

and Vinc Variyarr

troduction

CSCE 970 Lecture 3: Regularization

Stephen Scott and Vinod Variyam

Nebraska Introduction

SCE 970 ecture 3: gularization

troduction

earning

easuring

egularizat

- Machine learning can generally be distilled to an optimization problem
- Choose a classifier (function, hypothesis) from a set of functions that minimizes an objective function
- Clearly we want part of this function to measure performance on the training set, but this is insufficient

sscott@cse.unl.edu

ふして 山田 くぼう イビン ほうろう

Nebraska

Outline

earning

eqularizati

Nebraska	IMEASURING Loss
CSCE 970 Lecture 3: Regularization Stephen Scott and Vinok Variyam Introduction Outline Machine Learning Problems	 In any le perform In super (or error) Given in prediction
Performance	prediction

leasuring Performance

- In any learning problem, need to be able to quantify performance of an algorithm
- In supervised learning, we often use a **loss function** (or error function) \mathcal{J} for this task
- Given instance x with true label y, if the learner's prediction on x is ŷ, then

 $\mathcal{J}(y, \hat{y})$

is the loss on that instance

Measuring Performance Examples of Loss Functions

- 0-1 Loss: $\mathcal{J}(y, \hat{y}) = 1$ if $y \neq \hat{y}$, 0 otherwise
- Square Loss: $\mathcal{J}(y, \hat{y}) = (y \hat{y})^2$
- **Cross-Entropy:** $\mathcal{J}(y, \hat{y}) = -y \ln \hat{y} (1 y) \ln (1 \hat{y})$ (y and \hat{y} are considered probabilities of a '1' label; generalizes to multi-class.)
- Hinge Loss: $\mathcal{J}(y, \hat{y}) = \max(0, 1 y\,\hat{y})$ (used sometimes for large margin classifiers like SVMs)

All non-negative

Nebraska

roduction

Measuring Performance Training Loss

• Given a loss function $\mathcal J$ and a training set $\mathcal X$, the total loss of the classifier h on $\mathcal X$ is

$$error_{\mathcal{X}}(h) = \sum_{\mathbf{x} \in \mathcal{X}} \mathcal{J}(y_{\mathbf{x}}, \hat{y}_{\mathbf{x}})$$

where y_x is x's label and \hat{y}_x is h's prediction

Nebraska Lincoln Expected Loss

CSCE 970 Lecture 3: egularization

roductior

ulariza

outline

• More importantly, the learner needs to **generalize** well: Given a new example drawn iid according to unknown probability distribution \mathcal{D} , we want to minimize *h*'s **expected loss**:

$$error_{\mathcal{D}}(h) = \mathbb{E}_{\boldsymbol{x}\sim\mathcal{D}}\left[\mathcal{J}(\boldsymbol{y}_{\boldsymbol{x}}, \hat{\boldsymbol{y}}_{\boldsymbol{x}})\right]$$

• Is minimizing training loss the same as minimizing expected loss?

Nebiaska

CSCE 97

troduction

utline

Measuring Performance
Expected vs Training Loss

- Sufficiently sophisticated learners (decision trees, multi-layer ANNs) can often achieve arbitrarily small (or zero) loss on a training set
- A hypothesis (e.g., ANN with specific parameters) *h* overfits the training data \mathcal{X} if there is an alternative hypothesis *h*' such that

 $error_{\mathcal{X}}(h) < error_{\mathcal{X}}(h')$

and

 $error_{\mathcal{D}}(h) > error_{\mathcal{D}}(h')$

To generalize well, need to balance training accuracy with simplicity

Nebraska	Regularization Causes of Overfitting
CSCE 970 Lecture 3: Regularization Stephen Scott and Vinod Variyam	 Generally, if the set of functions H the learner has to choose from is complex relative to what is required for correctly predicting the labels of X, there's a larger chance of overfitting due to the large number of "wrong"
Introduction	choices in ${\cal H}$
Outline	 Could be due to an overly sophisticated set of functions
Machine Learning Problems	 E.g., can fit any set of n real-valued points with an (n - 1)-degree polynomial, but perhaps only degree 2 is
Measuring Performance	 E.g., using an ANN with 5 hidden layers to solve the
Regularization	logical AND problem
Causes of Overfitting Early Stopping	Could be due to training an ANN too long
Parameter Norm Penalties	 Over-training an ANN often leads to weights deviating to the second
orana recignitionation	

