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Input is high-dimensional discrete- or real-valued (e.g.,
raw sensor input)

@ Output is discrete- or real-valued
@ Output is a vector of values

Ruile @ Possibly noisy data
o
o
o

Stephen Scott

Introduction

Eil?r(:éjho\d Form of target function is unknown
Human readability of result is unimportant
Long training times acceptable

Nonlinearly
Separable
Problems

Backprop
SVMs
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Linear Threshold Units
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Support it 1if b x:>0
Vector S oW, i=0 o= ! i=20w’ i
Machines -1 otherwise

Stephen Scott

Introduction _ o(x . ) - +1 if wo +wixy + -+ wpx, > 0
YEZOWL W) =) otherwise

Linear
Threshold

(sometimes use 0 instead of —1)

Sometimes we’ll use simpler vector notation:

Nonlinearly

Separ .
Pratioms y=o(x) = { +1 Ifw~x.>0
Backprop —1 otherwise

SVMs
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Introduction

joscE Consider humans:
78/878
Lecture 5:
Artificial
Neural

@ Total number of neurons ~ 10'°
Networks and @ Neuron switching time ~ 1073 second (vs. 10719)
e @ Connections per neuron ~ 10*-10°
@ Scene recognition time ~ 0.1 second
@ 100 inference steps doesn’t seem like enough
= much parallel computation

Stephen Scott

Introduction

Outline

Ly Properties of artificial neural nets (ANNSs):
nreshol
Units

@ Many neuron-like threshold switching units
@ Many weighted interconnections among units
@ Highly parallel, distributed process

Nonlinearly
Separable
Problems

Backprop
S @ Emphasis on tuning weights automatically

Strong differences between ANNs for ML and ANNSs for
biological modeling

Y Outiine
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Linear threshold units and Perceptron algorithm
Gradient descent

Multilayer networks

Backpropagation

Support Vector Machines

Stephen Scott
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Separable
Problems
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SVMs
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Introduction

Linear Represents some useful functions
Threshold

@ What weights represent g(x;,x2) = AND(x1,x2)?

But some functions not representable

Nonlinearly

Separable
Problems

@ l.e., those not linearly separable
Backprop

SVMs @ Therefore, we’ll want networks of neurons
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t+1 1 ! ! _ ! ! !
Wi wi+ Aw; , where Aw; =7 (7' — ') x]

and

Stephen Scott
@ /' is label of training instance ¢

Outiine @ ' is perceptron output on training instance ¢

Linear @ 1 is small constant (e.g., 0.1) called learning rate

Introduction

Percepiron Training
Rule

le., if (' — ") > 0 then increase w! w.rt. x}, else decrease

Can prove rule will converge if training data is linearly
separable and 7 sufficiently small

Nonlinearly
Separable
Problems

Backprop
SVMs
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Gradient Descent
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E(w!)

E (Wt+1) \

Stephen Scott

Introduction
Outline

Linear
Threshold

Percepiron Training
Rule

Nonlinearly wt wi+l
Separable SR
Problems n

Backprop
SVMs
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Gradient Descent (cont’d)
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Vector _ t+1 02 ANt t+1 n2

Machines Ulw) = W™ = w2+ (' —w™" X
Stephen Scott n N 2

2
— § : 1+1 t t } : 1t

Introduction = (Wj - W]) +nlr— Wj X]
Outline Jj=1 j=

Linear
[reshold Take gradient w.r.t. w'*! (i.e., 9U/ow!™") and set to 0:

Percepiron Training
Rule

n

Nonlinearly 0=2 (WIH—1 — W:) - 277 r' — E H/I-+l xjt- X;
Separable N /
Problems Jj=1

Backprop

SVMs
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Where Does the Training Rule Come From?

