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Introduction

Machine learning can generally be distilled to an
optimization problem
Choose a classifier (function, hypothesis) from a set of
functions that minimizes an objective function
Clearly we want part of this function to measure
performance on the training set, but this is insufficient
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Outline

Types of machine learning problems
Loss functions
Generalization performance vs training set performance
Overfitting
Regularization
Estimating generalization performance
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Machine Learning Problems

Supervised Learning: Algorithm is given labeled
training data and is asked to infer a function
(hypothesis) from a family of functions (e.g., set of all
ANNs) that is able to predict well on new, unseen
examples

Classification: Labels come from a finite, discrete set
Regression: Labels are real-valued

Unsupervised Learning: Algorithm is given data
without labels and is asked to model its structure

Clustering, density estimation

Reinforcement Learning: Algorithm controls an agent
that interacts with its environment and learns good
actions in various situations
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Measuring Performance
Loss

In any learning problem, need to be able to quantify
performance of an algorithm
In supervised learning, we often use a loss function
(or error function) J for this task
Given instance x with true label y, if the learner’s
prediction on x is ˆy, then

J (y,ˆy)

is the loss on that instance
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Measuring Performance
Examples of Loss Functions

0-1 Loss: J (y,ˆy) = 1 if y 6= ˆy, 0 otherwise
Square Loss: J (y,ˆy) = (y � ˆy)

2

Cross-Entropy: J (y,ˆy) = �y ln ˆy � (1 � y) ln (1 � ˆy)

(y and ˆy are considered probabilities of a ‘1’ label;
generalizes to multi-class.)
Hinge Loss: J (y,ˆy) = max(0, 1 � yˆy)

(used sometimes for large margin classifiers like SVMs)

All non-negative

6 / 52



CSCE 970
Lecture 3:

Regularization

Stephen Scott
and Vinod
Variyam

Introduction

Outline

Machine
Learning
Problems

Measuring
Performance
Loss

Overfitting

Regularization

Estimating
Generalization
Performance

Comparing
Learning
Algorithms

Other
Performance
Measures

Measuring Performance
Training Loss

Given a loss function J and a training set X , the total
loss of the classifier h on X is

errorX (h) =
X

x2X
J (y

x

,ˆy
x

) ,

where y

x

is x’s label and ˆy

x

is h’s prediction
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Measuring Performance
Expected Loss

More importantly, the learner needs to generalize well:
Given a new example drawn iid according to unknown
probability distribution D, we want to minimize h’s
expected loss:

errorD(h) = E
x⇠D [J (y

x

,ˆy
x

)]

Is minimizing training loss the same as minimizing
expected loss?
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Measuring Performance
Expected vs Training Loss

Sufficiently sophisticated learners (decision trees,
multi-layer ANNs) can often achieve arbitrarily small (or
zero) loss on a training set
A hypothesis (e.g., ANN with specific parameters) h

overfits the training data X if there is an alternative
hypothesis h

0 such that

errorX (h) < errorX (h
0
)

and
errorD(h) > errorD(h

0
)
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Measuring Performance
Overfitting

x 2 

x 1 

h 1 

h 2 
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Measuring Performance
Overfitting

To generalize well, need to balance training accuracy with
simplicity
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Regularization
Causes of Overfitting

Generally, if the set of functions H the learner has to
choose from is complex relative to what is required for
correctly predicting the labels of X , there’s a larger
chance of overfitting due to the large number of “wrong”
choices in H

Could be due to an overly sophisticated set of functions
E.g., can fit any set of n real-valued points with an
(n � 1)-degree polynomial, but perhaps only degree 2 is
needed
E.g., using an ANN with 5 hidden layers to solve the
logical AND problem

Could be due to training an ANN too long
Over-training an ANN often leads to weights deviating
far from zero
Makes the function more non-linear, and more complex

Often, a larger data set mitigates the problem
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Regularization
Causes of Overfitting: Overtraining
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Regularization
Early Stopping
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Danger of stopping too soon
“Patience” parameter determines how long to wait