- Makes the function more non-linear, and more complex
- Often, a larger data set mitigates the problem

Nebraska	Regularization Parameter Norm Penalt
CSCE 970 Lecture 3: Regularization Stephen Scott and Vinod Variyam Introduction Outline Machine Learning Problems Measuring Performance Regularization Measuring Paranter Stopping Paranter Stop	• Still want to m against a com $\tilde{\mathcal{J}}$ • $\alpha \in [0,\infty)$ we
Conoralization	

rameter Norm Penalties

• Still want to minimize training loss, but balance it against a complexity penalty on the parameters used:

 $\tilde{\mathcal{J}}(\boldsymbol{\theta}; \boldsymbol{\mathcal{X}}, \boldsymbol{y}) = \mathcal{J}(\boldsymbol{\theta}; \boldsymbol{\mathcal{X}}, \boldsymbol{y}) + \alpha \, \Omega(\boldsymbol{\theta})$

• $\alpha \in [0,\infty)$ weights loss \mathcal{J} against penalty Ω

Regularization Nebraska Parameter Norm Penalties: L^2 Norm CSCE 970 • $\Omega(\boldsymbol{\theta}) = (1/2) \|\boldsymbol{\theta}\|_2^2$, i.e., sum of squares of network's weights ntroduction • Since $\theta = w$, this becomes Dutline achine arning $\tilde{\mathcal{J}}(\boldsymbol{w}; \boldsymbol{\mathcal{X}}, \boldsymbol{y}) = (\alpha/2)\boldsymbol{w}^{\top}\boldsymbol{w} + \mathcal{J}(\boldsymbol{w}; \boldsymbol{\mathcal{X}}, \boldsymbol{y})$ • As weights deviate from zero, activation functions become more nonlinear, which is higher risk of overfitting

Nebraska	Regularization Parameter Norm Penalties: L ¹ Norm
CSCE 970 Lecture 3: Regularization Stephen Scott and Vinod Variyam	 Ω(θ) = θ ₁, i.e., sum of absolute values of network's weights
Introduction	
Outline	$\mathcal{J}(\boldsymbol{w}; \mathcal{X}, \boldsymbol{y}) = lpha \ \boldsymbol{w} \ _1 + \mathcal{J}(\boldsymbol{w}; \mathcal{X}, \boldsymbol{y})$
Machine Learning Problems	• As with <i>L</i> ² regularization, penalizes large weights
Measuring Performance	 Unlike L² regularization, can drive some weights to zero
Regularization Gauses of Overfitting Early Stopping Parameter Norm Penallics Data Augmentation Multitask Learning Dropout Others	 Sparse solution Sometimes used in feature selection (e.g., LASSO algorithm)

Regularization

CSCE 970 Lecture 3:

troduction

Nebraska

- If \mathcal{H} powerful and \mathcal{X} small, then learner can choose
- some $h \in \mathcal{H}$ that fits idiosyncrasies or noise in data • Deep ANNs would like to have at least thousands or
- tens of thousands of data points
- In classification of high-dimensional data (e.g., image classification), expect the classifier to tolerate transformations and noise
 - $\Rightarrow~$ Can artificially enlarge data set by duplicating existing instances and applying transformations
 - Translating, rotating, scaling
 - Don't change the class, e.g., "b" vs "d" or "6" vs "9"
 - Don't let duplicates lie in both training and testing sets

⇒ Can also apply noise injection to input or hidden layers

Nebraska Lincoh Data Augmentation

N

Nebraska	Regularization Other Approaches
CSCE 970	

- Parameter Tying: If two learners are learning the same task but different scenarios (distributions, etc.), can tie their parameters together
 - If $w^{(A)}$ are weights for task A and $w^{(B)}$ are weights for task B, then can use regularization term $\Omega(w^{(A)}, w^{(B)}) = ||w^{(A)} w^{(B)}||_2^2$
 - E.g., A is supervised and B is unsupervised
- Parameter Sharing: When detecting objects in an image, the same recognizer should apply invariant to translation
 - Train a single detector (subnetwork) for an object (e.g., cat) by training full network on multiple images with translated cats, where the cat detector subnets share parameters (single copy, used multiple times)

