

Nebraska	Bagging Experiment
Lincoln	[Breiman, ML Journal, 1996]
CSCE 478/878 Lecture 7: Bagging and Boosting Stephen Scott Introduction Outline Bagging Egemen Subility Boosting	 Given sample X of labeled data, Breiman did the following 100 times and reported avg: Divide X randomly into test set T (10%) and train set D (90%) Learn decision tree from D and let e_S be error rate on T Do 50 times: Create bootstrap set X_j and learn decision tree (so ensemble size = 50). Then let e_B be the error of a majority vote of the trees on T

Nebraska Lincoln	Bagging Results	g Experimen	t		
CSCE 478/878 Lecture 7: Bagging and Boosting					
Stephen Scott		Data Set	\overline{e}_S	\overline{e}_B	Decrease
Introduction		waveform	29.0	19.4	33%
Outline		heart	10.0	5.3	47%
Bagging		breast cancer	6.0	4.2	30%
Experiment Stability		ionosphere	11.2	8.6	23%
Boosting		diabetes	23.4	18.8	20%
		glass	32.0	24.9	27%
		soybean	14.5	10.6	27%

Nebraska

CSCE 478/878 Lecture 7: Bagging and Boosting

Stephen Scot

ntroduction

Bagging Experiment

Same experiment, but using a nearest neighbor classifier, where prediction of new example x's label is that of x's nearest neighbor in training set, where distance is e.g., Euclidean distance

Results

	Data Set	\overline{e}_S	\overline{e}_B	Decrease	
-	waveform	26.1	26.1	0%	
	heart	6.3	6.3	0%	
	breast cancer	4.9	4.9	0%	
	ionosphere	35.7	35.7	0%	
	diabetes	16.4	16.4	0%	
	glass	16.4	16.4	0%	
What hap	pened?				
	•		< □	() (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	≡▶ ≡ つへ

Nebraska When Does Bagging Help?

CSCE 478/878 ecture agging an Boost

n So

ntroduction Outline

Bagging

oosting

When learner is unstable, i.e., if small change in training set causes large change in hypothesis produced

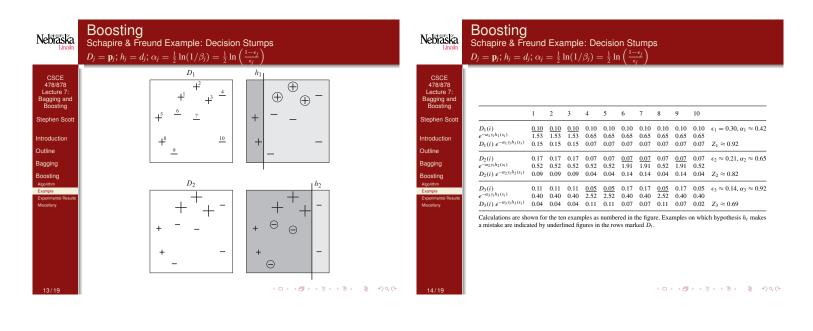
- Decision trees, neural networks
- Not nearest neighbor

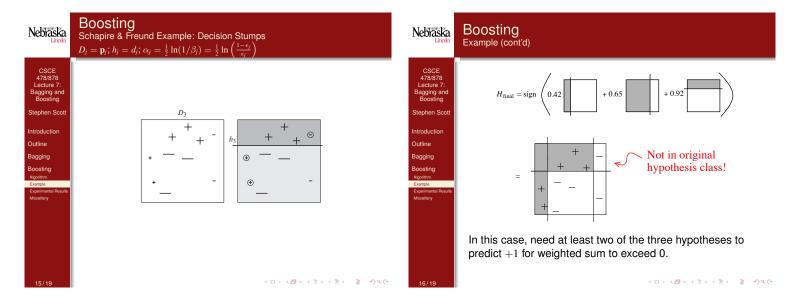
Experimentally, bagging can help substantially for unstable learners; can somewhat degrade results for stable learners

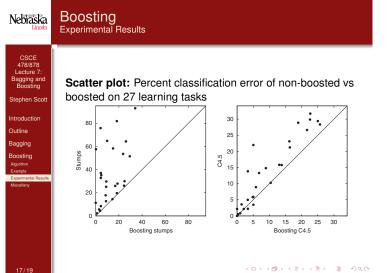
Nebraska	Boosting [Schapire & Freund Book]	Nebraska Lincoln	$\begin{array}{l} Boosting \\ Algorithm \ Idea \ [\mathbf{p}_j \leftrightarrow D_j; d_j \leftrightarrow h_j] \end{array}$
CSCE 478/678 Lecture 7: Bagging and Boosting Stephen Scott Introduction Outline Bagging Boosting Boosting Experimenta Results Macellary	Similar to bagging, but don't always sample uniformly; instead adjust resampling distribution \mathbf{p}_j over \mathcal{X} to focus attention on previously misclassified examples Final classifier weights learned classifiers, but not uniform; instead weight of classifier d_j depends on its performance on data it was trained on Final classifier is weighted combination of d_1, \ldots, d_L , where d_j 's weight depends on its error on \mathcal{X} w.r.t. \mathbf{p}_j	CSCE 478/878 Lecture 7: Bagging and Boosting Outline Bagging Boosting Agaitan Example Example Example Example Example	 Repeat for j = 1,, L: Run learning algorithm on examples randomly drawn from training set X according to distribution p_j (p₁ = uniform) Can sample X according to p_j and train normally, or directly minimize error on X w.r.t. p_j Output of learner is binary hypothesis d_j Compute error_{p_j}(d_j) = error of d_j on examples from X drawn according to p_j (can compute exactly) Create p_{j+1} from p_j by decreasing weight of instances that d_j predicts correctly
9/19	(ロ)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)	10/19	(ロ) (四) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三