CSCE
478/878
Lecture 5:
Artificial
Neural
Networks and
Support
Vector
Machines

@ Consider simpler linear unit, where output
Yo=wh+wix + o+ wh X

(i.e., no threshold)

@ For each example, want to compromise between
correctiveness and conservativeness
o Correctiveness: Tendency to improve on x' (reduce
error)
o Conservativeness: Tendency to keep w't! close to w’
(minimize distance)

@ Use cost function that measures both:

Stephen Scott

Introduction
Outline

Linear
Threshold

Percepiron Training
Rule

Nonlinearly
Separable
Problems

curr ex, new wis'

. t+1 t 1 t+1 1
a— U(w) = dist (W', w') +nerror | r, w! . x

SVMs
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Introduction
Outline

Linear
Threshold

Percepiron Training
Rule

Nonlinearly
Separable
Problems

ou ou  oU
" Owy,

ou _[ou ou
6w_ 8W078W17

Backprop
SVMs
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Gradient Descent (cont’d)
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Machines n
_ t+1 t ! rot 1
Stephen Scott 0=2 (wl_ — Wi) — 27] r— Wf xj X;
Introduction J=1
Outline . .
; which yields
Linear
Threshold
Aw}
Perceptron Training
= +1 t t 1\
I —
w; w;+n (r -y ) X;

Nonlinearly
Separable
Problems

Backprop

SVMs
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Implementation Approaches
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e @ Can use rules on previous slides on an
nen example-by-example basis, sometimes called
yector incremental, stochastic, or on-line GD
e Has a tendency to “jump around” more in searching,

which helps avoid getting trapped in local minima

@ Alternatively, can use standard or batch GD, in which
the classifier is evaluated over all training examples,
summing the error, and then updates are made

e l.e., sum up Aw; for all examples, but don’t update w;
until summation complete

o This is an inherent averaging process and tends to give
better estimate of the gradient

Stephen Scott

Introduction
Outline

Linear
Threshold
Unit:

Implementation
Approaches

Nonlinearly
Separable
Problems

Backprop
SVMs
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Handling Nonlinearly Separable Problems
The XOR Problem (cont'd)

ool Letz — 0 ifgi(x)<0

P 1 otherwise

Neural
Moo Class  (x1,x2) | g1(x) z1 | &(x) 2

) pos B:(0,1)| 12 1|-1)2 0
Stephen Scott pOS C: (1, 0) 1/2 1 —1/2 0
ot neg A:(0,0) | -1/2 0]-3/2 0
o neg D:(1,1)| 3/2 1] 1/2 1
Linear Now feed z;, pintog(z) =121 —2-2,—1/2
Threshold 2
Units g2
Nonlinearly D: (1,1) <0,>'
B ot
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Handling Nonlinearly Separable Problems

General Nonlinearly Separable Problems
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By adding up to 2 hidden layers of perceptrons, can
represent any union of intersection of halfspaces

Stephen Scott

Introduction

Outline neg

Linear
Threshold
Units pos neg
pos

Nonlinearly
Separable
Problems

XOR

First hidden layer defines halfspaces, second hidden layer
takes intersection (AND), output layer takes union (OR)

General Nonlinearly
Separable Problems

Vee Handling Nonlinearly Separable Problems
B The XOR Problem
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Stephen Scott A:(00) (7\\>n C: (1,0) \~, i

Introduction

Qi3 Represent with intersection of two linear separators
u

Threshold

Units gl(X):l-_)C]Jr]'Xz*l/Z

Nonlinearly
Separable
Problems

ox)=1-x+1-x,—-3/2

pos = {x € R?: g(x) > 0 AND g>(x) < 0}
neg = {x € R?: g;(x), g2(x) < 0 OR gi(x), g2(x) > 0}

Vee Handling Nonlinearly Separable Problems
EEIR The XOR Problem (cont'd)

CSCE

478/878 In other words, we remapped all vectors x to z such that the
Lecture 5:

Artificial classes are linearly separable in the new vector space

Neural -
Networks and Hidden Layer wy= =172
Support A\
Vector
Machines

Stephen Scott

Input Layes =
Introduction
Outline 5
Linear ’\J Output
Threshold Layer

Units

Nonlinearly
Separable
Problems

This is a two-layer perceptron or two-layer feedforward
neural network

Each neuron outputs 1 if its weighted sum exceeds its
threshold, 0 otherwise
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The Sigmoid Unit
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o(ner) is the logistic function

Stephen Scott

Introduction 1
Outline 1 4 e—net

Linear
Threshold
Units

Squashes net into [0, 1] range

Nonlinearly
Separable
Problems

Nice property:

do(x)
dx

=o(®)(1-o(x)

Sigmoid Unit

Continuous, differentiable approximation to threshold



e Sigmoid Unit j\EEtey Sigmoid Unit

B Gradient Descent ER  Gradient Descent (cont'd)

CSCE
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At Since y' is a function of net’ = w' - x/,

Neural

Again, use squared error for correctiveness:

Neural

Networks and Networks and
S Ny s OF _ _(p_y) 2 Onet
Machines E(w) = 5 (r =) Machines ow (" =) et Ow'!
Stephen Scott Stephen Scott ! P + /(9 ‘
(folding 1/2 of correctiveness into error func) = —(F =) 00 (net') Onet
Introduction Introduction 1 t
oF 5 1 Onet' 0w
Outline 2 Outline
Thus — ,(rf,yf) — (A V(1 =)
Li t i Li = y)y Y )X
Tll?rzz(ho\d awj aWj 2 Tll?rzz(ho\d ( ) ( ) /
Units Units
gonline;\ll\y 1 a ay, gonline;ny Update rUIe'
eparable eparable
Pr(?blems = E 2 (rt - yt) W (rt - yt) = (rt - yt) _W Pr(?blems ‘ ] P P ( t) ( p t) P
j i wi=wit+ny (1=y) (=Y xj‘
Sigmoid Unit Sigmoid Unit ! -

Multlayer Net

T \\ultilayer Networks \Aes Training Multilayer Networks

Lincoln Lincoln Output Units

ji = Input from 10
CSCE — 1 1
ey W, = wt from i to j
Lecture 5:
Artificial
Neural
Networks and
Support
Vector
Machines

CSCE
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Lecture 5:
Artificial
Wbl Adjust weight wl; according to E' as before
Support
Vector

Xeeiies For output units, this is easy since contribution of W}i to E!
genmee  when j is an output unit is the same as for single neuron
case', i.e.,

Input layer

Stephen Scott

Introduction Introduction

Outline Outline 8Et
! s 1 1 ! ()
U n — = — (= (1 — ) X = =4t XL
o~ ~ () (1) = =0
Units Units J
Nonlinearly 1 Nonlinearly .
Separable Hidden layer Output Layer Separable where § = — 2E — error term of unit j
Problems Problems J anetj
Backprop Use sigmoid units since continuous and differentiable
Mullayer Networks 1 2
t 1 1 t
E*E(W)*E Z (’k—)’k)
kEoutputs

'This is because all other outputs are constants w.r.t. w};

oo Training Multilayer Networks

Training Multilayer Networks
EEIR Hidden Units (cont'd)

Hidden Units
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CSCE
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gl The impact that wi; has on E' is only through net/ and units
e immediately “downstream” of j:

Networks and
Support

CSCE
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Networks and
Support

Machines @ How can we compute the error term for hidden layers Machines OE'  OE' Onet; OE'  Onet.,
Stephen Scott when there is no target output r* for these layers? Stephen Scott o, - Onett Ow'; =i  Onet}, Onet;
Introduction @ Instead propagate back error values from output layer Introduction ko
Outine toward input layers, scaling with the weights Outine . , Onet, , Onetl, Oy,
et @ Scaling with the weights characterizes how much of the et =i Z Tk et Z ~0 dy;, Onett
Units error term each hidden unit is “responsible for” Units kedown(j) ! kedown(j) !
Nonlinearly Nonlinearly 8y
spens el - D diwig o= D vy (1-)

kedown(j) 7 k€down(j)