Jebraska Lincoln	Regularization Other Approaches (cont'd)
CSCE 970 Lecture 3: egularization tephen Scott	
and Vinod Variyam	
troduction utline	 Sparse Representations: Instead of penalizing large weights, penalize large outputs of hidden nodes:
achine earning roblems	$ ilde{\mathcal{J}}(m{ heta};\mathcal{X},m{y}) = \mathcal{J}(m{ heta};\mathcal{X},m{y}) + lpha\Omega(m{h}) \;\;,$
easuring erformance	where h is the vector of hidden unit outputs
auses of Overfitting arly Stopping arameter Norm	
enalties ata Augmentation lultitask Learning ropout	
there	

Nebraska

Estimating Generalization Performance

CSCE 970

hen Sc

and Vinc Variyarr

troduction

- Before setting up an experiment, need to understand exactly what the goal is
 - Estimate the generalization performance of a hypothesis
 - Tuning a learning algorithm's parameters
 - Comparing two learning algorithms on a specific task
 Etc.
- Will never be able to answer the question with 100% certainty
 - Due to variances in training set selection, test set selection, etc.
 - Will choose an estimator for the quantity in question, determine the probability distribution of the estimator, and bound the probability that the estimator is way off
 - Estimator needs to work regardless of distribution of training/testing data

Nebraska Estimating Generalization Performance Setting Goals

ecture 3: ularization ohen Scott

roductior

lachine earning roblems

asuring

- Need to note that, in addition to statistical variations, what we determine is limited to the application that we are studying
 - E.g., if ANN₁ better than ANN₂ on speech recognition, that means nothing about video analysis
- In planning experiments, need to ensure that training data not used for evaluation
 - I.e., don't test on the training set!
 - Will bias the performance estimator
 - If using data augmentation, don't let duplicates lie in both training and testing sets
 - Also holds for validation set used for early stopping, tuning parameters, etc.
 - Validation set serves as part of training set, but not used for model building

Nebraska

CSCE 970

ntroduction

Outline

Confidence Intervals

Let $error_{\mathcal{D}}(h)$ be 0-1 loss of hypothesis h on instances drawn according to distribution \mathcal{D} . If

• Test set \mathcal{V} contains *N* examples, drawn independently of *h* and each other

N ≥ 30

е

Then with approximately 95% probability, $error_{\mathcal{D}}(h)$ lies in

$$rror_{\mathcal{V}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{V}}(h)(1 - error_{\mathcal{V}}(h))}{N}}$$

E.g. hypothesis *h* misclassifies 12 of the 40 examples in test set \mathcal{V} :

$$ror_{\mathcal{V}}(h) = \frac{12}{40} = 0.30$$

Then with approx. 95% confidence, $error_{\mathcal{D}}(h) \in [0.158, 0.442]_{\odot}$

Nebraska Lincoln	Confidence Intervals (cont'd)								
CSCE 970 Lecture 3: Regularization Stephen Scott and Vinod Variyam Introduction Outline Machine Learning Perchlore	 Let <i>error</i>_D(<i>h</i>) be 0-1 loss of <i>h</i> on instances drawn according to distribution D. If Test set V contains N examples, drawn independently of <i>h</i> and each other N ≥ 30 Then with approximately c% probability, <i>error</i>_D(<i>h</i>) lies in 								
Measuring Performance Regularization Estimating Generalization Performance Setting Geats Confidence Intervals Comparing Learning Algorithms	$error_{\mathcal{V}}(h) \pm z_{c} \sqrt{\frac{error_{\mathcal{V}}(h)(1 - error_{\mathcal{V}}(h))}{N}}$ $\boxed{\begin{array}{c c}N\%: & 50\% & 68\% & 80\% & 90\% & 95\% & 98\% & 99\%\\ z_{c}: & 0.67 & 1.00 & 1.28 & 1.64 & 1.96 & 2.33 & 2.58\end{array}}$								
Other/50	Why?								

Nebraska

and Vinc Variyan

Dutline

error $_{\mathcal{V}}(h)$ is a Random Variable

er

Repeatedly run the experiment, each with different randomly drawn ${\cal V}$ (each of size ${\it N})$

I.e., let $error_{\mathcal{D}}(h)$ be probability of heads in biased coin, then P(r) = prob. of getting r heads out of N flips

Lincoln	
CSCE 970 Lecture 3: Regularization Stephen Scott and Vinod Variyam	lf T
Introduction Outline Machine Learning Problems Measuring Performance Regularization	E
Estimating Generalization Performance Setting Goals Confidence Intervats Comparing Learning	v
Algorithms Ottoer/52	(

Nobrelo

Confidence Intervals Revisited

If V contains $N \ge 30$ examples, indep. of h and each other Then with approximately 95% probability, $error_{V}(h)$ lies in

$$or_{\mathcal{D}}(h) \pm 1.96\sqrt{rac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{N}}$$

