

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline___

Bagging

Boosting

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

(Adapted from Ethem Alpaydin and Rob Schapire and Yoav Freund)

sscott@cse.unl.edu

Introduction

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Boosting

- Sometimes a single classifier (e.g., neural network, decision tree) won't perform well, but a weighted combination of them will
- When asked to predict the label for a new example, each classifier (inferred from a base learner) makes its own prediction, and then the master algorithm (or meta-learner) combines them using the weights for its own prediction
- If the classifiers themselves cannot learn (e.g., heuristics) then the best we can do is to learn a good set of weights (e.g., Weighted Majority)
- If we are using a learning algorithm (e.g., ANN, dec. tree), then we can rerun the algorithm on different subsamples of the training set and set the classifiers' weights during training

Outline

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Boosting

- Bagging
- Boosting

Bagging [Breiman, ML Journal, 1996]

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging Experiment Stability

Boosting

Bagging = Bootstrap aggregating

Bootstrap sampling: given a set \mathcal{X} containing N training examples:

- Create X_j by drawing N examples uniformly at random with replacement from X
- Expect \mathcal{X}_j to omit $\approx 37\%$ of examples from \mathcal{X}

Bagging:

- Create *L* bootstrap samples $\mathcal{X}_1, \dots, \mathcal{X}_L$
- Train classifier d_j on \mathcal{X}_j
- Classify new instance x by majority vote of learned classifiers (equal weights)

Bagging Experiment [Breiman, ML Journal, 1996]

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Experiment Stability

Boosting

Given sample \mathcal{X} of labeled data, Breiman did the following 100 times and reported avg:

- ① Divide \mathcal{X} randomly into test set T (10%) and train set D (90%)
- ② Learn decision tree from D and let e_S be error rate on T
- **3** Do 50 times: Create bootstrap set \mathcal{X}_j and learn decision tree (so ensemble size = 50). Then let e_B be the error of a majority vote of the trees on T

Bagging Experiment Results

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Experiment Stability

Boosting

Data Set	\bar{e}_S	\bar{e}_B	Decrease	
waveform	29.0	19.4	33%	
heart	10.0	5.3	47%	
breast cancer	6.0	4.2	30%	
ionosphere	11.2	8.6	23%	
diabetes	23.4	18.8	20%	
glass	32.0	24.9	27%	
soybean	14.5	10.6	27%	

Bagging Experiment (cont'd)

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Stability

Boosting

Same experiment, but using a nearest neighbor classifier, where prediction of new example x's label is that of x's nearest neighbor in training set, where distance is e.g., Euclidean distance

Results

Data Set	\bar{e}_S	\bar{e}_B	Decrease	
waveform	26.1	26.1	0%	
heart	6.3	6.3	0%	
breast cancer	4.9	4.9	0%	
ionosphere	35.7	35.7	0%	
diabetes	16.4	16.4	0%	
glass	16.4	16.4	0%	

What happened?

When Does Bagging Help?

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Stability

Boostina

When learner is **unstable**, i.e., if small change in training set causes large change in hypothesis produced

- Decision trees, neural networks
- Not nearest neighbor

Experimentally, bagging can help substantially for unstable learners; can somewhat degrade results for stable learners

Boosting [Schapire & Freund Book]

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Boostina

Algorithm
Example
Experimental Results
Miscellany

Similar to bagging, but don't always sample uniformly; instead adjust resampling distribution \mathbf{p}_j over \mathcal{X} to focus attention on previously misclassified examples

Final classifier weights learned classifiers, but not uniform; instead weight of classifier d_j depends on its performance on data it was trained on

Final classifier is weighted combination of d_1, \ldots, d_L , where d_j 's weight depends on its error on \mathcal{X} w.r.t. \mathbf{p}_j

Algorithm Idea $[\mathbf{p}_j \leftrightarrow D_j; d_j \leftrightarrow h_j]$

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Boosting Algorithm

Example
Experimental Results
Miscellany

Repeat for $j = 1, \dots, L$:

- Run learning algorithm on examples randomly drawn from training set \mathcal{X} according to distribution \mathbf{p}_j ($\mathbf{p}_1 = \text{uniform}$)
 - Can sample \mathcal{X} according to \mathbf{p}_j and train normally, or directly minimize error on \mathcal{X} w.r.t. \mathbf{p}_j
- ② Output of learner is binary hypothesis d_i
- **3** Compute $error_{\mathbf{p}_j}(d_j) = error$ of d_j on examples from \mathcal{X} drawn according to \mathbf{p}_i (can compute exactly)
- **③** Create \mathbf{p}_{j+1} from \mathbf{p}_j by decreasing weight of instances that d_i predicts correctly

Algorithm Pseudocode (Fig 17.2)

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Boostina

Algorithm

Experimental Resu Miscellany

```
Training:
```

For all $\{x^t, r^t\}_{t=1}^N \in \mathcal{X}$, initialize $p_1^t = 1/N$. For all base-learners j = 1, ..., L

The plane is denoted by Y . Figure X with

Randomly draw X_j from X with probabilities p_j^t

Train d_j using X_j

For each (x^l, r^l) , calculate $y_j^l \leftarrow d_j(x^l)$

Calculate error rate: $\epsilon_j \leftarrow \sum_t p_j^t \cdot 1(y_j^t \neq r^t)$ If $\epsilon_i > 1/2$, then $L \leftarrow j-1$; stop

$$\beta_j \leftarrow \epsilon_j/(1-\epsilon_j)$$

For each (x^t, r^t) , decrease probabilities if correct: If $y_j^t = r^t$, then $p_{j+1}^t \leftarrow \beta_j p_j^t$ Else $p_{j+1}^t \leftarrow p_j^t$

Normalize probabilities:

$$Z_j \leftarrow \sum_t p_{j+1}^t; \quad p_{j+1}^t \leftarrow p_{j+1}^t/Z_j$$

Testing:

Given x, calculate $d_j(x)$, j = 1, ..., L

Calculate class outputs, i = 1, ..., K:

$$y_i = \sum_{i=1}^{L} \left(\log \frac{1}{B_i} \right) d_{ii}(x)$$

Algorithm Pseudocode (Schapire & Freund)

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

.

Outline

Bagging

Boosting

Algorithm

Example
Experimental Results
Miscellany

Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$. Initialize: $D_1(i) = 1/m$ for $i = 1, \ldots, m$. For $t = 1, \ldots, T$:

- · Train weak learner using distribution D_t.
- Get weak hypothesis $h_t: \mathcal{X} \to \{-1, +1\}$.
- · Aim: select h_t to minimalize the weighted error:

$$\epsilon_t \doteq \mathbf{Pr}_{i \sim D_t}[h_t(x_i) \neq y_i].$$

- Choose $\alpha_t = \frac{1}{2} \ln \left(\frac{1 \epsilon_t}{\epsilon_t} \right)$.
- Update, for $i = 1, \ldots, m$:

$$\begin{split} D_{t+1}(i) &= \frac{D_t(i)}{Z_t} \times \left\{ \begin{array}{ll} e^{-\alpha_t} & \text{if } h_t(x_i) = y_i \\ e^{\alpha_t} & \text{if } h_t(x_i) \neq y_i \end{array} \right. \\ &= \frac{D_t(i) \exp(-\alpha_t y_i h_t(x_i))}{Z_t}, \end{split}$$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final hypothesis:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$$

Schapire & Freund Example: Decision Stumps

$$D_j = \mathbf{p}_j; h_j = d_j; \, lpha_j = rac{1}{2} \ln(1/eta_j) = rac{1}{2} \ln\left(rac{1-\epsilon_j}{\epsilon_j}
ight)$$

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

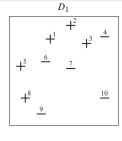
Bagging

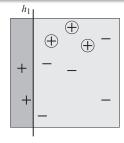
Dagg...

