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Wevet=Y |ntroduction

Lincoln

CSCE ; )
478/878 Consider humans:

Lecture 5:

Artifcial @ Total number of neurons ~ 10'°

Neural
Networks and @ Neuron switching time ~ 103 second (vs. 10~19)
ectoy @ Connections per neuron ~ 10*-10°
Machines . .
@ Scene recognition time = 0.1 second
@ 100 inference steps doesn’t seem like enough

= much parallel computation

Stephen Scott

Introduction

Outline

Lineets Properties of artificial neural nets (ANNSs):

Units

@ Many neuron-like threshold switching units

Nonlinearly

Separable @ Many weighted interconnections among units
S @ Highly parallel, distributed process
S @ Emphasis on tuning weights automatically

Strong differences between ANNs for ML and ANNs for
biological modeling
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Neural
Networks and

Support @ Input is high-dimensional discrete- or real-valued (e.g.,
Maghines raw sensor input)
Sleprenect @ Output is discrete- or real-valued

Introduction @ Output is a vector of values

outine @ Possibly noisy data

E'Er:e}rhold @ Form of target function is unknown

Nonlinearly @ Human readability of result is unimportant
Pratioms. @ Long training times acceptable

Backprop

SVMs
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Outline

@ Linear threshold units and Perceptron algorithm
@ Gradient descent

@ Multilayer networks

@ Backpropagation

@ Support Vector Machines
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Stephen Scott

n
Lif X w,x:>0
i=0 !t

1 otherwise

Introduction

+1 ifwo+wix;+---+wux, >0
Outline y= O(XI’ e ’x") - —1 otherwise

Linear
Threshold
Units

(sometimes use 0 instead of —1)

Perceptron Training
Rule

Pt Sometimes we’ll use simpler vector notation:
gonline;rly .

eparable

Prc?blems y= O(X) — { i_i gt::er)\jv;eo
Backprop

SVMs
5/52
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Decision Surface

Represents some useful functions
@ What weights represent g(x;,x,) = AND(x1,x;)?
But some functions not representable

@ l.e., those not linearly separable
@ Therefore, we’ll want networks of neurons
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iy t+1 t t t t 1\ Lt
Networks and —
i Wit wj —i—AwJ , Where ij n(r y)xj
Vector

Machines and
Stephen Scott

@ /' is label of training instance ¢

Introduction

Outline @ ' is perceptron output on training instance ¢

tnear @ 7 is small constant (e.g., 0.1) called learning rate

Units
w0 L e, if (7 —y') > 0 then increase w) w.r.t. x/, else decrease
s

Nonlinearly Can prove rule will converge if training data is linearly
P separable and 7 sufficiently small

Problems

Backprop

SVMs
7152
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r8s78 @ Consider simpler linear unit, where output
ecture o:

Artificial

N | r__ ] r ot r ot
Netwgtjl:saand y = W0+w1 X1 +oe +ann

Support

Machines (i.e., no threshold)
Stephen Scott @ For each example, want to compromise between
traduction correctiveness and conservativeness
outline e Correctiveness: Tendency to improve on x’ (reduce
Linear error)
T e Conservativeness: Tendency to keep w't! close to w’
(minimize distance)
@ Use cost function that measures both:

Approaches

Nonlinearly
Separable
Problems

curr ex, new wts

U(w) = dist (Wt“,wt) +nerror | ¥, wtl . x!

Backprop

SVMs
8/52
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=

E (w))

E (Wt+1)

Gradient Descent

wt

Wt+1
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Introduction
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Implementation
Approaches

Nonlinearly
Separable
Problems
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Backprop —
SVMs ow
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Gradient Descent (cont'd)
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Neural .
Networks and conserv. corrective

Support e e coef. —_—N—
e Uw) = W = wB T - w )

Stephen Scott

n 2 n
_ Z 141 ! ! I+1 1
Introduction - (Wj B Wj) |- Z WJ xj
Outline j=1 J=1

Linear

e Take gradient w.r.t. w't! (i.e., 9U /0w ") and set to 0:

Perceptron Training
Rule
e n

1 t t E : 1t t
Nonlinearly 0=2 (\'V-+ — Wi) — 277 r — W']-+ xj X;
Separable . .
Problems =1

Backprop

SVMs
11/52
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Support
Vector

Machines n
_ t+1 t t 2 : 1ot t

Stephen Scott 0=2 (Wi — Wi) — 277 r— wj 'xj X,
Introduction J=1
Outline . .

