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e Think of C as a function that takes as input an example
Stephen Scott .
(or instance) and outputs a label

Introduction @ Goal: Given a training set X = {(x', r")}Y_, where
O“t“”_e r' = C(x"), output a hypothesis h € H that approximates
ceaming a C in its classifications of new instances

Class from

E I . B
o @ Each instance x represented as a vector of attributes or

Definitions.

Thinking about C fea theS

Hypotheses and

vargn e E.g., let each x = (x,x,) be a vector describing

Noise and attributes of a car; x; = price and x, = engine power

e s e In this example, label is binary (positive/negative,

Regression yes/no, 1/0, +1/—1) indicating whether instance x is a
“family car”
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. upper and lower bounds on each attribute
Outline e Might decide to set H (set of candidate hypotheses) to
loarming 2 the same family that C comes from
Class from e Not required to do so
Examples . oy
@ Can also think of target concept C as a set of positive
Foptese an instances
Margin e In example, C the continuous set of all positive points in
gfﬁi? and the plane
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Supervised hypothesis i € H that approximates C

Learning

Stephen Scott @ In example, H can be set of all axis-parallel boxes

@ If C guaranteed to come from #, then we know that a
perfect hypothesis exists

Learning & e In this case, we choose & from the version space =
Class from subset of H consistent with X

o e What learning algorithm can you think of to learn C?

Thinking about €

Hypeneses and @ Can think of two types of error (or loss) of h

i e Empirical error is fraction of X’ that & gets wrong

Noise and e Generalization error is probability that a new, randomly
Problems selected, instance is misclassified by i

Regression @ Depends on the probability distribution over instances
Mutti-Class e Can further classify error as false positive and false

Problems .
negative

Introduction
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Stephen Scott @ In reality, it's unlikely that there exists an h € H that is
perfect on X

'(:”;:”Cﬁon e Could be noise in the data (attribute errors, labeling
L“ ° errors)
Class from e Could be attributes that are hidden or latent, which
2L impact the label but are unobserved
Noi nd . . .
g?hss?a @ Could find a better (or even perfect) fit to X if we choose
roblems . .
a more powerful (expressive) hypothesis class H
@ Is this a good idea?
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@ Might prefer simpler hypothesis because it is:

Model Selection

e Easier/more efficient to evaluate

e Easier to train (fewer parameters)

e Easier to describe/justify prediction

e Better fits Occam’s Razor: Tend to prefer simpler
explanation among similar ones

@ Model selection is the act of choosing a hypothesis

class H
e Need to balance #H’s complexity with that of the model
that labels the data:
@ If H not sophisticated enough, might underfit and not
generalize well (e.g., fit line to data from cubic model)
@ If H too sophisticated, might overfit and not generalize
well (e.g., fit the noise)
e Can validate choice of 4 (and #) if some data held back
from X to serve as validation set
@ Sitill part of training, but not directly used to select &
e Independent test set often used to do final evaluation of
chosen h
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Inductive Bias

@ Must assume something about the learning task

@ Otherwise, learning becomes rote memorization

@ Imagine allowing H to be set of arbitrary functions over
set of all possible instances
e Every hypothesis in version space V C H is consistent
with all instances in X
e For every other instance, exactly half the hypotheses in
V will predict positive, the rest negative (see next slide)
= No way to generalize on new, unseen instances without
way to favor one hypothesis over another

@ Inductive bias is a set of assumptions that we make to
enable generalization over rote memorization
e Manifests in choice of H
e Instead (or in addition), can have bias in preference of
some hypotheses over others (e.g., based on specificity
or simplicity)
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ot eton ((1,0,1), —)} then version space V is the set of truth
Outiine tables satisfying

Learninga 000 [ + [[010 [ — || 100 110 [ +

Class from
Examples 001 01 1 1 01 _ 1 1 1

Noise and

Otrer @ Since there are 4 holes, |V| = 2* = 16 = number of
ways to fill holes, and for any yet unclassified example
x, exactly half of hyps in V classify x as + and half as —
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Supervised

Learning we call it regression

S @ Error of hypothesis g measured by squared error
- instead of number of misclassifications: (f(x) — g(x))?
Outline e Empirical error is now average squared error and
Leeili @ generalization performance is expected squared error
Erampies. @ Model selection now consists of choosing the

s complexity of hypothesis g, e.g., degree of polynomial:
rr e Linear: g(x) = wix 4+ wy

Regression e Quadratic: g(x) = wyx?> + wix + wy

Multi-Class e And so on, where higher-order polynomials can better
A fit data based on more complex models, but are also
General Steps more inclined to overfit

of Machine
Learning

@ Learning consists of inferring parameters w;
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Supervised

Learning labels, but not binary
S @ E.g., instead of “family car” versus “not family car”, have

o labels {“family car”, “luxury sedan”, “sports car”}

Outline @ How we handle this depends on the type of
Learning a hypothesis/learning algorithm we use

E;snm? e Some hypothesis classes (e.g., decision trees, k

Noise and nearest neighbor) naturally have the ability to classify
e with non-binary labels

e Some are binary only (e.g., artificial neural networks,

support vector machines, axis-parallel boxes)
@ In this case, can cast the multi-class problem as a
General Steps collection of binary problems
o @ Ina K-class problem, can give each instance a vector of
K binary labels

Regression

Multi-Class
Problems
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@ E.g., if original training set is

Multi-Class Problems (cont’'d)

Y ={x,s)}L,
foreach s’ € {Cy,...,Ck}, then map it to
X ={(x',v)}L,
where each r’ is a K-dimensional binary vector:

1

M 1 ifx' e G
T 0 X eCj#i

@ Can then train K separate binary classifiers in

one-versus-rest scheme

@ (Other encodings of r also possible)
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Three axis-parallel boxes as three binary classifiers, one per

class

Engine power[]

Multi-Class Problems (cont’'d)
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General Steps of Machine Learning

@ Acquire training set X = {(x, ")},

e Assume independent and identically distributed (iid)

e Assume probability distribution on X is same as what
we will see in practice

e Labels # could be binary, multi-valued, real

@ Choose hypothesis class H
@ Choose loss function L

e 0-1 loss versus hinge loss versus squared loss ...
@ Choose optimization procedure to find &

e E.g., analytic solution for linear regression,
backpropagation for artificial neural network, sequential
minimal optimization for SVM

@ Evaluate quality of 4 via estimation of generalization
performance using independent test set
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