Nebraska

Introduction CSCE 478/878 Lecture 6 Bayesian earning ar Graphical Models CSCE 478/878 ecture 6 Might have reasons (domain information) to favor some CSCE 478/878 Lecture 6: hypotheses/predictions over others a priori Bayesian Learning and Graphical Models Bayesian methods work with probabilities, and have two Stephen Scot Stephen Scot main roles: Introduction Provide practical learning algorithms: Stephen Scott Outline Naïve Bayes learning Bayes Theorem Bayes Theorem Bayesian belief network learning • Combine prior knowledge (prior probabilities) with Formulas (Adapted from Ethem Alpaydin and Tom Mitchell) observed data Bayes Optima Classifier Bayes Optima Classifier • Requires prior probabilities Naïve Bayes Classifier Naïve Bayes Classifier Provides useful conceptual framework Bayes Nets • Provides "gold standard" for evaluating other learning Bayes Nets algorithms • Additional insight into Occam's razor sscott@cse.unl.edu

Nebraska

Nebraska Lincoln	Outline	Nebraska.	Bayes Theorem
CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models Stephen Scott Introduction Outline Bayes Theorem Formulas Bayes Optimal Classifier Bayes Nets	 Bayes Theorem Example Bayes optimal classifier Naïve Bayes classifier Example: Learning over text data Bayesian belief networks 	CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models Stephen Scott Introduction Outline Bayes Theorem Earning Formulas Bayes Optimal Classifier Bayes Nets	We want to know the probability that a particular label <i>r</i> is correct given that we have seen data <i>D</i> Conditional probability: $P(r D) = P(r \land D)/P(D)$ Bayes theorem: $P(r D) = \frac{P(D r)P(r)}{P(D)}$ • $P(r) =$ prior probability of label <i>r</i> (might include domain information) • $P(D) =$ probability of data <i>D</i> • $P(r D) =$ posterior probability of <i>r</i> given <i>D</i> • $P(D r) =$ probability (aka likelihood) of <i>D</i> given <i>r</i> Note: $P(r D)$ increases with $P(D r)$ and $P(r)$ and decreases with $P(D)$

Nebraska Lincoln	Bayes Theorem
CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models Stephen Scott Introduction Outline Parice	Does a patient have cancer or not? A patient takes a lab test and the result is positive. The test returns a correct positive result in 98% of the cases in which the disease is actually present, and a correct negative result in 97% of the cases in which the disease is not present. Furthermore, 0.008 of the entire population have this cancer.
Bayes Theorem Example	$P(cancer) = P(\neg cancer) =$
Formulas	P(+ cancer) = P(- cancer) =
Bayes Optimal Classifier	$P(+ \mid \neg cancer) = P(- \mid \neg cancer) =$
Naïve Bayes Classifier	Now consider new patient for whom the test is positive. What is our diagnosis?
Bayes Nets	P(+ cancer)P(cancer) = $P(+ \neg cancer)P(\neg cancer) =$ So diagnosis is

Nebraska	Basic Formulas for Probabilities
CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models	 Product Rule: probability P(A ∧ B) of a conjunction of two events A and B:
Stephen Scott	$P(A \land B) = P(A \mid B)P(B) = P(B \mid A)P(A)$
Introduction Outline	 Sum Rule: probability of a disjunction of two events A and B:
Bayes Theorem Formulas	$P(A \lor B) = P(A) + P(B) - P(A \land B)$
Bayes Optimal Classifier	• Theorem of total probability: if events A_1, \ldots, A_n are
Naïve Bayes Classifier	mutually exclusive with $\sum_{i=1}^{n} P(A_i) = 1$, then
Bayes Nets	$P(B) = \sum_{i=1}^n P(B \mid A_i) P(A_i)$
6/28	くロン (雪) (言) (雪) (日)

Nebiaska Bayes Optimal Classifier

Bayes rule lets us get a handle on the most **probable** label for an instance

Bayes optimal classification of instance x:

$$\operatorname*{argmax}_{r_j \in R} P(r_j \mid \mathbf{x})$$

where *R* is set of possible labels (e.g., $R = \{+, -\}$)

On average, no other classifier using same prior information and same hypothesis space can outperform Bayes optimal!

