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Introduction

Might have reasons (domain information) to favor some
hypotheses/predictions over others a priori

Bayesian methods work with probabilities, and have two
main roles:

1 Provide practical learning algorithms:
Naı̈ve Bayes learning
Bayesian belief network learning
Combine prior knowledge (prior probabilities) with
observed data
Requires prior probabilities

2 Provides useful conceptual framework
Provides “gold standard” for evaluating other learning
algorithms
Additional insight into Occam’s razor
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Outline

Bayes Theorem
Example
Bayes optimal classifier
Naı̈ve Bayes classifier
Example: Learning over text data
Bayesian belief networks
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Bayes Theorem

We want to know the probability that a particular label r is
correct given that we have seen data D

Conditional probability: P(r | D) = P(r ^ D)/P(D)

Bayes theorem:

P(r | D) =
P(D | r)P(r)

P(D)

P(r) = prior probability of label r (might include
domain information)
P(D) = probability of data D
P(r | D) = posterior probability of r given D
P(D | r) = probability (aka likelihood) of D given r

Note: P(r | D) increases with P(D | r) and P(r) and
decreases with P(D)4 / 28
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Bayes Theorem
Example

Does a patient have cancer or not?

A patient takes a lab test and the result is positive. The test
returns a correct positive result in 98% of the cases in which
the disease is actually present, and a correct negative result
in 97% of the cases in which the disease is not present.
Furthermore, 0.008 of the entire population have this cancer.

P(cancer) = P(¬cancer) =
P(+ | cancer) = P(� | cancer) =

P(+ | ¬cancer) = P(� | ¬cancer) =

Now consider new patient for whom the test is positive.
What is our diagnosis?
P(+ | cancer)P(cancer) =
P(+ | ¬cancer)P(¬cancer) =
So diagnosis is5 / 28
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Basic Formulas for Probabilities

Product Rule: probability P(A ^ B) of a conjunction of
two events A and B:

P(A ^ B) = P(A | B)P(B) = P(B | A)P(A)

Sum Rule: probability of a disjunction of two events A
and B:

P(A _ B) = P(A) + P(B)� P(A ^ B)

Theorem of total probability: if events A
1

, . . . ,An are
mutually exclusive with

Pn
i=1

P(Ai) = 1, then

P(B) =
nX

i=1

P(B | Ai)P(Ai)
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Bayes Optimal Classifier

Bayes rule lets us get a handle on the most probable label
for an instance

Bayes optimal classification of instance x:

argmax

rj2R
P(rj | x)

where R is set of possible labels (e.g., R = {+,�})

On average, no other classifier using same prior information
and same hypothesis space can outperform Bayes optimal!

) Gold standard for classification
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Bayes Optimal Classifier
Applying Bayes Rule

Let instance x be described by attributes hx
1

, x
2

, . . . , xni

Then, most probable label of x is:

r⇤ = argmax

rj2R
P(rj | x

1

, x
2

, . . . , xn)

= argmax

rj2R

P(x
1

, x
2

, . . . , xn | rj)P(rj)

P(x
1

, x
2

, . . . , xn)

= argmax

rj2R
P(x

1

, x
2

, . . . , xn | rj)P(rj)

In other words, if we can estimate P(rj) and
P(x

1

, x
2

, . . . , xn | rj) for all possibilities, then we can give a
Bayes optimal prediction of the label of x for all x

How do we estimate P(rj) from training data?
What about P(x

1

, x
2

, . . . , xn | rj)?
8 / 28
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Naı̈ve Bayes Classifier

Problem: Estimating P(rj) easily done, but there are
exponentially many combinations of values of x

1

, . . . , xn

E.g., if we want to estimate

P(Sunny,Hot,High,Weak | PlayTennis = No)

from the data, need to count among the “No” labeled
instances how many exactly match x (few or none)

Naı̈ve Bayes assumption:

P(x
1

, x
2

, . . . , xn | rj) =
Y

i

P(xi | rj)

so naı̈ve Bayes classifier:

rNB = argmax

rj2R
P(rj)

Y

i

P(xi | rj)

Now have only polynomial number of probs to estimate
9 / 28
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Naı̈ve Bayes Classifier
(cont’d)

Along with decision trees, neural networks, nearest
neighbor, SVMs, boosting, one of the most practical
learning methods

When to use

Moderate or large training set available
Attributes that describe instances are conditionally
independent given classification

Successful applications:

Diagnosis
Classifying text documents

10 / 28
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Naı̈ve Bayes Algorithm