Works for arbitrary number of hidden layers
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Backpropagation Algorithm
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Initialize all weights to small random numbers

Until termination condition satisfied do

@ For each training example (r’,x’) do
@ Input x’ to the network and compute the outputs y*
@ For each output unit k

Stephen Scott

Introduction O < i (=30 (re — )
@ For each hidden unit

Linear

Threshold

Units e (L0 D wiadt

kedown(h)

Outline

Nonlinearly
Separable
Problems

@ Update each network weight w,
Wi wi A+ Al

where
1 (A
Awj; =10 x;;

Backpropagation Algorithm

Remarks
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@ When to stop training? When weights don’t change
much, error rate sufficiently low, etc. (be aware of
overfitting: use validation set)

@ Cannot ensure convergence to global minimum due to
myriad local minima, but tends to work well in practice
(can re-run with new random weights)

@ Generally training very slow (thousands of iterations),
use is very fast

@ Setting n: Small values slow convergence, large values
might overshoot minimum, can adapt it over time

Stephen Scott

Introduction
Outline

Linear
Threshold
Units

Nonlinearly
Separable
Problems

Backpropagation Algorithm

Remarks
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@ Alternative error function: cross entropy

E' = Z (r,’clny,t( + (1 - r,’c) In (1 7y,’<))

ke€outputs

Stephen Scott

Introduction “plows up” if v, = 1 and y!, ~ 0 or vice-versa (vs.
squared error, which is always in [0, 1])
@ Regularization: penalize large weights to make space

more linear and reduce risk of overfitting:

1
E=2 30 (=) 72 )
i

kEoutputs

Outline

Linear
Threshold
Units

Nonlinearly
Separable
Problems

NI Backpropagation Algorithm

Lincoln Example

target = r

trial 1:a=1,b=0,r=1""

CSCE

478878 filx)=1/(1 +exp(-x)) trial2:a=0,b=1,r=0
Lecture 5:
Artificial a Méa
Neural
Networks and su Ye Sumd yd
Support f w f
Vector
Machines b ch de
w, Wdo
Stephen Scott c0
1 1
Introduction ota 03
Outline
) trial 1 trial 2
Linear w_ca 0.1:.0.1008513 : 0.1008513
[reshold w_cb 0.1 0.1 0.0987985
w_c0 0.1..0.1008513 | 0.0996498
Nonlinearly a 1 0
Separable b 0 1 target 1 0
Problems const 1 1 delta_d 0.1146431. -0.136083
sum_c 0.2..0.2008513 delta_c. 0.0028376 . -0.004005
y.C 0.5498340 0.5500447
w_dc 0.1..0.1189104 0.0964548 (delta_d(t) =y_d(t) * (F(t) -y_d(t) * (1-y_d(t)
w_do 0.1..0.1343929 0.0935679 (delta_c() =y_c(t) * (1 - y_c(t) * delta_d(t) * w_dc(t
sum_d 0.1549834 . 0.1997990 w_de(t+1) = w_dc(t) +eta*y_c(t) * delta_d(t)
y_d 0.5386685 . 0.5497842 w_ca(t+1) =w_ca(t) + eta * a * delta_c(t)

NI Backpropagation Algorithm

Lincoln Overfittiﬂg

Error versus weight updates (example 1)

001
CSCE R —
478/878 0009 [+ Training set error
Validation seterror  +
Lecture 5: 0.008
Artificial 0007 “i
Neural 5 %
Networks and S I NS~—— "]
Support 0005
Vector 0004
Machines 0003
Stephen Scott 0.002 L L L
0 5000 10000 15000 20000
Number of weight updates
lifieelieie Error versus weight updates (example 2)
Qutline 008 =
007 | 4 Training set error
fi Validation seterror ~ +
Linear 006 .
Threshold k!
Units . 005 .
5 £ 004 .
Nonlinearly = 003 .
Separable ) ‘
Problems 002 .
001 .'\-..._._
0 .
0 1000 2000 3000 4000 5000 6000

Number of weight updates

Danger of stopping too soon!

