

[GAN](#page-27-0)

CSCE 496/896 Lecture 5: Autoencoders

Stephen Scott

(Adapted from Paul Quint and Ian Goodfellow)

sscott@cse.unl.edu

KORKARYKERKER OQO

Introduction

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

- **Autoencoding** is training a network to replicate its input to its output
- **•** Applications:
	- Unlabeled pre-training for semi-supervised learning
	- Learning **embeddings** to support information retrieval

KOD KOD KED KED E VAN

- Generation of new instances similar to those in the training set
- Data compression

Outline

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

• Basic idea

• Stacking

- Types of autoencoders
	- Denoising
	- Sparse
	- **•** Contractive
	- Variational
	- **Generative adversarial networks**

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

CSC 496/8 Lectur Autoenc Stephen Introduct **Basic Ide** Stacked Denoisir Sparse / Contract AE

Basic Idea

- [Variational AE](#page-19-0)
- [GAN](#page-27-0)

• Sigmoid activation functions, 5000 training epochs, square loss, no regularization

KORKARYKERKER OQO

• What's special about the hidden layer outputs?

Basic Idea

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)** Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE [Variational AE](#page-19-0)

[GAN](#page-27-0)

An **autoencoder** is a network trained to learn the *identity function: output = input*

- Subnetwork called **encoder** *f*(·) maps input to an **embedded representation**
- **•** Subnetwork called **decoder** *g*(·) maps back to input space

KOD KOD KED KED E VOLC

- Can be thought of as **lossy compression** of input
- Need to identify the important attributes of inputs to reproduce faithfully

Basic Idea

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

- Stephen Scott
- **[Introduction](#page-1-0)**
- [Basic Idea](#page-3-0)
- [Stacked AE](#page-7-0)
- [Denoising AE](#page-13-0)
- [Sparse AE](#page-17-0)
- **[Contractive](#page-18-0)** AE
- [Variational AE](#page-19-0)
- [GAN](#page-27-0)
- General types of autoencoders based on size of hidden layer
	- **Undercomplete** autoencoders have hidden layer size smaller than input layer size
		- \Rightarrow Dimension of embedded space lower than that of input space
		- \Rightarrow Cannot simply memorize training instances
	- **Overcomplete** autoencoders have much larger hidden layer sizes
		- ⇒ Regularize to avoid overfitting, e.g., enforce a **sparsity** constraint

KOD KOD KED KED E VAN

Basic Idea Example: Principal Component Analysis

[Variational AE](#page-19-0)

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)** Stephen Scott **[Introduction](#page-1-0)** [Basic Idea](#page-3-0) [Stacked AE](#page-7-0) [Denoising AE](#page-13-0) [Sparse AE](#page-17-0) **[Contractive](#page-18-0)** AE

Nebraska

[GAN](#page-27-0)

A 3-2-3 autoencoder with linear units and square loss performs **principal component analysis**: Find linear transformation of data to maximize variance

hraska

Stacked Autoencoders

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

A **stacked autoencoder** has multiple hidden layers

イロト イ押 トイヨト イヨト・ヨー

 $2Q$

Can share parameters to reduce their number by exploiting symmetry: $W_4 = W_1^\top$ and $W_3 = W_2^\top$

```
weights1 = tf.Variable(weights1_init, dtype=tf.float32, name="weights1")
weights2 = tf.Variable(weights2_init, dtype=tf.float32, name="weights2")
weights3 = tf.transpose(weights2, name="weights3")weights4 = tf.transpose(weights1, name="weights4") # shared weights
```
Stacked Autoencoders

Incremental Training

[Contractive](#page-18-0) AE

Nebraska

- [Variational AE](#page-19-0)
- [GAN](#page-27-0)
- Can simplify training by starting with single hidden layer H_1
- Then, train a second AE to mimic the output of *H*¹
- **o** Insert this into first network
- Can build by using *H*₁'s output as training set for Phase 2 **KOD KOD KED KED E VAN**

Stacked Autoencoders

Incremental Training (Single TF Graph)

• Previous approach requires multiple TensorFlow graphs

KORKARA KERKER DI VOOR

Can instead train both phases in a single graph: First left side, then right

Nebraska Lincolı

Stacked Autoencoders Visualization

CSCE 496/896 Lecture 5: [Autoencoders](#page-0-0)

