CSCE 478/878 Lecture 9: Hidden Markov Models

Stephen Scott

sscott@cse.unl.edu
Introduction

- Useful for modeling/making predictions on **sequential data**
- E.g., biological sequences, text, series of sounds/spoken words
- Will return to **graphical models** that are **generative**
Outline

- Markov chains
- Hidden Markov models (HMMs)
 - Formal definition
 - Finding most probable state path (Viterbi algorithm)
 - Forward and backward algorithms
- Specifying an HMM
Focus on nucleotide sequences: Sequences of symbols from alphabet \{A, C, G, T\}

The sequence “CG” (written “CpG”) tends to appear more frequently in some places than in others

Such **CpG islands** are usually 10^2–10^3 bases long

Questions:
1. Given a short segment, is it from a CpG island?
2. Given a long segment, where are its islands?
Markov Chains
Modeling CpG Islands

- Model will be a CpG *generator*
- Want probability of next symbol to depend on current symbol
- Will use a standard (non-hidden) Markov model
 - Probabilistic state machine
 - Each state emits a symbol
Markov Chains
Modeling CpG Islands (cont’d)
A **first-order** Markov model (what we study) has the property that observing symbol x_i while in state π_i depends **only** on the previous state π_{i-1} (which generated x_{i-1}).

- Standard model has 1-1 correspondence between symbols and states, thus

$$P(x_i \mid x_{i-1}, \ldots, x_1) = P(x_i \mid x_{i-1})$$

and

$$P(x_1, \ldots, x_L) = P(x_1) \prod_{i=2}^{L} P(x_i \mid x_{i-1})$$
Markov Chains
Begin and End States

- For convenience, can add special “begin” (B) and “end” (E) states to clarify equations and define a distribution over sequence lengths
- Emit empty (null) symbols x_0 and x_{L+1} to mark ends of sequence
How do we use this to differentiate islands from non-islands?

Define two Markov models: islands ("+") and non-islands ("−")

- Each model gets 4 states (A, C, G, T)
- Take training set of known islands and non-islands
- Let c_{st}^+ = number of times symbol t followed symbol s in an island:

$$
\hat{P}^+(t \mid s) = \frac{c_{st}^+}{\sum_{t'} c_{st'}^+}
$$

Now score a sequence $X = \langle x_1, \ldots, x_L \rangle$ by summing the log-odds ratios:

$$
\log \left(\frac{\hat{P}(X \mid +)}{\hat{P}(X \mid -)} \right) = \sum_{i=1}^{L+1} \log \left(\frac{\hat{P}^+(x_i \mid x_{i-1})}{\hat{P}^-(x_i \mid x_{i-1})} \right)
$$
Second CpG question: Given a long sequence, where are its islands?

- Could use tools just presented by passing a fixed-width window over the sequence and computing scores
- Trouble if islands’ lengths vary
- Prefer single, unified model for islands vs. non-islands

Within the + group, transition probabilities similar to those for the separate + model, but there is a small chance of switching to a state in the – group
Hidden Markov Models

What’s Hidden?

- No longer have one-to-one correspondence between states and emitted characters
 - E.g., was C emitted by C+ or C−?
- Must differentiate the symbol sequence X from the state sequence $\pi = \langle \pi_1, \ldots, \pi_L \rangle$
 - State transition probabilities same as before:
 $$P(\pi_i = \ell \mid \pi_{i-1} = j) \text{ (i.e., } P(\ell \mid j))$$
 - Now each state has a prob. of emitting any value:
 $$P(x_i = x \mid \pi_i = j) \text{ (i.e., } P(x \mid j))$$
Hidden Markov Models
What’s Hidden? (cont’d)

In CpG HMM, emission probs discrete and \(\equiv 0 \) or 1
Assume casino is typically fair, but with prob. 0.05 it switches to loaded die, and switches back with prob. 0.1.

Given a sequence of rolls, what’s hidden?
Hidden Markov Models
The Viterbi Algorithm

- Probability of seeing symbol sequence X and state sequence π is

$$P(X, \pi) = P(\pi_1 | 0) \prod_{i=1}^{L} P(x_i | \pi_i) P(\pi_{i+1} | \pi_i)$$

- Can use this to find most likely path:

$$\pi^* = \arg\max_{\pi} P(X, \pi)$$

and trace it to identify islands (paths through “+” states)

- There are an exponential number of paths through chain, so how do we find the most likely one?
Assume that we know (for all k) $v_k(i) =$ probability of most likely path ending in state k with observation x_i

Then

$$v_\ell(i + 1) = P(x_{i+1} \mid \ell) \max_k \{ v_k(i) P(\ell \mid k) \}$$

All states at i
Given the formula, can fill in table with **dynamic programming**:

- \(v_0(0) = 1, \ v_k(0) = 0 \) for \(k > 0 \)
- For \(i = 1 \) to \(L \); for \(\ell = 1 \) to \(M \) (# states)
 - \(v_\ell(i) = P(x_i | \ell) \max_k \{ v_k(i-1)P(\ell | k) \} \)
 - \(\text{ptr}_i(\ell) = \arg\max_k \{ v_k(i-1)P(\ell | k) \} \)
- \(P(X, \pi^*) = \max_k \{ v_k(L)P(0 | k) \} \)
- \(\pi^*_L = \arg\max_k \{ v_k(L)P(0 | k) \} \)
- For \(i = L \) to \(1 \)
 - \(\pi^*_{i-1} = \text{ptr}_i(\pi^*_i) \)