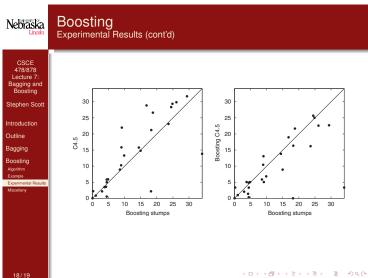
Lincoln A			
CSCE 478/878 Lecture 7: Bagging and Boosting Outline Bagging Boosting Agenthe Exercise Exercise Exercise Macellany	Training: For all $\{x^{l}, r^{l}\}_{l=1}^{N} \in X$, initialize $p_{1}^{l} = 1/N^{-1}$ For all base-learners $j = 1,, L$ Randomly draw X_{j} from X with probabilities p_{j}^{l} Train d_{j} using X_{j} For each (x^{l}, r^{l}) , calculate $y_{j}^{l} \leftarrow d_{j}(x^{l})$ Calculate error rate: $\epsilon_{j} \leftarrow \sum_{l} p_{j}^{l} \cdot 1(y_{j}^{l} \neq r^{l})$ If $\epsilon_{j} > 1/2$, then $L \leftarrow j - 1$; stop $\beta_{j} \leftarrow \epsilon_{j}/(1 - \epsilon_{j})$ For each (x^{l}, r^{l}) , decrease probabilities if correct: If $y_{j}^{l} = r^{l}$, then $p_{j+1}^{l} \leftarrow \beta_{j}p_{j}^{l}$ Else $p_{j+1}^{l} \leftarrow p_{j}^{l}$ Normalize probabilities: $Z_{j} \leftarrow \sum_{l} p_{j+1}^{l}$; $p_{j+1}^{l} \leftarrow p_{j+1}^{l}/Z_{j}$ Testing: Given x , calculate $d_{j}(x), j = 1,, L$ Calculate class outputs, $i = 1,, K$: $y_{l} = \sum_{l=1}^{L} (\log \frac{1}{k_{l}}) d_{ll}(x)$	L Ba Ste Out Bag Boo Aga Exp Mad	rod ıtlin ıggi

	Boosting Igorithm Pseudocode (Schapire & Freund)
CSCE 478/878 Lecture 7: Bagging and Boosting Stephen Scott	Given: $(x_1, y_1), \ldots, (x_m, y_m)$ where $x_i \in \mathcal{X}, y_i \in \{-1, +1\}$. Initialize: $D_1(i) = 1/m$ for $i = 1, \ldots, m$. For $t = 1, \ldots, T$: • Train weak learner using distribution D_t . • Get weak hypothesis $h_t : \mathcal{X} \to \{-1, +1\}$.
Introduction Outline Bagging	• Aim: select h_i to minimalize the weighted error: $\epsilon_i \doteq \mathbf{Pr}_{i \sim D_i}[h_i(x_i) \neq y_i].$ • Choose $\alpha_i = \frac{1}{2} \ln \left(\frac{1 - \epsilon_i}{\epsilon_i} \right).$
Boosting Algorithm Example Experimental Results Miscellarry	• Update, for $i = 1,, m$: $D_{t+1}(i) = \frac{D_t(i)}{Z_t} \times \begin{cases} e^{-\alpha_t} & \text{if } h_t(x_t) = y_t \\ e^{\alpha_t} & \text{if } h_t(x_t) \neq y_t \end{cases}$ $= \frac{D_t(i) \exp(-\alpha_t y_t h_t(x_t))}{Q_t},$
	where Z_i is a normalization factor (chosen so that D_{i+1} will be a distribution). Output the final hypothesis: $H(x) = \text{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right).$
12/19	(ロ><個><至><(至)<(至)<(至)









Boosting Miscellany

- CSCE 478/878 Lecture 7: Bagging and Bossting Introduction Outline Bagging Boosting Augurithm Example Example Example Example
- If each $\epsilon_j < 1/2 \gamma_j$, error of ensemble on $\mathcal X$ drops exponentially in $\sum_{j=1}^L \gamma_j$
- Can also bound generalization error of ensemble
- Very successful empirically
 - Generalization sometimes improves if training continues after ensemble's error on \mathcal{X} drops to 0
 - Contrary to intuition: would expect overfitting
 - Related to increasing the combined classifier's margin
- Useful even with very simple base learners, e.g., decision stumps

・ロト・雪・・雪・・雪・・口・

Nebraska