Naı̈ve Bayes Learn

For each target value rj
1 P̂(rj) estimate P(rj) = fraction of exs with rj
2 For each attribute value vik of each attrib xi 2 x

P̂(vik | rj) estimate P(vik | rj) = fraction of rj-labeled
instances with vik

Classify New Instance(x)

rNB = argmax

rj2R
P̂(rj)

Y

xi2x

P̂(xi | rj)
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Naı̈ve Bayes Example

Training Examples (Mitchell, Table 3.2):

Day Outlook Temperature Humidity Wind PlayTennis
D1 Sunny Hot High Weak No
D2 Sunny Hot High Strong No
D3 Overcast Hot High Weak Yes
D4 Rain Mild High Weak Yes
D5 Rain Cool Normal Weak Yes
D6 Rain Cool Normal Strong No
D7 Overcast Cool Normal Strong Yes
D8 Sunny Mild High Weak No
D9 Sunny Cool Normal Weak Yes

D10 Rain Mild Normal Weak Yes
D11 Sunny Mild Normal Strong Yes
D12 Overcast Mild High Strong Yes
D13 Overcast Hot Normal Weak Yes
D14 Rain Mild High Strong No

Instance x to classify:

hOutlk = sun, Temp = cool,Humid = high,Wind = strongi

12 / 28
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Naı̈ve Bayes Example
(cont’d)

Assign label rNB = argmaxrj2R P(rj)
Q

i P(xi | rj)

P(y) · P(sun | y) · P(cool | y) · P(high | y) · P(strong | y)

= (9/14) · (2/9) · (3/9) · (3/9) · (3/9) = 0.0053

P(n) P(sun | n) P(cool | n) P(high | n) P(strong | n)

= (5/14) · (3/5) · (1/5) · (4/5) · (3/5) = 0.0206

So vNB = n

13 / 28
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Naı̈ve Bayes Subtleties

Conditional independence assumption is often violated, i.e.,

P(x
1

, x
2

, . . . , xn | rj) 6=
Y

i

P(xi | rj) ,

but it works surprisingly well anyway. Note that we don’t
need estimated posteriors P̂(rj | x) to be correct; need only
that

argmax

rj2R
P̂(rj)

Y

i

P̂(xi | rj) = argmax

rj2R
P(rj)P(x1

, . . . , xn | rj)

Sufficient conditions given in Domingos & Pazzani [1996]
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Naı̈ve Bayes Subtleties
(cont’d)

What if none of the training instances with target value rj
have attribute value vik? Then

P̂(vik | rj) = 0, and P̂(rj)
Y

i

P̂(vik | rj) = 0

Typical solution is to use m-estimate:

P̂(vik | rj) 
nc + mp
n + m

where

n is number of training examples for which r = rj,
nc number of examples for which r = rj and xi = vik
p is prior estimate for P̂(vik | rj)
m is weight given to prior (i.e., number of “virtual”
examples)
Sometimes called pseudocounts
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Naı̈ve Bayes Application: Text Classification

Target concept Spam? : Document! {+,�}
Each document is a vector of words (one attribute per
word position), e.g., x

1

= “each”, x
2

= “document”, etc.
Naı̈ve Bayes very effective despite obvious violation of
conditional independence assumption () words in an
email are independent of those around them)
Set P(+) = fraction of training emails that are spam,
P(�) = 1� P(+)

To simplify matters, we will assume position

independence, i.e., we only model the words in
spam/not spam, not their position
) For every word w in our vocabulary, P(w | +) =

probability that w appears in any position of +-labeled
training emails (factoring in prior m-estimate)

16 / 28
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Naı̈ve Bayes Application: Text Classification
Pseudocode [Mitchell]
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Bayesian Belief Networks

Sometimes naı̈ve Bayes assumption of conditional
independence too restrictive
But inferring probabilities is intractable without some
such assumptions
Bayesian belief networks (also called Bayes Nets)
describe conditional independence among subsets of
variables
Allows combining prior knowledge about dependencies
among variables with observed training data
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Bayesian Belief Networks
Conditional Independence

Definition: X is conditionally independent of Y given Z if
the probability distribution governing X is independent of the
value of Y given the value of Z; that is, if

(8xi, yj, zk) P(X = xi | Y = yj, Z = zk) = P(X = xi | Z = zk)

more compactly, we write

P(X | Y, Z) = P(X | Z)

Example: Thunder is conditionally independent of Rain,
given Lightning

P(Thunder | Rain, Lightning) = P(Thunder | Lightning)

Naı̈ve Bayes uses conditional independence and product
rule to justify

P(X, Y | Z) = P(X | Y, Z)P(Y | Z)
= P(X | Z)P(Y | Z)
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Bayesian Belief Networks
Definition

Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Network (directed acyclic graph) represents a set of
conditional independence assertions:

Each node is asserted to be conditionally

independent of its nondescendants, given its

immediate predecessors

E.g., Given Storm and BusTourGroup, Campfire is CI of
Lightning and Thunder20 / 28
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Bayesian Belief Networks
Special Case

Since each node is conditionally independent of its
nondescendants given its immediate predecessors, what
model does this represent, given that C is class and xis are
attributes?