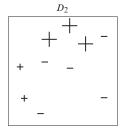
Boosting Algorithm

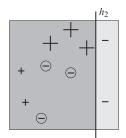
Example

Experimental Results Miscellany









Schapire & Freund Example: Decision Stumps

$$D_j = \mathbf{p}_j; h_j = d_j; \, lpha_j = rac{1}{2} \ln(1/eta_j) = rac{1}{2} \ln\left(rac{1-\epsilon_j}{\epsilon_j}
ight)$$

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Boosting Algorithm

Example

Experimental Results Miscellany

	1	2	3	4	5	6	7	8	9	10	
$D_1(i)$ $e^{-\alpha_1 y_i h_1(x_i)}$	0.10 1.53	0.10 1.53	0.10	0.10 0.65	$\epsilon_1 = 0.30, \alpha_1 \approx 0.42$						
$D_1(i) e^{-\alpha_1 y_i h_1(x_i)}$	0.15	0.15	0.15	0.03		0.03	0.03	0.03	0.03	0.03	$Z_1 \approx 0.92$
$D_2(i) \\ e^{-\alpha_2 y_i h_2(x_i)}$	0.17 0.52	0.17 0.52	0.17 0.52	0.07 0.52	0.07 0.52	0.07 1.91	0.07 1.91	0.07 0.52	0.07 1 91	0.07	$\epsilon_2 \approx 0.21, \alpha_2 \approx 0.65$
$D_2(i) e^{-\alpha_2 y_i h_2(x_i)}$	0.09	0.09	0.09			0.14			0.14	0.02	$Z_2 \approx 0.82$
$D_3(i)$ $\rho^{-\alpha_3 y_i h_3(x_i)}$	0.11	0.11	0.11	0.05 2.52	0.05 2.52	0.17	0.17	0.05 2.52	0.17 0.40	0.05	$\epsilon_3 \approx 0.14, \alpha_3 \approx 0.92$
$D_3(i) e^{-\alpha_3 y_i h_3(x_i)}$	0.04	0.04	0.04	0.11	0.11	0.07	0.07	0.11	0.07	0.02	$Z_3 \approx 0.69$

Calculations are shown for the ten examples as numbered in the figure. Examples on which hypothesis h_t makes a mistake are indicated by underlined figures in the rows marked D_t .

Schapire & Freund Example: Decision Stumps

$$D_j = \mathbf{p}_j; h_j = d_j; lpha_j = rac{1}{2} \ln(1/eta_j) = rac{1}{2} \ln\left(rac{1-\epsilon_j}{\epsilon_j}
ight)$$

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

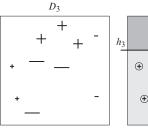
_ .

Bagging

Boosting

Algorithm Example

Experimental Results
Miscellany



Boosting Example (cont'd)

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

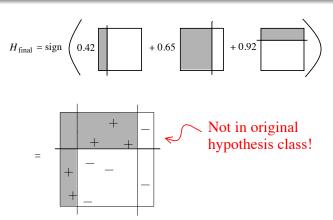
Bagging

Dagg...

Boosting

Example

Experimental Results Miscellany



In this case, need at least two of the three hypotheses to predict +1 for weighted sum to exceed 0.

Boosting Experimental Results

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

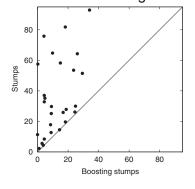
Bagging

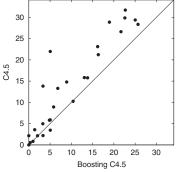
Daggin

Boosting
Algorithm
Example

Experimental Results
Miscellany

Scatter plot: Percent classification error of non-boosted vs boosted on 27 learning tasks





Boosting Experimental Results (cont'd)

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

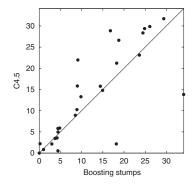
Outline

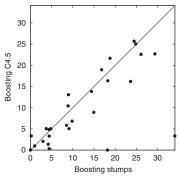
Bagging

Boosting

Algorithm Example

Experimental Results
Miscellany





Boosting Miscellany

478/878 Lecture 7: Bagging and Boosting

Stephen Scott

Introduction

Outline

Bagging

Boostina

Experimental Results

Miscellany

- If each $\epsilon_j < 1/2 \gamma_j$, error of ensemble on $\mathcal X$ drops exponentially in $\sum_{j=1}^L \gamma_j$
- Can also bound generalization error of ensemble
- Very successful empirically
 - Generalization sometimes improves if training continues after ensemble's error on \mathcal{X} drops to 0
 - Contrary to intuition: would expect overfitting
 - Related to increasing the combined classifier's margin
- Useful even with very simple base learners, e.g., decision stumps