To avoid underflow, use \(\log(v_\ell(i)) \) and add
Hidden Markov Models
The Forward Algorithm

Given a sequence X, find $P(X) = \sum_\pi P(X, \pi)$

Use dynamic programming like Viterbi, replacing max with sum, and $v_k(i)$ with $f_k(i) = P(x_1, \ldots, x_i, \pi_i = k)$ (= prob. of observed sequence through x_i, stopping in state k)

- $f_0(0) = 1, f_k(0) = 0$ for $k > 0$
- For $i = 1$ to L; for $\ell = 1$ to M (# states)
 - $f_\ell(i) = P(x_i \mid \ell) \sum_k f_k(i - 1)P(\ell \mid k)$
 - $P(X) = \sum_k f_k(L)P(0 \mid k)$

To avoid underflow, can again use logs, though exactness of results compromised
Given a sequence X, find the probability that x_i was emitted by state k, i.e.,

$$P(\pi_i = k \mid X) = \frac{P(\pi_i = k, X)}{P(X)}$$

computed by forward alg

Algorithm:

- $b_k(L) = P(0 \mid k)$ for all k
- For $i = L - 1$ to 1; for $k = 1$ to M (# states)
 - $b_k(i) = \sum_{\ell} P(\ell \mid k) P(x_{i+1} \mid \ell) b_{\ell}(i + 1)$
Define \(g(k) = 1 \) if \(k \in \{A_+, C_+, G_+, T_+\} \) and 0 otherwise.

Then \(G(i \mid X) = \sum_k P(\pi_i = k \mid X) g(k) = \) probability that \(x_i \) is in an island.

For each state \(k \), compute \(P(\pi_i = k \mid X) \) with forward/backward algorithm.

Technique applicable to any HMM where set of states is partitioned into classes.

Use to label individual parts of a sequence.
Hidden Markov Models
Specifying an HMM

- Two problems: defining structure (set of states) and parameters (transition and emission probabilities)
- Start with latter problem, i.e., given a training set X_1, \ldots, X_N of independently generated sequences, learn a good set of parameters θ
- Goal is to maximize the (log) likelihood of seeing the training set given that θ is the set of parameters for the HMM generating them:

$$\sum_{j=1}^{N} \log(P(X_j; \theta))$$
Hidden Markov Models

Specifying an HMM: State Sequence Known

- Estimating parameters when e.g., islands already identified in training set
- Let $A_{k\ell} = \text{number of } k \to \ell \text{ transitions and } E_k(b) = \text{number of emissions of } b \text{ in state } k$

\[
P(\ell \mid k) = \frac{A_{k\ell}}{\left(\sum_{\ell'} A_{k\ell'}\right)}
\]

\[
P(b \mid k) = \frac{E_k(b)}{\left(\sum_{b'} E_k(b')\right)}
\]
Be careful if little training data available

- E.g., an unused state k will have undefined parameters
- Workaround: Add **pseudocounts** $r_{k\ell}$ to $A_{k\ell}$ and $r_k(b)$ to $E_k(b)$ that reflect prior biases about probabilities
- Increased training data decreases prior’s influence
Hidden Markov Models
Specifying an HMM: The Baum-Welch Algorithm

- Used for estimating params when state seq unknown
- Special case of **expectation maximization** (EM)
- Start with arbitrary $P(\ell | k)$ and $P(b | k)$, and use to estimate $A_{k\ell}$ and $E_k(b)$ as expected number of occurrences given the training set:

$$A_{k\ell} = \sum_{j=1}^{N} \frac{1}{P(X_j)} \sum_{i=1}^{L} f_k^j(i) \ P(\ell | k) \ P(x_{i+1}^j | \ell) \ b_{i}^j(i + 1)$$

(Prob. of transition from k to ℓ at position i of sequence j, summed over all positions of all sequences)

1 Superscript j corresponds to jth train example
Hidden Markov Models
Specifying an HMM: The Baum-Welch Algorithm (cont’d)

\[E_k(b) = \sum_{j=1}^{N} \sum_{i:x_i^j=b} P(\pi_i = k | X_j) = \sum_{j=1}^{N} \frac{1}{P(X_j)} \sum_{i:x_i^j=b} f_k^j(i) b_k^j(i) \]

- Use these (\& pseudocounts) to recompute \(P(\ell | k) \) and \(P(b | k) \)
- After each iteration, compute log likelihood and halt if no improvement.
How to specify HMM states and connections?

States come from background knowledge on problem, e.g., size-4 alphabet, $+/-$, \Rightarrow 8 states

Connections:
- Tempting to specify complete connectivity and let Baum-Welch sort it out
- **Problem**: Huge number of parameters could lead to local max
- Better to use background knowledge to invalidate some connections by initializing $P(\ell \mid k) = 0$
 - Baum-Welch will respect this
May want to allow model to generate sequences with certain parts deleted

- E.g., when aligning DNA or protein sequences against a fixed model or matching a sequence of spoken words against a fixed model, some parts of the input might be omitted

Problem: Huge number of connections, slow training, local maxima
Silent states (like begin and end states) don’t emit symbols, so they can “bypass” a regular state.

If there are no purely silent loops, can update Viterbi, forward, and backward algorithms to work with silent states.

Used extensively in **profile HMMs** for modeling sequences of protein families (aka **multiple alignments**).