I))
Simultaneously update θ(G) to reduce J(G) and θ(D) to
reduce J(D), via, e.g., Adam

For J(D), common to use cross-entropy where label is 1
for real and 0 for fake
Since generator wants to trick discriminator, can use
J(G) = −J(D)

Others exist that are generally better in practice, e.g.,
based on ML
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Generative Adversarial Network
DCGAN: Radford et al. (2015)

“Deep, convolution GAN”
Generator uses transposed convolutions (e.g.,
tf.layers.conv2d_transpose) without pooling to
upsample images for input to discriminator
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Generative Adversarial Network
DCGAN Generated Images: Bedrooms

Trained from LSUN dataset, sampled z space
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Generative Adversarial Network
DCGAN Generated Images: Adele Facial Expressions

Trained from frame grabs of interview, sampled z space
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Generative Adversarial Network
DCGAN Generated Images: Latent Space Arithmetic

Performed semantic arithmetic in z space!

(Non-center images have noise added in z space; center is
noise-free)
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