Can re-start and track best one on separate validation
set
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Regularization
Parameter Norm Penalties

Still want to minimize training loss, but balance it
against a complexity penalty on the parameters used:

˜J (✓;X , y) = J (✓;X , y) + ↵⌦(✓)

↵ 2 [0,1) weights loss J against penalty ⌦
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Regularization
Parameter Norm Penalties: L

2 Norm

⌦(✓) = (1/2)k✓k2
2, i.e., sum of squares of network’s

weights
Since ✓ = w, this becomes

˜J (w;X , y) = (↵/2)w>
w + J (w;X , y)

As weights deviate from zero, activation functions
become more nonlinear, which is higher risk of
overfitting
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Regularization
Parameter Norm Penalties: L

2 Norm

w

⇤ is optimal for J , 0 optimal for regularizer
J less sensitive to w1, so ˜

w (optimal for ˜J ) closer to w2
axis than w1
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Regularization
Parameter Norm Penalties: L

1 Norm

⌦(✓) = k✓k1, i.e., sum of absolute values of network’s
weights

˜J (w;X , y) = ↵kwk1 + J (w;X , y)

As with L

2 regularization, penalizes large weights
Unlike L

2 regularization, can drive some weights to zero

Sparse solution
Sometimes used in feature selection (e.g., LASSO
algorithm)
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Regularization
Data Augmentation

If H powerful and X small, then learner can choose
some h 2 H that fits idiosyncrasies or noise in data
Deep ANNs would like to have at least thousands or
tens of thousands of data points
In classification of high-dimensional data (e.g., image
classification), expect the classifier to tolerate
transformations and noise
) Can artificially enlarge data set by duplicating existing

instances and applying transformations
Translating, rotating, scaling
Don’t change the class, e.g., “b” vs “d” or “6” vs “9”
Don’t let duplicates lie in both training and testing
sets

) Can also apply noise injection to input or hidden layers
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Regularization
Multitask Learning

If multiple tasks share
generic parameters,
initially process inputs
via shared nodes, then
do final processing via
task-specific nodes
Backpropagation works
as before with multiple
output nodes
Serves as a regularizer
since parameter tuning
of shared nodes is based
on backpropagated error
from multiple tasks
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Regularization
Dropout

Imagine if, for a network,
we could average over all
networks with each
subset of nodes deleted
Analogous to bagging,
where we average over
ANNs trained on random
samples of X
In each training iteration,
sample a random bit
vector µ, which
determines which nodes
are used (e.g.,
P(µ

i

= 1) = 0.8 for input
unit, 0.5 for hidden unit)

When training done,
re-scale weights by
P(µ

i

= 1)
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Regularization
Other Approaches

Parameter Tying: If two learners are learning the
same task but different scenarios (distributions, etc.),
can tie their parameters together

If w

(A) are weights for task A and w

(B) are weights for
task B, then can use regularization term
⌦(w

(A),w

(B)
) = kw

(A) � w

(B)k2
2

E.g., A is supervised and B is unsupervised
Parameter Sharing: When detecting objects in an
image, the same recognizer should apply invariant to
translation

Train a single detector (subnetwork) for an object (e.g.,
cat) by training full network on multiple images with
translated cats, where the cat detector subnets share
parameters (single copy, used multiple times)
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Regularization
Other Approaches (cont’d)

Sparse Representations: Instead of penalizing large
weights, penalize large outputs of hidden nodes:

˜J (✓;X , y) = J (✓;X , y) + ↵⌦(h) ,

where h is the vector of hidden unit outputs
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Estimating Generalization Performance
Setting Goals

Before setting up an experiment, need to understand
exactly what the goal is

Estimate the generalization performance of a
hypothesis
Tuning a learning algorithm’s parameters
Comparing two learning algorithms on a specific task
Etc.