Equivalently, $error_{\mathcal{D}}(h)$ lies in

$$error_{\mathcal{V}}(h) \pm 1.96 \sqrt{\frac{error_{\mathcal{D}}(h)(1 - error_{\mathcal{D}}(h))}{N}}$$

which is approximately

err

$$error_{\mathcal{V}}(h) \pm 1.96\sqrt{\frac{error_{\mathcal{V}}(h)(1 - error_{\mathcal{V}}(h))}{N}}$$

One-sided bounds yield upper or lower error bounds)

Nebraska Lincoln	Central Limit Theorem
CSCE 970 Lecture 3: Regularization Stephen Scott and Vinod Variyam	How can we justify approximation? Consider set of iid random variables Y_1, \ldots, Y_N , all from arbitrary probability distribution with mean μ and finite variance σ^2 . Define sample mean $\overline{Y} \equiv (1/N) \sum_{i=1}^n Y_i$
Outline Machine Learning	\overline{Y} is itself a random variable, i.e., result of an experiment (e.g., $error_S(h) = r/N$)
Problems Measuring Performance Regularization	Central Limit Theorem : As $N \to \infty$, the distribution governing \bar{Y} approaches normal distribution with mean μ and variance σ^2/N
Estimating Generalization Performance Setting Goals Confidence Intervals	Thus the distribution of $error_{S}(h)$ is approximately normal for large N , and its expected value is $error_{D}(h)$
Comparing Learning Algorithms	(Rule of thumb: $N \ge 30$ when estimator's distribution is binomial; might need to be larger for other distributions)

- Find interval (L, U) such that c% of probability mass falls in the interval
 - Could have $L = -\infty$ or $U = \infty$
 - Use table of z_c or z'_c values (if distribution normal)

Nebraska **Comparing Learning Algorithms**

egularizati

imating neraliza

omparing earning loorithm

- What if we want to compare two learning algorithms L¹ and L^2 (e.g., two ANN architectures, two regularizers, etc.) on a specific application?
- Insufficient to simply compare error rates on a single test set

Use K-fold cross validation and a paired t test

Nebraska Nebraska K-Fold Cross Validation K-Fold Cross Validation (cont'd) CSCE 97 CSCE 970 • Now estimate confidence that true expected error difference < 0Partition data set X into K equal-sized subsets \Rightarrow Confidence that L^1 is better than L^2 on learning task $\mathcal{X}_1, \mathcal{X}_2, \ldots, \mathcal{X}_K$, where $|\mathcal{X}_i| \geq 30$ • Use one-sided test, with confidence derived from Por i from 1 to K, do troduction troduction student's t distribution with K - 1 degrees of (Use X_i for testing, and rest for training) utline Dutline freedom $\mathbf{\mathcal{V}}_i = \mathcal{X}_i$ achine arning • With approximately c% probability, true difference of $(\mathbf{\mathcal{T}}_i = \mathcal{X} \setminus \mathcal{X}_i)$ **3** Train learning algorithm L^1 on \mathcal{T}_i to get h_i^1 expected error between L^1 and L^2 is at most leasuring **③** Train learning algorithm L^2 on \mathcal{T}_i to get h_i^2 **5** Let p_i^j be error of h_i^j on test set \mathcal{V}_i $p + t_{c,K-1} s_p$ **6** $p_i = p_i^1 - p_i^2$ where Solution Error difference estimate $p = (1/K) \sum_{i}^{K} p_{i}$ $s_p \equiv \sqrt{\frac{1}{K(K-1)}\sum_{i=1}^{K} (p_i - p)^2}$