Overftiing

NI Backpropagation Algorithm

B8  Remarks (cont'd)
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Representational power:

@ Any boolean function can be represented with 2 layers

@ Any bounded, continuous function can be represented
with arbitrarily small error with 2 layers

@ Any function can be represented with arbitrarily small
error with 3 layers

Stephen Scott

Introduction
Outline

Linear
Threshold
Units

Nonlinearly
Separable
Problems

Number of required units may be large

May not be able to find the right weights

Backprop

Kproy

Overftiing
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Recurrent NNs
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Recurrent Networks (RNNs) used to handle time series
data (label of current example depends on past exs.)

fy(t+1)

fy(r+1)

Stephen Scott

Introduction
Outline
Linear

Threshold
Units

x(0) x(1) o)

Nonlinearly
Separable
Problems

(a) Feedforward network (b) Recurrent network
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Hypothesis Space
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@ Hypothesis space 7 is set of all weight vectors
(continuous vs. discrete of decision trees)

@ Search via Backprop: Possible because error function
and output functions are continuous & differentiable

@ Inductive bias: (Roughly) smooth interpolation between
data points

Stephen Scott

Introduction

Outline
«

o head
ahid

+ hod

« had

+ haved
~ heard
© heed
<hud

> who'd
 hood

Linear
Threshold
Units

§ 2000)
Nonlinearly
Separable -
Problems (=)

1000

P Support Vector Machines

Lincoln Margins
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Support vectors (with
minimum margin) uniquely
define hyperplane (other
points not needed)

Stephen Scott

Introduction

Outline
near @ A hyperplane’s margin  is the shortest distance from it
Units to any training vector
@ Intuition: larger margin = higher confidence in
classifier’s ability to generalize
e Guaranteed generalization error bound in terms of 1/~>
(under appropriate assumptions)

@ Definition assumes linear separability (more general

definitions exist that do not)

Nonlinearly
Separable
Problems

Backprop

SVMs
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Training Recurrent NNs
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@ Unroll the recurrence
through time and run
backprop

@ Train as one large
network, using
sequences of examples

@ Then average weights
together

Stephen Scott

Introduction
Outline

Linear
Threshold
Units

Nonlinearly
Separable
Problems

x(t-2)

c(t-2)
(¢) Recurrent network

unfolded in time
Overiiting

RoR@HD2

P Support Vector Machines

EEIR Introduction
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Similar to ANNs, polynomial classifiers, and RBF networks
in that it remaps inputs and then finds a hyperplane

@ Main difference is how it works

Stephen Scott

Features of SVMs:

Introduction
Outline L. . R
T @ Maximization of margin
Threshold .

Units "] Dual“y

D @ Use of kernels

Separable
@ Use of problem convexity to find classifier (often

Problems
Back| . ..
il without local minima)

SVMs

P Support Vector Machines

ERlll The Perceptron Algorithm Revisited
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Wy 0,bp<+0,m<+0,r € {—1,+1}Vr

While mistakes are made on training set

Stephen Scott
@ Fort=11to N (= # training vectors)
o Ifr'(wy -x'+b,) <0
@ Wyt1 — Wy +nr'x
@ byuyi < by +nr
@ m+—m+1

Introduction
Outline
Linear

Threshold
Units

Nonlinearly
Separable
Problems

Final predictor: h(x) = sgn (W, - X + by,)



P Support Vector Machines

EEIR The Perceptron Algorithm Revisited (partial example, n = 0.1)
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Stephen Scott

Introduction

Outline

Linear
Threshold
Units

Nonlinearly
Separable
Problems

Backprop

Duality
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P Support Vector Machines
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Another way of representing predictor:

N
Stephen Scott
h(x) =sgn(w-x+b)=sgn|[n g (v’ x) - x+b
Introduction =1
Outline N
Linear =g ! t.
Threshold sgn | 1 Z AT (X X) +b

Units =1

Nonlinearly
Separable
Problems

(o = # prediction mistakes on x’)

Backprop

Duality
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XOR Revisited
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D: (+1,+1)
O

Stephen Scott

Introduction xl
Outline

Linear
Threshold
Units

Nonlinearly
Separable
Problems

O o
A: (-1,-1)| C:(+1,-1)

Backprop

Remap to new space:

d(x1,x2) = [X%,xg, V2x160,V2x1, V22, 1]

P Support Vector Machines

EEIR The Perceptron Algorithm Revisited (partial example)
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At this point, w = (0.1,-0.6), b = —0.6, a = (7,1,0,8,2,4)

Can compute
wi = n(arrtxl + ar?x? + aurtxt + asrx + aer®x$) =
A(7(1)4 4 1(1)5 +8(—1)2 + 2(—1)2 + 4(=1)3) = 0.1
6 6) —

0.1 )4

Wy = n(ozlrlx% + azrzx% + 044r4x‘21 + a5r5xg + aerx;
Linear 0.1(7(1)1 + 1(1)3 +8(—1)1+ 2(71)2 + 4(71)1)) =-0.6
Threshold

Units l.e. ,

Nonlinearly
Separable
Problems

Stephen Scott

Introduction

Outline

N

_ fot

W=7 E oyr'x
=1

Backprop

SVMs

Margins

Duality

P Support Vector Machines

R Duality (cont'd)
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So perceptron algorithm has equivalent dual form:
a+0,b+0

While mistakes are made in For loop

Stephen Scott

@ Fort=11to N (= # training vectors)

Introduction

Outiine o If/ (7] Z]]-V:, o (¥ x') + b) <0
Linear

Jreshold o o+ 1
Mo be bt

Problems

Backprop Replace weight vector with data in dot products

SVMs
T So what?

Duality

Nel5isd
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XOR Reuvisited (cont'd)
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Now consider the third and fourth dimensions of the
Artificial

W remapped vector (scaling v2 to 1):

Networks and y2
Support
Vector
Machines

Stephen Scott C (—1,+1) D: (+1,+1)
Introduction . O

Outline

Linear
Threshold

Units yl

Nonlinearly
Separable
Problems

Backprop

B: (-1,-1) A: (+1,-1)

Duality




WBetEY XOR Revisited (contd) ] Kernels

CSCE CSCE

Rl @ Can easily compute the dot product ¢(x) - ¢(z) (where Rl

AT x = [x1,x2]) without first computing ¢: AT
Networks and Networks and . .

@ Akernel is a function K h th X, Z

e K(x,2) = (x-2+ 1) = (021 + 00 + 1)’ S ernelis a function K such that vx. z,
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(not a true kernel)
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Also have ones for structured data: e.g., graphs, trees,
sequences, and sets of points
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In addition, the sum of two kernels is a kernel, the product of
two kernels is a kernel
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Finally, note that a kernel is a similarity measure, useful in
clustering, nearest neighbor, etc.
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Can show that if data linearly separable in remapped space,
then get maximum margin classifier by minimizing w - w
subject to ' (w-x' +b) > 1

Can reformulate this in dual form as a convex quadratic
program that can be solved optimally, i.e., won’t
encounter local optima:
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Ml If kernel doesn't separate, can soften the margin with slack
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Can still solve optimally
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Can always find a kernel that will make training set linearly
separable, but beware of choosing a kernel that is too
powerful (overfitting)
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If number of training vectors is very large, may opt to
approximately solve these problems to save time and space
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_ Use e.g., gradient ascent and sequential minimal
outine optimization (SMO)
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