・ロト・西ト・モー・モー ひゃう

 \Rightarrow Gold standard for classification

Nebraska Linon Applying Bayes Rule

78/878 ecture 6 ayesian rning ar

tephen Sco

Outline

Bayes Theorem

ormulas

Bayes Optimal Classifier

Vaïve Baye

Bayes Nets

Let instance **x** be described by attributes $\langle x_1, x_2, \ldots, x_n \rangle$

Then, most probable label of x is:

$$r^{*} = \operatorname{argmax}_{r_{j} \in R} P(r_{j} \mid x_{1}, x_{2}, \dots, x_{n})$$

=
$$\operatorname{argmax}_{r_{j} \in R} \frac{P(x_{1}, x_{2}, \dots, x_{n} \mid r_{j}) P(r_{j})}{P(x_{1}, x_{2}, \dots, x_{n})}$$

=
$$\operatorname{argmax}_{r_{j} \in R} P(x_{1}, x_{2}, \dots, x_{n} \mid r_{j}) P(r_{j})$$

In other words, if we can estimate $P(r_j)$ and $P(x_1, x_2, ..., x_n | r_j)$ for all possibilities, then we can give a Bayes optimal prediction of the label of **x** for all **x**

Bayes optimal prediction of the label of x for all x
How do we estimate P(r_j) from training data?

• What about $P(x_1, x_2, \ldots, x_n \mid r_j)$?

Nebraska Naïve Bayes Classifier

Problem: Estimating $P(r_j)$ easily done, but there are exponentially many combinations of values of x_1, \ldots, x_n

E.g., if we want to estimate

P(Sunny, Hot, High, Weak | PlayTennis = No)

from the data, need to count among the "No" labeled instances how many exactly match ${\bf x}$ (few or none)

Naïve Bayes assumption:

$$P(x_1, x_2, \ldots, x_n \mid r_j) = \prod P(x_i \mid r_j)$$

so naïve Bayes classifier:

$$r_{NB} = \underset{r_j \in R}{\operatorname{argmax}} P(r_j) \prod_i P(x_i \mid r_j)$$

Now have only polynomial number of probs to estimate

	Nebraska Lincoln	Naïve Bayes Classifier
	CSCE 478/878 Lecture 6: Bayesian Craphical Models Stephen Scott Introduction Outline Bayes Theorem Formulas Bayes Optimal Classifier Naïve Bayes Classifier The Ageritat Maïve Bayes Classifier The Ageritat	 Along with decision trees, neural networks, nearest neighbor, SVMs, boosting, one of the most practical learning methods When to use Moderate or large training set available Attributes that describe instances are conditionally independent given classification Successful applications: Diagnosis Classifying text documents
৩ ৩ ৫	10/28	(ロ)(型)(三)(三)

Nebraska Naïve Bay

tephen Sco

troduction

Dutline

Bayes Theorem

ormulas

ayes Opt

aïve Baye

Naïve Bayes Algorithm

Naïve_Bayes_Learn

• For each target value r_j

$$\widehat{P}(r_j) \leftarrow \text{estimate } P(r_j) = \text{fraction of exs with } r_j = r_j + r_j$$

2 For each attribute value
$$v_{ik}$$
 of each attrib $x_i \in \mathbf{x}$

P(v_{ik} | r_j) ← estimate P(v_{ik} | r_j) = fraction of r_j-labeled instances with v_{ik}

$Classify_New_Instance(x)$

$$r_{NB} = \underset{r_j \in R}{\operatorname{argmax}} \hat{P}(r_j) \prod_{\mathbf{x}_i \in \mathbf{x}} \hat{P}(x_i \mid r_j)$$

Nebraska Naïve Bayes Example Training Examples (Mitchell, Table 3.2): Outlook Sunny Sunny Overcast Rain Rain Rain PlayTennis No No Yes Yes Yes No Yes Yes Yes Yes Yes Yes Day D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14 Hot Hot Hot Mild Cool Cool Mild Cool Mild Mild Mild High High High High Normal Normal Weak Strong Weak tephen Sc Weak Weak Strong Overcast Sunny Sunny Rain Sunny Normal High Normal Normal High Normal Strong Weak Dutline Weak Weak Strong Bayes Theorem Overcast Overcast Rain ormulas Strong ayes Optim lassifier Weak Hiah No aïve Baye Instance x to classify:

 $\langle Outlk = sun, Temp = cool, Humid = high, Wind = strong \rangle$

aves Net

Naïve Bayes Example Nebraska (cont'd)

tephen Sco

troduction Outline

Bayes Theorem

ormulas

Bayes Optima Classifier

laïve Baye Classifier

Assign label $r_{NB} = \operatorname{argmax}_{r_i \in R} P(r_j) \prod_i P(x_i \mid r_j)$ $P(y) \cdot P(sun \mid y) \cdot P(cool \mid y) \cdot P(high \mid y) \cdot P(strong \mid y)$ $= (9/14) \cdot (2/9) \cdot (3/9) \cdot (3/9) \cdot (3/9) = 0.0053$ $P(n) P(sun \mid n) P(cool \mid n) P(high \mid n) P(strong \mid n)$ $= (5/14) \cdot (3/5) \cdot (1/5) \cdot (4/5) \cdot (3/5) = 0.0206$ So $v_{NB} = n$

Nebraska Naïve Bayes Subtleties

tephen Sco

ntroduction

Outline

Bayes Theorem

Formulas Bayes Optima Classifier

Vaïve Bayes Classifier

aves Nets

Conditional independence assumption is often violated, i.e.,

$$P(x_1, x_2, \ldots, x_n \mid r_j) \neq \prod_i P(x_i \mid r_j) ,$$

but it works surprisingly well anyway. Note that we don't need estimated posteriors $\hat{P}(r_i | \mathbf{x})$ to be correct; need only that

$$\underset{r_j \in R}{\operatorname{argmax}} \hat{P}(r_j) \prod_i \hat{P}(x_i \mid r_j) = \underset{r_j \in R}{\operatorname{argmax}} P(r_j) P(x_1, \dots, x_n \mid r_j)$$

Sufficient conditions given in Domingos & Pazzani [1996]

Nebraska Lincoln	Naïve Bayes Subtleties
CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models	What if none of the training instances with target value r_j have attribute value v_{ik} ? Then $\hat{P}(v_{ik} \mid r_j) = 0$, and $\hat{P}(r_j) \prod \hat{P}(v_{ik} \mid r_j) = 0$
Stephen Scott Introduction Outline Bayes Theorem Formulas	Typical solution is to use <i>m</i> - estimate : $\hat{P}(v_{ik} \mid r_j) \leftarrow \frac{n_c + mp}{n + m}$ where
Bayes Optimal Classifier Naïve Bayes Classifier The Agorithm Example Subtleties Application Bayes Nets 15/28	 <i>n</i> is number of training examples for which <i>r</i> = <i>r_j</i>, <i>n_c</i> number of examples for which <i>r</i> = <i>r_j</i> and <i>x_i</i> = <i>v_{ik}</i> <i>p</i> is prior estimate for <i>P</i>(<i>v_{ik}</i> <i>r_j</i>) <i>m</i> is weight given to prior (i.e., number of "virtual" examples) Sometimes called pseudocounts

Nebraska Naïve Bayes Application: Text Classification 478/87 • Target concept *Spam*? : *Document* \rightarrow {+, -} • Each document is a vector of words (one attribute per word position), e.g., $x_1 =$ "each", $x_2 =$ "document", etc. Naïve Bayes very effective despite obvious violation of conditional independence assumption (\Rightarrow words in an ntroduction email are independent of those around them) Dutline Bayes Theorem • Set P(+) = fraction of training emails that are spam, P(-) = 1 - P(+)ormulas • To simplify matters, we will assume position Bayes Optima independence, i.e., we only model the words in laïve Bayes spam/not spam, not their position assifier \Rightarrow For every word w in our vocabulary, $P(w \mid +) =$ probability that w appears in any position of +-labeled training emails (factoring in prior *m*-estimate) Bayes Nets 16/28