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

Input MNIST Digit Network Output

Weights (features selected) for five nodes from *H*1:

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Þ

 $2Q$

Stacked Autoencoders

Semi-Supervised Learning

- Can **pre-train** network with unlabeled data
- \Rightarrow learn useful features and then train "logic" of dense layer with labeled data **KOD KOD KED KED E VAN**

Nebraska Lincolı

Transfer Learning from Trained Classifier

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

Can also transfer from a classifier trained on different task, e.g., transfer a GoogleNet architecture to ultrasound classification

KOD KOD KED KED E VOLC

Often choose existing one from a **model zoo**

Nebraska

Denoising Autoencoders Vincent et al. (2010)

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

- Stephen Scott
- **[Introduction](#page-1-0)**
- [Basic Idea](#page-3-0)
- [Stacked AE](#page-7-0)
- [Denoising AE](#page-13-0)
- [Sparse AE](#page-17-0)
- **[Contractive](#page-18-0)** AE
- [Variational AE](#page-19-0)
- [GAN](#page-27-0)
- Can train an autoencoder to learn to **denoise** input by giving input **corrupted** instance \tilde{x} and targeting **uncorrupted** instance *x*
- **•** Example noise models:
	- **Gaussian noise:** $\tilde{x} = x + z$, where $z \sim \mathcal{N}(\mathbf{0}, \sigma^2 I)$
	- **Masking noise:** zero out some fraction $ν$ of components of *x*
	- **Salt-and-pepper noise:** choose some fraction $ν$ of components of *x* and set each to its min or max value (equally likely)

KOD KOD KED KED E VAN

Denoising Autoencoders

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Denoising Autoencoders Example

CSCE 496/896 Lecture 5: [Autoencoders](#page-0-0) Stephen Scott

[Introduction](#page-1-0) [Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0) [GAN](#page-27-0)

Original Images

Noisy Input

Autoencoder Output

Nebraska Denoising Autoencoders

- **CSCE** 496/896 Lecture 5: **[Autoencoders](#page-0-0)**
- Stephen Scott
- **[Introduction](#page-1-0)**
- [Basic Idea](#page-3-0)
- [Stacked AE](#page-7-0)
- [Denoising AE](#page-13-0)
- [Sparse AE](#page-17-0)
- **[Contractive](#page-18-0)** AE
- [Variational AE](#page-19-0)
- [GAN](#page-27-0)
- **A** How does it work?
- Even though, e.g., MNIST data are in a 784-dimensional space, they lie on a low-dimensional **manifold** that captures their most important features
- Corruption process moves instance *x* off of manifold
- Encoder f_θ and decoder $g_{\theta'}$ are trained to project $\tilde{\bm{x}}$ back onto manifold

Nebraska

Sparse Autoencoders

CSCE 496/896 Lecture 5: [Autoencoders](#page-0-0)

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

• An overcomplete architecture

Regularize outputs of hidden layer to enforce **sparsity**:

$$
\tilde{\mathcal{J}}(\mathbf{x}) = \mathcal{J}(\mathbf{x}, g(f(\mathbf{x}))) + \alpha \Omega(\mathbf{h}) ,
$$

where J is loss function, f is encoder, g is decoder, $h = f(x)$, and Ω penalizes non-sparsity of *h*

- E.g., can use $\Omega(\pmb{h}) = \sum_i |h_i|$ and ReLU activation to force many zero outputs in hidden layer
- Can also measure average activation of *hⁱ* across mini-batch and compare it to user-specified **target sparsity** value *p* (e.g., 0.1) via square error or **Kullback-Leibler divergence**:

$$
p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q} ,
$$

 Ω

where *q* is average activation of *[h](#page-16-0)ⁱ* [o](#page-18-0)[v](#page-16-0)[er](#page-17-0) [m](#page-18-0)[i](#page-16-0)[ni](#page-17-0)[-b](#page-18-0)[atc](#page-17-0)[h](#page-18-0)

Contractive Autoencoders

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0) [GAN](#page-27-0)