: which yields
Linear
Threshold
Units Aw§

Perceptron Training

Rule /—’%
Implementation 1 ot t t t

Apzroacn;s‘ Wi - wi + n (r -y ) xi

Nonlinearly
Separable
Problems

Backprop

SVMs
12/52
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Artificial . .
e @ Can use rules on previous slides on an
e example-by-example basis, sometimes called
honor incremental, stochastic, or on-line GD
e Has a tendency to “jump around” more in searching,

which helps avoid getting trapped in local minima

Introducti . . .

(:":, e @ Alternatively, can use standard or batch GD, in which
utiine e . .

) the classifier is evaluated over all training examples,

Threshold summing the error, and then updates are made

Units e l.e., sum up Aw; for all examples, but don’t update w;

Perceptron Training

Rule . .
until summation complete

Implementation

’*""’ms e This is an inherent averaging process and tends to give
Nonlinearly better estimate of the gradient

Separable
Problems

Stephen Scott

Backprop

SVMs
13/52
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4
Stephen Scott A:(0.0) ﬁ \ 220 C: (1, 0)

gx) <
Introduction
Outline Represent with intersection of two linear separators
U
Tlt?rzasrhold
Units gl(X):1~X1—‘r1~X2—l/2
Nonlinearly
S o]
S X)) =1-x+1-x—3/2

General Nonlinearly
Separable Problems

pos = {x € R? : g;(x) > 0 AND g»(x) < 0}
Slfe neg = {x € R?: gi(x),g2(x) < 0 OR gi(x), g2(x) > 0}

14/52

Backprop
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Handling Nonlinearly Separable Problems

The XOR Problem (cont’d)

0 if i <0
Letz; = g(X).
1 otherwise
Class (xmcz) ga(x) z1 | (x) 2
pos B:(0,1)] 1/2 1 [—-1/2 0
pos C:(1,0)| 1/2 1 |-1/2 O
neg A:(0,0)| -1/2 0 |-3/2 0
neg D:(1,1)| 3/2 1] 1/2 1
Now feed z;, 22 IntOg( loz1—2-22—1/2
g(2)
D: (1, 1)<°>'
0O s >0
neg ,’,,pos
€, // @ Zl
A:00),-"  B,C:(10)



ey Handling Nonlinearly Separable Problems
Lincoln The XOR Problem (COnt’d)

saars In other words, we remapped all vectors x to z such that the

Lecture 5:

Artficial classes are linearly separable in the new vector space
Neural . w,= —1/2
Networks and Hidden Layer 30
Support < Jr—
Vector 7

Machines

Outline

Linear w,=1 : i Wy /\JOutput
Threshold : i P Layer

Units

Stephen Scott

Input Layer

Introduction

Nonlinearly Wy =372
Separable

Problems This is a two-layer perceptron or two-layer feedforward
=g neural network

Separable Problems

I Each neuron outputs 1 if its weighted sum exceeds its
S¥ifs threshold, 0 otherwise

16/52
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Lect 5: . .
Artiicial By adding up to 2 hidden layers of perceptrons, can
Wil cpresent any union of intersection of halfspaces
S t
Vegtor
Machines neg

Stephen Scott

Introduction
pos

Outline neg

Linear
Threshold
Units pos neg
pos

Nonlinearly

Separable
Problems
XOR

General Nonlinearly
Separable Problems

First hidden layer defines halfspaces, second hidden layer

T takes intersection (AND), output layer takes union (OR)

SVMs

17/52
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o(net) is the logistic function
Stephen Scott

net=2 w; x; 1
i=0 1l 0 = o(net) = —————
“net

I+e

Introduction 1
Outline 1 + e—net
Linear i

Threshold Squashes ner into [0, 1] range

Nonlinearly

Separable Nice property:

Problems

Backprop do’ (x)

o = o =)

Training Multilayer
Networks

Backprop Alg

G Continuous, differentiable approximation to threshold
Reh&52
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Networks and

Support 1 5

Ve

e Ew) =3 (7 =)
Stephen Scott

, (folding 1/2 of correctiveness into error func)

Introduction
Outline OE 0 1 2
Linear ThUS 8 t = awl‘ 5 (rt _yt)
Threshold Wj J
Units
Nonlinearly 1 a ayt
S bl
ey =520 =) 52 (P =) = (P =) |5
Backprop J J

Sigmoid Unit
Muliilayer Networks

Training Multilayer
Networks

Backprop Alg

Overlitting

Reh@52
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Backprop
Sigmoid Unit

Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overlitting

ReR52

Sigmoid Unit

Gradient Descent (cont'd)

Since y' is a function of ner’ = w' - X/,

OE (=) dy"  Onet'
8th- Y Onet! 8wjt.