Will never be able to answer the question with 100%
certainty

Due to variances in training set selection, test set
selection, etc.
Will choose an estimator for the quantity in question,
determine the probability distribution of the estimator,
and bound the probability that the estimator is way off
Estimator needs to work regardless of distribution of
training/testing data
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Estimating Generalization Performance
Setting Goals

Need to note that, in addition to statistical variations,
what we determine is limited to the application that we
are studying

E.g., if ANN1 better than ANN2 on speech recognition,
that means nothing about video analysis

In planning experiments, need to ensure that training
data not used for evaluation

I.e., don’t test on the training set!
Will bias the performance estimator
If using data augmentation, don’t let duplicates lie in
both training and testing sets
Also holds for validation set used for early stopping,
tuning parameters, etc.

Validation set serves as part of training set, but not used
for model building
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Confidence Intervals

Let errorD(h) be 0-1 loss of hypothesis h on instances drawn
according to distribution D. If

Test set V contains N examples, drawn independently
of h and each other
N � 30

Then with approximately 95% probability, errorD(h) lies in

errorV(h)± 1.96

r
errorV(h)(1 � errorV(h))

N

E.g. hypothesis h misclassifies 12 of the 40 examples in test
set V:

errorV(h) =
12
40

= 0.30

Then with approx. 95% confidence, errorD(h) 2 [0.158, 0.442]
27 / 52
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Confidence Intervals (cont’d)

Let errorD(h) be 0-1 loss of h on instances drawn according
to distribution D. If

Test set V contains N examples, drawn independently
of h and each other
N � 30

Then with approximately c% probability, errorD(h) lies in

errorV(h)± z

c

r
errorV(h)(1 � errorV(h))

N

N%: 50% 68% 80% 90% 95% 98% 99%
z

c

: 0.67 1.00 1.28 1.64 1.96 2.33 2.58

Why?
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errorV(h) is a Random Variable

Repeatedly run the experiment, each with different
randomly drawn V (each of size N)

Probability of observing r misclassified examples:

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0 5 10 15 20 25 30 35 40

P
(r

)

Binomial distribution for n = 40, p = 0.3

P(r) =

✓
N

r

◆
errorD(h)

r

(1 � errorD(h))
N�r

I.e., let errorD(h) be probability of heads in biased coin, then
P(r) = prob. of getting r heads out of N flips
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Binomial Probability Distribution

P(r) =

✓
N

r

◆
p

r

(1 � p)

N�r

=

N!

r!(N � r)!

p

r

(1 � p)

N�r

Probability P(r) of r heads in N coin flips, if p = Pr(heads)

Expected, or mean value of X, E[X] (= # heads on N

flips = # mistakes on N test exs), is

E[X] ⌘
NX

i=0

iP(i) = Np = N · errorD(h)

Variance of X is

Var(X) ⌘ E[(X � E[X])2
] = Np(1 � p)

Standard deviation of X, �
X

, is

�
X

⌘
q
E[(X � E[X])2

] =

p
Np(1 � p)
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Approximate Binomial Dist. with Normal

errorV(h) = r/N is binomially distributed, with

mean µ
errorV (h) = errorD(h) (i.e., unbiased est.)

standard deviation �
errorV (h)

�
errorV (h) =

r
errorD(h)(1 � errorD(h))

N

(increasing N decreases variance)

Want to compute confidence interval = interval centered at
errorD(h) containing c% of the weight under the distribution

Approximate binomial by normal (Gaussian) dist:
mean µ

errorV (h) = errorD(h)
standard deviation �

errorV (h)

�
errorV (h) ⇡

r
errorV(h)(1 � errorV(h))

N31 / 52
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Normal Probability Distribution

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3

Normal distribution with mean 0, standard deviation 1

p(x) =

1p
2⇡�2

exp

 
�1

2

✓
x � µ

�

◆2
!