• Similar to sparse autoencoder, but use

$$
\Omega(\boldsymbol{h}) = \sum_{j=1}^{m} \sum_{i=1}^{n} \left(\frac{\partial h_i}{\partial x_j}\right)^2
$$

- I.e., penalize large partial derivatives of encoder outputs wrt input values
- This **contracts** the output space by mapping input points in a neighborhood near *x* to a smaller output neighborhood near *f*(*x*)

 \Rightarrow Resists perturbations of input x

• If *h* has sigmoid activation, encoding near binary and a CE pushes embeddings to corners of a hypercube

Variational Autoencoders

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

- VAE is an autoencoder that is also **generative model**
	- \Rightarrow Can generate new instances according to a probability distribution
		- E.g., hidden Markov models, Bayesian networks
		- Contrast with **discriminative models**, which predict classifications
- Encoder f outputs $[\boldsymbol{\mu}, \boldsymbol{\sigma}]^\top$
	- Pair (μ_i, σ_i) parameterizes Gaussian distribution for dimension $i = 1, \ldots, n$
	- Draw $z_i \sim \mathcal{N}(\mu_i, \sigma_i)$
	- Decode this **latent variable** *z* to get $g(z)$

KORK EXTERNS ORA

Variational Autoencoders Latent Variables

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

- Independence of *z* dimensions makes it easy to generate instances wrt complex distributions via decoder *g*
- Latent variables can be thought of as values of attributes describing inputs
	- E.g., for MNIST, latent variables might represent "thickness", "slant", "loop closure"

KOD KOD KED KED E VOLC

Variational Autoencoders Nebraska **Architecture**

Lincoln

Variational Autoencoders **Optimization**

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

- **Maximum likelihood** (ML) approach for training generative models: find a model (θ) with maximum probability of generating the training set X
- Achieve this by minimizing the sum of:
	- End-to-end AE loss (e.g., square, cross-entropy)
	- Regularizer measuring distance (K-L divergence) from latent distribution $q(z | x)$ and $\mathcal{N}(0, I)$ (= standard multivariate Gaussian)

KOD KOD KED KED E VAN

 \bullet $\mathcal{N}(0, I)$ also considered the **prior distribution** over z (= distribution when no *x* is known)

```
ens = 1e-10latent loss = 0.5 \times tf.reduce sum(
        tf.square(hidden3_sigma) + tf.square(hidden3_mean)
        - 1 - tf.log(eps + tf.square(hidden3_sigma)))
```


Variational Autoencoders Reparameterization Trick

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

- Cannot backprop error signal through random samples
- **Reparameterization trick** emulates $z \sim \mathcal{N}(\mu, \sigma)$ with $\epsilon \sim \mathcal{N}(0, 1), z = \epsilon \sigma + \mu$

Variational Autoencoders Example Generated Images: Random

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)** Stephen Scott

- **[Introduction](#page-1-0)** [Basic Idea](#page-3-0)
- [Stacked AE](#page-7-0)
-
- [Denoising AE](#page-13-0)
- [Sparse AE](#page-17-0)
- **[Contractive](#page-18-0)** AE
- [Variational AE](#page-19-0)

[GAN](#page-27-0)

 \bullet Draw *z* ∼ $\mathcal{N}(\mathbf{0}, I)$ and display $g(z)$

 9.3 B B 8 P 9.3 B 5 6488142839 9648034059 8004835444 614099393 Y. 8 B G Q B 7 Q Z g b

イロト イ押 トイヨ トイヨ トー

D. OQ

Variational Autoencoders Example Generated Images: Manifold

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

Uniformly sample points in *z* space and decode

 QQ

Variational Autoencoders 2D Cluster Analysis

496/896 Lecture 5: [Autoencoders](#page-0-0) Stephen Scott

CSCE

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

• Cluster analysis by digit

Nebraska

Generative Adversarial Network

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

- Stephen Scott
- **[Introduction](#page-1-0)**
- [Basic Idea](#page-3-0)
- [Stacked AE](#page-7-0)
- [Denoising AE](#page-13-0)
- [Sparse AE](#page-17-0)
- **[Contractive](#page-18-0)** AE
- [Variational AE](#page-19-0)
- [GAN](#page-27-0)
- GANs are also generative models, like VAEs
- Models a game between two players
	- **Generator** creates samples intended to come from training distribution
	- **Discriminator** attempts to discern the "real" (original training) samples from the "fake" (generated) ones
- Discriminator trains as a binary classifier, generator trains to fool the discriminator