— (P —y) Jo (net') Onet'

Onet! 6wj’-

= (=Y (=)

Update rule:

Wit =i (1) (7 - ) 5
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Nonlinearly
Separable
Problems

Backprop
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overfitting

Re@d52

Multilayer Networks

Ui = Input Trom 1 {0
Xy=1 w,; = Wt fromito ]

g\. ! Wn+3’n+ net n+3 y n+3
2 5 6y —

=

=9

=

)

xn
%ﬂ,\ Q y n+4
1+ nerN+E= W, 4ns2 “net n+4
n+2,0
Hidden layer Output Layer
Use sigmoid units since continuous and differentiable
1 2
E'=E(W) = 3 Z (rfc —yfc)
k€outputs
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Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Overlitting
ReR@D2

Training Multilayer Networks
Output Units

Adjust weight w;

L. according to E' as before

For output units, this is easy since contribution of w]’.,. to E'

when j is an output unit is the same as for single neuron
case', i.e.,

O (1 3y (1= yl) oy = i,
aw]t'i J J/ 7] J/ T J 7T
where 6! = gm, error term of unit j

'This is because all other outputs are constants w.r.t. w);
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Training Multilayer
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Backprop Alg
Overfitting

ReR@ld2

Training Multilayer Networks
Hidden Units

@ How can we compute the error term for hidden layers
when there is no target output r’ for these layers?

@ Instead propagate back error values from output layer
toward input layers, scaling with the weights

@ Scaling with the weights characterizes how much of the
error term each hidden unit is “responsible for”
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Backprop Alg
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ReRd/52

Training Multilayer Networks
Hidden Units (cont'd)

The impact that w}; has on E' is only through net; and units

immediately “downstream” of ;:

OE! OE! anett
8w]’l 8net’ 8w
Onet!
o t k
= i Z _ — Onet!
kedown(j) 7
0y

kedown(j)

t
—Ocwy Onet!

t

= Xj; E
!

= Xj; E

OE' Onet,
Onet;, 8net’

D

kedown(])

o Onet,  Oy;
k dyj Onet;

kedown(j)

— 0 wi v (1 =)

kedown(j)

Works for arbitrary number of hidden layers
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Backpropagation Algorithm

SOk e ,
Sk Initialize all weights to small random numbers

Lecture 5:
Artificial

\ifica Until termination condition satisfied do

Networks and

Support @ For each training example (r’, x") do

Maghines @ Input x' to the network and compute the outputs y’
Stephen Scott @ For each output unit &

Introduction 5;( — y;c (1 - y;) (r]tc - yi)

Outline @ For each hidden unit

Linear
Threshold

Units 5;1 <~ y;l (1 - y;1) Z ch,h 5]1(

Nonlinearly kedown(h)

Separable )
@ Update each network weight w!,

Problems
Backprop . ; .
Sigmoid Uit wo—wh .+ AW )
Multilayer Networks Jst Js5l Jst

Training Multilayer

e where

Backprop Alg

r t .1
oning, AW =10, %;
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Backpropagation Algorithm

Example

target =

fix)=1/(1+exp(- x)) trial 2:a=0,b=1,r

r

trial 1:a=1,b=0,r

a ca

sum Ye sum y

<l 7 (q) [ F] "4
b We o
cb w
/T\WCO ﬁ\ do
eta 0.3
trial 1 trial 2

w_ca 0.1..0.1008513 : 0.1008513
w_ch 0.1 0.1...0.0987985
w_c0 0.1..0.1008513 . 0.0996498
a 1 0 |
b 0 1 target 1 0
const 1 1 delta_d 0.1146431 : -0.136083
sum_c 0.2..0.2008513 delta_c 0.0028376 . -0.004005
v.c 0.5498340 . 0.5500447
w_dc 0.1 0.1189104 = 0.0964548 |delta_d(t) =y_d() * (r(t)-y_d(t).* (1.-y_d(t)
w_do 0.1 0.1343929  0.0935679 |delta_c(t) =y_c(t) * (1 - y_c(t)) * delta_d(t) * w_dc(t
sum_d 0.1549834  0.1997990 w_dc(t+1) = w_dc(t) +eta ™ y_c(t) * delta_d(t)
y.d 0.5386685  0.5497842 w_ca(t+1) =w_ca(t) + eta * a * delta_c(t)
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Artificial