The probability that X will fall into the interval (a, b) is
given by

R
b

a

p(x) dx

Expected, or mean value of X, E[X], is E[X] = µ
Variance is Var(X) = �2, standard deviation is �

X

= �
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Normal Probability Distribution (cont’d)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3

80% of area (probability) lies in µ± 1.28�

c% of area (probability) lies in µ± z

c

�

c%: 50% 68% 80% 90% 95% 98% 99%
z

c

: 0.67 1.00 1.28 1.64 1.96 2.33 2.58
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Normal Probability Distribution (cont’d)

Can also have one-sided bounds:

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

-3 -2 -1 0 1 2 3

c% of area lies < µ+ z

0
c

� or > µ� z

0
c

�, where
z

0
c

= z100�(100�c)/2

c%: 50% 68% 80% 90% 95% 98% 99%
z

0
c

: 0.0 0.47 0.84 1.28 1.64 2.05 2.33
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Confidence Intervals Revisited

If V contains N � 30 examples, indep. of h and each other

Then with approximately 95% probability, errorV(h) lies in

errorD(h)± 1.96

r
errorD(h)(1 � errorD(h))

N

Equivalently, errorD(h) lies in

errorV(h)± 1.96

r
errorD(h)(1 � errorD(h))

N

which is approximately

errorV(h)± 1.96

r
errorV(h)(1 � errorV(h))

N

(One-sided bounds yield upper or lower error bounds)
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Central Limit Theorem

How can we justify approximation?

Consider set of iid random variables Y1, . . . , Y

N

, all from
arbitrary probability distribution with mean µ and finite
variance �2. Define sample mean ¯

Y ⌘ (1/N)

P
n

i=1 Y

i

¯

Y is itself a random variable, i.e., result of an experiment
(e.g., error

S

(h) = r/N)

Central Limit Theorem: As N ! 1, the distribution
governing ¯

Y approaches normal distribution with mean µ
and variance �2/N

Thus the distribution of error

S

(h) is approximately normal for
large N, and its expected value is errorD(h)

(Rule of thumb: N � 30 when estimator’s distribution is
binomial; might need to be larger for other distributions)
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Calculating Confidence Intervals

1 Pick parameter to estimate: errorD(h)
(0-1 loss on distribution D)

2 Choose an estimator: errorV(h)
(0-1 loss on independent test set V)

3 Determine probability distribution that governs
estimator: errorV(h) governed by binomial distribution,
approximated by normal when N � 30

4 Find interval (L,U) such that c% of probability mass
falls in the interval

Could have L = �1 or U = 1
Use table of z

c

or z

0
c

values (if distribution normal)
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Comparing Learning Algorithms

What if we want to compare two learning algorithms L

1

and L

2 (e.g., two ANN architectures, two regularizers,
etc.) on a specific application?
Insufficient to simply compare error rates on a single
test set
Use K-fold cross validation and a paired t test
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K-Fold Cross Validation

1 Partition data set X into K equal-sized subsets
X1,X2, . . . ,XK

, where |X
i

| � 30
2 For i from 1 to K, do

(Use X
i

for testing, and rest for training)
1 V

i

= X
i

2 T
i

= X \ X
i

3 Train learning algorithm L

1 on T
i

to get h

1
i

4 Train learning algorithm L

2 on T
i

to get h

2
i

5 Let p

j

i

be error of h

j

i

on test set V
i

6
p

i

= p

1
i

� p

2
i

3 Error difference estimate p = (1/K)

P
K

i

p

i
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K-Fold Cross Validation (cont’d)

Now estimate confidence that true expected error
difference < 0

) Confidence that L

1 is better than L

2 on learning task
Use one-sided test, with confidence derived from
student’s t distribution with K � 1 degrees of
freedom
With approximately c% probability, true difference of
expected error between L

1 and L

2 is at most

p + t

c,K�1 s

p

where

s

p

⌘
vuut 1

K(K � 1)

KX

i=1

(p

i

� p)

2
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Student’s t Distribution (One-Sided Test)

If p + t

c,K�1 s

p

< 0 our assertion that L

1 has less error than
L

2 is supported with confidence c

So if K-fold CV used, compute p, look up t

c,K�1 and check if
p < � t

c,K�1 s

p

One-sided test; says nothing about L

2 over L

1
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Caveat

Say you want to show that learning algorithm L

1

performs better than algorithms L

2, L

3, L

4, L

5

If you use K-fold CV to show superior performance of
L

1 over each of L

2, . . . , L

5 at 95% confidence, there’s a
5% chance each one is wrong

) There’s an over 18.5% chance that at least one is
wrong

) Our overall confidence is only just over 81%
Need to account for this, or use more appropriate test
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More Specific Performance Measures