Nebraska Lincoln	Naïve Bayes Application: Text Classification	N
0005	LEARN_NAIVE_BAYES_TEXT($Examples, V$)	
CSCE 478/878 Lecture 6: Bayesian Learning and	Examples is a set of text documents along with their target values. V is the set of all possible target values. This function learns the probability terms $P(w_k v_j)$, describing the probability that a randomly drawn word from a document in class v_j will be the English word w_k . It also learns the class prior probabilities $P(v_j)$.	L
Graphical Models	1. collect all words, punctuation, and other tokens that occur in Examples	
Stephen Scott	 Vocabulary ← the set of all distinct words and other tokens occurring in any text document from Examples 	St
	2. calculate the required $P(v_j)$ and $P(w_k v_j)$ probability terms	
Introduction	• For each target value v_j in V do	Int
Outline	 docs_j ← the subset of documents from Examples for which the target value is v_j P(v_j) ← [locs_j/Lsamplen] 	O
Bayes Theorem	 Text_i ← a single document created by concatenating all members of docs_j n ← total number of distinct word positions in Text_j 	Ba Th
Formulas	• for each word w_k in <i>Vocabulary</i> • $n_k \leftarrow$ number of times word w_k occurs in $Text_i$	Fo
Bayes Optimal Classifier	• $P(w_k v_j) \leftarrow \frac{n_k+1}{n+ Vocabulary }$	Ba Cl
Naïve Bayes	CLASSIFY_NAIVE_BAYES_TEXT(Doc)	Na
Classifier The Algorithm	Return the estimated target value for the document Doc. a_i denotes the word found in the ith position within Doc.	CI
Example Subtleties	• positions \leftarrow all word positions in <i>Doc</i> that contain tokens found in <i>Vocabulary</i> • Return v_{NB} , where	Ba
Application Bayes Nets	$v_{NB} = \operatorname*{argmax}_{v_j \in V} P(v_j) \prod_{i \in positions} P(a_i v_j)$	Gi Pr
17/28	<ロ> (四) (四) (言) (言) (言) (言) (つ) (つ) (() () () () () () () () () () () () (Le Su

Nebraska Lincoln	Bayesian Belief Networks
CSCE 476/878 Lecture 6: Bayesian Learning and Graphical Models Stephen Scott Introduction Outline Bayes Theorem Formulas Bayes Optimal Classifier Naïve Bayes Classifier Bayes Nets Crastional Indap	 Sometimes naïve Bayes assumption of conditional independence too restrictive But inferring probabilities is intractable without some such assumptions Bayesian belief networks (also called Bayes Nets) describe conditional independence among subsets of variables Allows combining prior knowledge about dependencies among variables with observed training data

- s for which $r = r_i$,
- h $r = r_i$ and $x_i = v_{ik}$

- umber of "virtual"

Nebraska

Stephen Scot

troduction

Dutline

Bayes Theorem

ormulas

Bayes Optima

laïve Bayes

es Net

Nebraska

Bayesian Belief Networks Conditional Independence

Definition: X is conditionally independent of Y given Z if the probability distribution governing X is independent of the value of Y given the value of Z; that is, if

$$(\forall x_i, y_j, z_k) P(X = x_i \mid Y = y_j, Z = z_k) = P(X = x_i \mid Z = z_k)$$

more compactly, we write

Bayesian Belief Networks

0.4

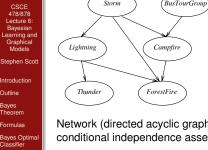
$$P(X \mid Y, Z) = P(X \mid Z)$$

Example: Thunder is conditionally independent of Rain, given Lightning

 $P(Thunder \mid Rain, Lightning) = P(Thunder \mid Lightning)$

Naïve Bayes uses conditional independence and product rule to justify

$$P(X, Y \mid Z) = P(X \mid Y, Z) P(Y \mid Z)$$
$$= P(X \mid Z) P(Y \mid Z)$$



Outline

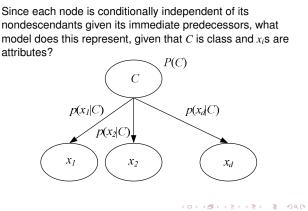
Naïve Bayes

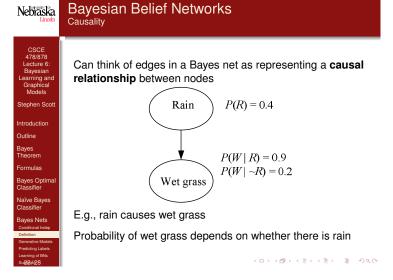
iyes Nets



Network (directed acyclic graph) represents a set of conditional independence assertions:

- Each node is asserted to be conditionally independent of its nondescendants, given its immediate predecessors
- E.g., Given Storm and BusTourGroup, Campfire is CI of Lightning and Thunder ・ロト・1回ト・1回ト・1回ト・回・9へで