 $2Q$

Generative Adversarial Network How the Game Works

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Nebraska

- Stephen Scott
- **[Introduction](#page-1-0)**
- [Basic Idea](#page-3-0)
- [Stacked AE](#page-7-0)
- [Denoising AE](#page-13-0)
- [Sparse AE](#page-17-0)
- **[Contractive](#page-18-0)** AE
- [Variational AE](#page-19-0)
- [GAN](#page-27-0)
- Let $D(x)$ be discriminator parameterized by $\bm{\theta}^{(D)}$ Goal: Find $\boldsymbol{\theta}^{(D)}$ minimizing $J^{(D)}\left(\boldsymbol{\theta}^{(D)},\boldsymbol{\theta}^{(G)}\right)$
- Let $G(z)$ be generator parameterized by $\boldsymbol{\theta}^{(G)}$ Goal: Find $\theta^{(G)}$ minimizing $J^{(G)}\left(\theta^{(D)},\theta^{(G)}\right)$
- A **Nash equilibrium** of this game is $(\boldsymbol{\theta}^{(D)},\boldsymbol{\theta}^{(G)})$ such that each $\boldsymbol{\theta}^{(i)},\,i\in\{D,G\}$ yields a local minimum of its corresponding *J*

KORK EXTERNS ORA

Generative Adversarial Network Nebraska **Training**

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)**

Stephen Scott

- **[Introduction](#page-1-0)**
- [Basic Idea](#page-3-0)
- [Stacked AE](#page-7-0)
- [Denoising AE](#page-13-0)
- [Sparse AE](#page-17-0)
- **[Contractive](#page-18-0)** AE
- [Variational AE](#page-19-0)
- [GAN](#page-27-0)

• Each training step:

- Draw a minibatch of *x* values from dataset
- Draw a minibatch of *z* values from prior (e.g., $\mathcal{N}(0, I)$)
- Simultaneously update $\theta^{(G)}$ to reduce $J^{(G)}$ and $\theta^{(D)}$ to reduce *J* (*D*) , via, e.g., Adam
- For $J^{(D)}$, common to use cross-entropy where label is 1 for real and 0 for fake
- Since generator wants to trick discriminator, can use $J^{(G)} = -J^{(D)}$
	- Others exist that are generally better in practice, e.g., based on ML

KORK EXTERNS ORA

Generative Adversarial Network DCGAN: Radford et al. (2015)

- **CSCE** 496/896 Lecture 5: **[Autoencoders](#page-0-0)**
- Stephen Scott
- **[Introduction](#page-1-0)**
- [Basic Idea](#page-3-0)
- [Stacked AE](#page-7-0)
- [Denoising AE](#page-13-0)
- [Sparse AE](#page-17-0)
- **[Contractive](#page-18-0)** AE
- [Variational AE](#page-19-0)
- [GAN](#page-27-0)
- "Deep, convolution GAN"
- Generator uses **transposed convolutions** (e.g.,
	- tf.layers.conv2d transpose) without pooling to upsample images for input to discriminator

Generative Adversarial Network DCGAN Generated Images: Bedrooms

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)** Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

Trained from LSUN dataset, sampled *z* space

 299

Generative Adversarial Network DCGAN Generated Images: Adele Facial Expressions

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)** Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

Trained from frame grabs of interview, sampled *z* space

 299

Generative Adversarial Network

DCGAN Generated Images: Latent Space Arithmetic

CSCE 496/896 Lecture 5: **[Autoencoders](#page-0-0)** Stephen Scott

[Introduction](#page-1-0)

[Basic Idea](#page-3-0)

[Stacked AE](#page-7-0)

[Denoising AE](#page-13-0)

[Sparse AE](#page-17-0)

[Contractive](#page-18-0) AE

[Variational AE](#page-19-0)

[GAN](#page-27-0)

Performed semantic arithmetic in *z* space!

KORKARA KERKER DI VOOR

(Non-center images have noise added in *z* space; center is noise-free)