21 / 28
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Bayesian Belief Networks
Causality

Can think of edges in a Bayes net as representing a causal

relationship between nodes

E.g., rain causes wet grass

Probability of wet grass depends on whether there is rain

22 / 28
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Bayesian Belief Networks
Generative Models

Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

Represents joint probability distribution over variables
hY

1

, . . . , Yni, e.g., P(Storm,BusTourGroup, . . . ,ForestFire)

In general, for yi = value of Yi

P(y
1

, . . . , yn) =
nY

i=1

P(yi | Parents(Yi))

where Parents(Yi) denotes immediate predecessors of
Yi in graph
E.g., P(S,B,C,¬L,¬T,¬F) =
P(S) ·P(B) ·P(C | B, S)| {z }

0.4

·P(¬L | S) ·P(¬T | ¬L) ·P(¬F | S,¬L,¬C)
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Bayesian Belief Networks
Predicting Most Likely Label

We sometimes call Bayes nets generative (vs
discriminative) models since they can be used to
generate instances hY

1

, . . . , Yni according to joint distribution

Can use for classification

Label r to predict is one of the variables, represented
by a node
If we can determine the most likely value of r given the
rest of the nodes, can predict label
One idea: Go through all possible values of r, and
compute joint distribution (previous slide) with that
value and other attribute values, then return one that
maximizes
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Bayesian Belief Networks
Predicting Most Likely Label (cont’d)

Storm

CampfireLightning

Thunder ForestFire

Campfire

C

¬C

¬S,B ¬S,¬B

0.4

0.6

0.1

0.9

0.8

0.2

0.2

0.8

S,¬B

BusTourGroup

S,B

E.g., if Storm (S) is the label to predict, and we are given
values of B, C, ¬L, ¬T, and ¬F, can use formula to compute
P(S,B,C,¬L,¬T,¬F) and P(¬S,B,C,¬L,¬T,¬F), then
predict more likely one

Easily handles unspecified attribute values

Issue: Takes time exponential in number of values of
unspecified attributes

More efficient approach: Pearl’s message passing

algorithm for chains and trees and polytrees (at most one
path between any pair of nodes)

25 / 28

CSCE
478/878

Lecture 6:
Bayesian

Learning and
Graphical
Models

Stephen Scott

Introduction

Outline

Bayes
Theorem

Formulas

Bayes Optimal
Classifier

Naı̈ve Bayes
Classifier

Bayes Nets
Conditional Indep

Definition

Generative Models

Predicting Labels

Learning of BNs

Summary

Learning of Bayesian Belief Networks

Several variants of this learning task

Network structure might be known or unknown

Training examples might provide values of all network
variables, or just some

If structure known and all variables observed, then it’s as
easy as training a naı̈ve Bayes classifier:

Initialize CPTs with pseudocounts
If, e.g., a training instance has set S, B, and ¬C, then
increment that count in C’s table
Probability estimates come from normalizing counts

S,B S,¬B ¬S,B ¬S,¬B
C 4 1 8 2
¬C 6 10 2 8
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Learning of Bayesian Belief Networks
(cont’d)

Suppose structure known, variables partially observable

E.g., observe ForestFire, Storm, BusTourGroup, Thunder,
but not Lightning, Campfire

Similar to training neural network with hidden units; in
fact can learn network conditional probability tables
using gradient ascent
Converge to network h that (locally) maximizes P(D | h),
i.e., maximum likelihood hypothesis
Can also use EM (expectation maximization) algorithm

Use observations of variables to predict their values in
cases when they’re not observed
EM has many other applications, e.g., hidden Markov
models (HMMs)
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Bayesian Belief Networks
Summary

Combine prior knowledge with observed data
Impact of prior knowledge (when correct!) is to lower
the sample complexity
Active research area

Extend from boolean to real-valued variables
Parameterized distributions instead of tables
More effective inference methods
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