So far, we’ve looked at a single error rate to compare
hypotheses/learning algorithms/etc.
This may not tell the whole story:

1000 test examples: 20 positive, 980 negative
h

1 gets 2/20 pos correct, 965/980 neg correct, for
accuracy of (2 + 965)/(20 + 980) = 0.967
Pretty impressive, except that always predicting
negative yields accuracy = 0.980
Would we rather have h

2, which gets 19/20 pos correct
and 930/980 neg, for accuracy = 0.949?
Depends on how important the positives are, i.e.,
frequency in practice and/or cost (e.g., cancer
diagnosis)
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Confusion Matrices

Break down error into type: true positive, etc.

Predicted Class
True Class Positive Negative Total
Positive tp : true positive fn : false negative p

Negative fp : false positive tn : true negative n

Total p

0
n

0
N

Generalizes to multiple
classes
Allows one to quickly
assess which classes
are missed the most, and
into what other class
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ROC Curves

Consider classification via ANN + linear threshold unit
Normally threshold f (x;w, b) at 0, but what if we
changed it?
Keeping w fixed while changing threshold = fixing
hyperplane’s slope while moving along its normal vector

pred all !

pred all +

b

Get a set of classifiers, one per labeling of test set
Similar situation with any classifier with confidence
value, e.g., probability-based
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ROC Curves
Plotting tp versus fp

Consider the “always �” hyp. What is fp? What is tp?
What about the “always +” hyp?
In between the extremes, we plot TP versus FP by
sorting the test examples by the confidence values

Ex Confidence label Ex Confidence label
x1 169.752 + x6 �12.640 �
x2 109.200 + x7 �29.124 �
x3 19.210 � x8 �83.222 �
x4 1.905 + x9 �91.554 +

x5 �2.75 + x10 �128.212 �
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ROC Curves
Plotting tp versus fp (cont’d)

x10

0

0

1

1

TP

FP

x1

x5
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ROC Curves
Convex Hull

naive Bayes

0

0

1

1

TP

FP

ID3

The convex hull of the ROC curve yields a collection of
classifiers, each optimal under different conditions

If FP cost = FN cost, then draw a line with slope |N|/|P|
at (0, 1) and drag it towards convex hull until you touch
it; that’s your operating point
Can use as a classifier any part of the hull since can
randomly select between two classifiers
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ROC Curves
Convex Hull

naive Bayes

0

0

1

1

TP

FP

ID3

Can also compare curves against “single-point”
classifiers when no curves

In plot, ID3 better than our SVM iff negatives scarce; nB
never better
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ROC Curves
Miscellany

What is the worst possible ROC curve?
One metric for measuring a curve’s goodness: area
under curve (AUC):

P
x+2P

P
x�2N

I(h(x+) > h(x�))

|P| |N|
i.e., rank all examples by confidence in “+” prediction,
count the number of times a positively-labeled example
(from P) is ranked above a negatively-labeled one (from
N), then normalize

What is the best value?
Distribution approximately normal if |P|, |N| > 10, so can
find confidence intervals
Catching on as a better scalar measure of performance
than error rate

Possible (though tricky) with multi-class problems
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Precision-Recall Curves

Consider information retrieval task, e.g., web search

precision = tp/p

0
= fraction of retrieved that are positive

recall = tp/p = fraction of positives retrieved
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Precision-Recall Curves (cont’d)

As with ROC, vary
threshold to trade
precision and recall
Can compare curves
based on containment
More suitable than ROC
for large numbers of
negatives

Use F�-measure to combine at a specific point, where
� weights precision vs recall:

F� ⌘ (1 + �2
)

precision · recall

(�2 · precision) + recall
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