Neto @ When to stop training? When weights don’t change
bt much, error rate sufficiently low, etc. (be aware of

Machines overfitting: use validation set)

@ Cannot ensure convergence to global minimum due to

myriad local minima, but tends to work well in practice
(can re-run with new random weights)

'Iltwrzasrhold

yiles @ Generally training very slow (thousands of iterations),
Nonlinearly use is very fast

e @ Setting : Small values slow convergence, large values
Backprop might overshoot minimum, can adapt it over time

Sigmoid Unit
Multilayer Networks

Stephen Scott

Introduction

Outline

Training Multilayer
Networks

Backprop Alg
Overfitting

Re@dsD2



ety Backpropagation Algorithm
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Error versus weight e 1)

updates (exampls
T

0.01
CSCE N ' . '
478/878 0009 Fo Training set error o 4
Validation set error +
Lecture 5: 0.008 1
Artificial 0007
Neural 5
Networks and £ 0006
Support 0.005
Vector 0.004
Machines 0.003
Stephen Scott 0.002
0 5000 10000 15000 20000
Number of weight updates
Introduction Error versus weight updates (example 2)
utiine 008 ey T T T
007 | * Training set error « 4
i Validation set error +
Linear 006 4
Threshold
Units 0
2 004 |
i =)
Nonlinearly 003 |
Separable
Problems 002
001
Backprop o . y
S 0 1000 2000 3000 4000 5000 6000

Multilayer Networks Number of weight updates

Training Multilayer
Networks

Backprop Alg

Overting Danger of stopping too soon!
52
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Re:narks

@ Alternative error function: cross entropy

Backpropagation Algorithm

Remarks

E' = Z (r,tclnyf( + (1 — r,’() In (1 —yz))

kEoutputs

“blows up” if r; = 1 and y, =~ 0 or vice-versa (vs.
squared error, which is always in [0, 1])

@ Regularization: penalize large weights to make space

more linear and reduce risk of overfitting:

o

>

k€outputs

2
=)+
iy
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Wi  Representational power:
Support
Vector

Machines @ Any boolean function can be represented with 2 layers
Stephen Seal @ Any bounded, continuous function can be represented
Introduction with arbitrarily small error with 2 layers

outine @ Any function can be represented with arbitrarily small
Threshaid error with 3 layers

Units

Nonli | H H

Sl Number of required units may be large

Problems

Backprop May not be able to find the right weights

Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overfitting
Remarks
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Erewl  Recurrent Networks (RNNs) used to handle time series

Support

Vector data (label of current example depends on past exs.)

Machines

Stephen Scott * ye +1

Introduction
Outline

Linear
Threshold
Units

Nonlinearly x(1)

Separable

Problems

(a) Feedforward network

Backprop
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg
Overfitting

Reddnsd2

*y(t+1)

x(1) c(t)

(b) Recurrent network
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Training Recurrent NNs

@ Unroll the recurrence
through time and run
backprop

@ Train as one large

network, using

sequences of examples

@ Then average weights
together

x(t-1)

(c) Recurrent network
unfolded in time

c(t-1)

x(t—2)

c(t-2)
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CSCE
araere @ Hypothesis space # is set of all weight vectors
ecture 5: . ; o

el (continuous vs. discrete of decision trees)

Networks and

Support @ Search via Backprop: Possible because error function

Vector

s and output functions are continuous & differentiable

Stephen Scott @ Inductive bias: (Roughly) smooth interpolation between
Introduction data pOintS

Outline
4000,

Linear
Threshold
Units

o head

s hid

+ hod

» had

© haved
v heard
© heed

<hud

> who'd
» hood

Nonlinearly
Separable 2
Problems (z)

Backprop 1000
Sigmoid Unit
Multilayer Networks

Training Multilayer
Networks

Backprop Alg

Overfitting

Red@lsd2
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N Similar to ANNs, polynomial classifiers, and RBF networks
hesesiid  in that it remaps inputs and then finds a hyperplane