Nebraska	Bayesian Belief Networks Generative Models	Nebraska Lincoln	Bayesian Belief Networks Predicting Most Likely Label
CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models	Sterr Tail medication Explanar Complex Thanker Conceller	CSCE 478/878 Lecture 6: Bayesian Learning and Graphical Models	We sometimes call Bayes nets generative (vs discriminative) models since they can be used to generate instances $\langle Y_1, \ldots, Y_n \rangle$ according to joint distribution
Stephen Scott	Represents joint probability distribution over variables	Stephen Scott	Can use for classification
Introduction	$\langle Y_1, \ldots, Y_n \rangle$, e.g., $P(Storm, BusTourGroup, \ldots, ForestFire)$	Introduction	
Outline Bayes Theorem	• In general, for y_i = value of Y_i	Outline Bayes Theorem	 Label r to predict is one of the variables, represented by a node
Formulas Bayes Optimal Classifier	$P(y_1,\ldots,y_n) = \prod_{i=1}^n P(y_i \mid Parents(Y_i))$	Formulas Bayes Optimal Classifier	 If we can determine the most likely value of r given the rest of the nodes, can predict label
Naïve Bayes Classifier Bayes Nets Conditional Indep	where $Parents(Y_i)$ denotes immediate predecessors of Y_i in graph • E.g., $P(S, B, C, \neg L, \neg T, \neg F) =$	Naïve Bayes Classifier Bayes Nets Conditional Indep	 One idea: Go through all possible values of r, and compute joint distribution (previous slide) with that value and other attribute values, then return one that
Definition Generative Models Predicting Labels	$P(S) \cdot P(B) \cdot P(C \mid B, S) \cdot P(\neg L \mid S) \cdot P(\neg T \mid \neg L) \cdot P(\neg F \mid S, \neg L, \neg C)$	Definition Generative Models Predicting Labels	maximizes

Nebraska

Stephen Sco

ntroduction

Outline

Bayes Theorem

ormulas

Bayes Optin

laïve Baye

es Net

Bayesian Belief Networks Predicting Most Likely Label (cont'd)

E.g., if *Storm* (*S*) is the label to predict, and we are given values of *B*, *C*, $\neg L$, $\neg T$, and $\neg F$, can use formula to compute $P(S, B, C, \neg L, \neg T, \neg F)$ and $P(\neg S, B, C, \neg L, \neg T, \neg F)$, then predict more likely one

Easily handles unspecified attribute values

Issue: Takes time exponential in number of values of unspecified attributes

More efficient approach: **Pearl's message passing** algorithm for chains and trees and polytrees (at most one path between any pair of nodes)

Netraska Learning of Bayesian Belief Networks

Several variants of this learning task

- Network structure might be known or unknown
- Training examples might provide values of all network variables, or just some

If structure known and all variables observed, then it's as easy as training a naïve Bayes classifier:

- Initialize CPTs with pseudocounts
- If, e.g., a training instance has set *S*, *B*, and ¬*C*, then increment that count in *C*'s table
- Probability estimates come from normalizing counts

C	4						
C	4	1	8	2	1		
$\neg C$	6	10	2	8		_	

Learning of Bayesian Belief Networks

Suppose structure known, variables partially observable

E.g., observe *ForestFire, Storm, BusTourGroup, Thunder*, but not *Lightning, Campfire*

- Similar to training neural network with hidden units; in fact can learn network conditional probability tables using gradient ascent
- Converge to network *h* that (locally) maximizes *P*(*D* | *h*), i.e., maximum likelihood hypothesis
- Can also use EM (expectation maximization) algorithm
 Use observations of variables to predict their values in
 - cases when they're not observed
 - EM has many other applications, e.g., hidden Markov models (HMMs)

Nebraska Linon Bayesian Belief Networks Summary

CSCE 478/878 Lecture 6: Bayesian earning and Graphical Models ephen Scott

tephen Sco

ntroduction

Outline

Bayes Theorem

Formulas

Bayes Optima Classifier

Naïve Bayes

Bayes Nets

- Combine prior knowledge with observed data
- Impact of prior knowledge (when correct!) is to lower the sample complexity
- Active research area
 - Extend from boolean to real-valued variables
 - Parameterized distributions instead of tables
 - More effective inference methods

 $\langle \Box \rangle + \langle \overline{B} \rangle + \langle \overline{z} \rangle + \langle \overline{z} \rangle - \overline{z} - \langle O \langle O \rangle$

ntroduction Dutline Bayes Theorem

ormulas

Bayes Optima

laïve Baye