Nebraska Lincoln	Student's t Distribution (One-Sided Test)								
CSCE 970	df	0.600	0.700	0.800	0.900	0.950	0.975	0.990	0.995
Lecture 3:	1	0.325	0.727	1.376	3.078	6.314	12.706	31.821	63.657
Regularization	2	0.289	0.617	1.061	1.886	2.920	4.303	6.965	9.925
	3	0.277	0.584	0.978	1.638	2.353	3.182	4.541	5.841
Stephen Scott	4	0.271	0.569	0.941	1.533	2.132	2.776	3.747	4.604
Variyam	5	0.267	0.559	0.920	1.476	2.015	2.571	3.365	4.032
vanyani	6	0.265	0.553	0.906	1.440	1.943	2.447	3.143	3.707
	7	0.263	0.549	0.896	1.415	1.895	2.365	2.998	3.499
Introduction	8	0.262	0.546	0.889	1.397	1.860	2.306	2.896	3.355
Outline	9	0.261	0.543	0.883	1.383	1.833	2.262	2.821	3.250
Outime	10	0.260	0.542	0.879	1.372	1.812	2.228	2.764	3.169
Machine	11	0.260	0.540	0.876	1.363	1.796	2.201	2.718	3.106
Learning	12	0.259	0.539	0.873	1.356	1.782	2.179	2.681	3.055
Problems	13	0.259	0.538	0.870	1.350	1.771	2.160	2.650	3.012
Measuring Performance Regularization Estimating Generalization Performance Comparing Learning Algorithms A-Fed CV Sudent's Detroution Detroution Comparing Algorithms A-Fed CV Sudent's Detroution Comparing C	If $p + L^2$ is So if p < -	+ $t_{c,K-1}$ support F_K -fold - $t_{c,K-1}$ -sided	$s_p < 0$ rted wit CV use s_p test; s	our ass th confi ed, con ays no	ertion dence npute <i>p</i> othing a	that L^1 c , look u about L	has less up $t_{c,K-}$ L^2 over	and c L^1	r than check if

Nebraska Lincoln	Caveat
CSCE 970 Lecture 3: Regularization	
Stephen Scott and Vinod Variyam	 Say you want to show that learning algorithm L¹ performs better than algorithms L², L³, L⁴, L⁵
Introduction Outline Machine Learning Problems	• If you use <i>K</i> -fold CV to show superior performance of L^1 over each of L^2, \ldots, L^5 at 95% confidence, there's a 5% chance each one is wrong
Measuring Performance	⇒ There's an over 18.5% chance that at least one is wrong
Estimating Generalization Performance Comparing	 ⇒ Our overall confidence is only just over 81% ● Need to account for this, or use more appropriate test

Nebraska India More Specific Performance Measures

CSCE 970

ephen So and Vinoo Variyam

troductior

CSCE 97

enhen So

and Vinc Variyam

ntroduction

outline

 So far, we've looked at a single error rate to compare hypotheses/learning algorithms/etc.

- This may not tell the whole story:
 - 1000 test examples: 20 positive, 980 negative
 - h¹ gets 2/20 pos correct, 965/980 neg correct, for
 - accuracy of (2+965)/(20+980) = 0.967• Pretty impressive, except that always predicting
 - negative yields accuracy = 0.980• Would we rather have h^2 , which gets 19/20 pos correct
 - and 930/980 neg, for accuracy = 0.949?

 Depends on how important the positives are, i.e., frequency in practice and/or cost (e.g., cancer diagnosis)

Nebraska Lincoln Confusion Matrices

Break down error into type: true positive, etc.

Jula	12411011	

	Predicted Class		
True Class	Positive	Negative	Total
Positive	<i>tp</i> : true positive	fn : false negative	р
Negative	<i>fp</i> : false positive	tn : true negative	п
Total	<i>p'</i>	n'	N

- Generalizes to multiple classes
- Allows one to quickly assess which classes are missed the most, and into what other class

Nebraska Lincoln R(DC Curves
------------------------	-----------

- Consider classification via ANN + linear threshold unit
- Normally threshold f(x; w, b) at 0, but what if we changed it?
- Keeping w fixed while changing threshold = fixing hyperplane's slope while moving along its normal vector

- Get a set of classifiers, one per labeling of test set
- Similar situation with any classifier with confidence value, e.g., probability-based

Nebiaska Linoh Plotting *tp* versus *fp*

CSCE 970

hen So

Varivan

troduction

earning oblems easuring

Dutline

- Consider the "always –" hyp. What is *fp*? What is *tp*? What about the "always +" hyp?
- In between the extremes, we plot TP versus FP by sorting the test examples by the confidence values

Ex	Confidence	label	Ex	Confidence	label
x_1	169.752	+	<i>x</i> ₆	-12.640	—
<i>x</i> ₂	109.200	+	<i>x</i> ₇	-29.124	-
<i>x</i> ₃	19.210	-	<i>x</i> ₈	-83.222	-
x_4	1.905	+	<i>x</i> 9	-91.554	+
<i>x</i> 5	-2.75	+	<i>x</i> ₁₀	-128.212	_

- ロ > - (四 > - (言 > - (言 > -))) やくの