Vector
Machines

@ Main difference is how it works
Stephen Scott

Introduction Features of SVMs:
QOutline

Linear @ Maximization of margin
Threshold

Units ("] Duality

Nonlinearly

Separable @ Use of kernels

rropiems @ Use of problem convexity to find classifier (often

Back| . ..
. without local minima)

Margins
Duality
Kernels

Types of Kernels
svd/
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Margins
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Support Vector Machines

Margins

Support vectors (with
minimum margin) uniquely
define hyperplane (other
points not needed)

@ A hyperplane’s margin ~ is the shortest distance from it
to any training vector

@ Intuition: larger margin = higher confidence in
classifier’s ability to generalize
e Guaranteed generalization error bound in terms of 1/~?
(under appropriate assumptions)
@ Definition assumes linear separability (more general
definitions exist that do not)
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Margins
Duality

Kernels

Types of Kernels
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Support Vector Machines
The Perceptron Algorithm Revisited

wo < 0,bg 0,m« 0,7 € {—1,+1}Vt
While mistakes are made on training set

@ Fort=11to N (= # training vectors)
o If r' (W, X' +by) <0
@ Wyt1 — Wy +nr' X
@ byy1 < by +nr
@ m+ m+1

Final predictor: h(x) = sgn (W, - X + by,)



e Support Vector Machines

Bl The Perceptron Algorithm Revisited (partial example, 7 = 0.1)

wil w2 b sum |a
1 04 -03 -02| -0.7
1| 04 -03 -02| 09
1 04 -03 -02| 13
-1 02 -04 -03| 03
-1 02 -04 -03| -0.7
-1 02 -04 -03| -0.1
1 02 -04 -03| 01
1| 07 -01 -0.2| -05
1| 07 -01 -0.2| 3.7
-1 0.5 -02 -0.3| 11
-1 0.3 -04 -04( 03
-1 0 -05 -0.5| 0.1
-04 -04 -1
1 0.4 -04 -04( 04
1 04 -04 -04| 08
-1 02 -05 -0.5 0
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A’\;tif\cial At this pOint, W =
eural
Networks and

Support Can compute
Machines w1 = n(alrlx} + a2r2x% + a4r4x‘1‘ + a5r5x? + a6r6x

6) —
LR 0.1(7(1)4 + 1(1)5 + 8(—1)2+ 2(~1)2 + 4(—1)3) = 0.1
Introduction ( g)
)

wy = nlagr X+a2rx2+a4rx2+a5rx§+a6r6
Linear 1( (1 1+ 1( 3+8( ) +2( 1)2+4(—1>1)):_06
Threshold

Units |_e_,

Nonlinearly

N
Separable tt
Problems wW=n E osr'X

(0.1,—-0.6), b = —0.6, a = (7,1,0,8,2,4)

Outline

Backprop
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(a; =

Another way of representing predictor:

Support Vector Machines
Duality

N
h(x) = sgn(w-x + b) = sgn Z oar'x) - x+b
=1

= sgn nZa,r’ (x'-x)+b
=1

# prediction mistakes on x’)
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CSCE
478/878
Lecture 5:

ecture S So perceptron algorithm has equivalent dual form:

Neural

Networks and a+—0.b+0
Support ’

Vector
Machines While mistakes are made in For loop
Stephen Scott

_— @ Fort=11to N (= # training vectors)
ntroduction
Outline o Ifr (77 Z]N:I ajrf (¥ -x') + b) <0

Linear
Threshold 1
Units Q= +

Nonlinearly

!
Separable b« b + nr
Problems

Backprop

Replace weight vector with data in dot products
SVMs
So what?

Duality
Kernels

Types of Kernels
S0/



N BNVERSWV]OF

Lincoln

CSCE
478/878
Lecture 5:
Artificial
Neural
Networks and
Support
Vector
Machines

Stephen Scott

Introduction
Outline
Linear

Threshold
Units

Nonlinearly
Separable
Problems

Backprop

SVMs
Margins

Duality

Kernels

Types of Kernels
svfid /52

XOR Revisited

) D: (+1,+1)
[ O

O ®
A: (-1,-1)| C:(+1,-1)
Remap to new space:

P(x1,x2) = |:x%7'x27 \/ixlxz, \f2x1, \f2x2, 1}
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XOR Revisited (cont’d)

remapped vector (scaling v/2 to 1):
»2

C:(-1,41) |D:(+1,+1)

® O

Now consider the third and fourth dimensions of the

B: (-1,-1) A: (+1,-1)
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XOR Revisited (cont’d)

@ Can easily compute the dot product ¢(x) - ¢(z) (where
x = [x1, x2]) without first computing ¢:
K(x,z) = (x-z+1)* = (x121 + X220 + 1)°

(x121)% + (0222)? + 2x121%022 + 2x121 + 23020 + 1

= [x%,xz,\@xlxg,\@xl,\@xg,l]

#(x)
. [z%,z%, \/511 22, \/521, \f2z2, 1]

/

o(2)

@ l.e., since we use dot products in new Perceptron

algorithm, we can implicitly work in the remapped y
space via k
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Kernels

@ A kernel is a function K such that Vx, z,
K(x,z) = ¢(x) - 4(z)
@ E.g., previous slide (quadratic kernel)

@ In general, for degree-¢ polynomial kernel, computing

(x -z + 1)7 takes ¢ multiplications + 1 exponentiation for
x,z € R¢

@ In contrast, need over (“*¢~") > (HqT*l)q
multiplications if compute ¢ first
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Kernels (cont'd)

@ Typically start with kernel and take the feature mapping
that it yields

@ Eg,letl=1,x=x,2=12z K(x,z) = sin(x — 2)
@ By Fourier expansion,

o0 o0

sin(x—z) = ao—i-z ap sin(n x) sin(n z)+2 a, cos(nx) cos(nz)

n=1 n=1
for Fourier coeficients ag, ay, . ..

@ This is the dot product of two infinite sequences of
nonlinear functions:

{0i(x)}2, = [1,sin(x), cos(x), sin(2x), cos(2x), . . .]

@ l.e., there are an infinite number of features in this
remapped space!
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%" —x]>

)

(b) $?=0.5
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Types of Kernels
Others

Hyperbolic tangent:
K(x',x) = tanh (2x' - x + 1)
(not a true kernel)

Also have ones for structured data: e.g., graphs, trees,
sequences, and sets of points

In addition, the sum of two kernels is a kernel, the product of
two kernels is a kernel

Finally, note that a kernel is a similarity measure, useful in
clustering, nearest neighbor, etc.
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BRIl Finding a Hyperplane

CSCE
LoeTe. Can show that if data linearly separable in remapped space,
e then get maximum margin classifier by minimizing w - w

1 t t
RSl subject to ' (w-x' +b) > 1

Vector

Machines

Can reformulate this in dual form as a convex quadratic

il program that can be solved optimally, i.e., won’t

Introduction encounter local optima:

Outline

_ N

Linear L. 1 i Jj i o
Threshold maximize E Qp — = g Q; QG r 'K (X ,xf)
Units (87 2 —

Nonlinearly =1 . )
Separable s.t. o > 0,1 = 1, oo, m

Problems

N

Backj |

ackprop E Q; =0
SVMs

Margins i=1

Duality
Kernels

Types of Kernels
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Wbl After optimization, label new vectors with decision function:

Support
Vi
Maiﬁtiﬁoras N

Stephen Scott f(X) = sgn Z Q; r K(X, Xt) +b

i=1
Introduction

Outline

(Note only need to use x’ such that o, > 0, i.e., support
'II_'It?rzasrhold VectorS)

Units

N— Can always find a kernel that will make training set linearly

Sepaees separable, but beware of choosing a kernel that is too
T powerful (overfitting)

SVMs
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Support Vector Machines
Finding a Hyperplane (contd)

variables ¢':

N
c e 2 i

minimize ||w||“*+C)» &
ninjae[wlf + 3

s.t. F(x-w)+b)>1 ¢

&€>0,i=1,...,N
The dual is similar to that for hard margin:

N
max(ilmize g ai—E a;air' P K(x',x/)

i=1 i
s.t. 0<o;<C,i=1,..

N
Zairizo

i=1
Can still solve optimally

— P

N

If kernel doesn’t separate, can soften the margin with slack

N
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Support Vector Machines
Finding a Hyperplane (contd)

If number of training vectors is very large, may opt to
approximately solve these problems to save time and space

Use e.g., gradient ascent and sequential minimal
optimization (SMO)

When done, can throw out non-SVs
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