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Supervised learning is most fundamental, “classic” form of
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@ Let C be the target concept to be learned

e Think of C as a function that takes as input an example
(or instance) and outputs a /abel
@ Goal: Given a training set X = {(x,)}Y_, where
r= C(x"), output a hypothesis h € H that approximates
Cin its classifications of new instances
@ Each instance x represented as a vector of attributes or
features
e E.g., let each x = (x1,x,) be a vector describing
attributes of a car; x; = price and x, = engine power
e In this example, label is binary (positive/negative,
yes/no, 1/0, +1/—1) indicating whether instance x is a
“family car”
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@ Can think of target concept C as a function
o In example, C is an axis-parallel box, equivalent to
upper and lower bounds on each attribute
o Might decide to set H (set of candidate hypotheses) to
the same family that C comes from
o Not required to do so

@ Can also think of target concept C as a set of positive
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Hypotheses and instances
o In example, C the continuous set of all positive points in
ae the plane
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@ Use whichever is convenient at the time
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Thinking about C (cont'd)
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Hypotheses and Error (cont'd)
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Noise and Other Problems

@ Inreality, it's unlikely that there exists an i € H that is
perfect on X

o Could be noise in the data (attribute errors, labeling
errors)
e Could be attributes that are hidden or latent, which
impact the label but are unobserved
@ Could find a better (or even perfect) fit to X' if we choose
a more powerful (expressive) hypothesis class H

@ Is this a good idea?
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@ A learning algorithm uses training set & and finds a
hypothesis € # that approximates C

@ In example, H can be set of all axis-parallel boxes

@ If C guaranteed to come from %, then we know that a

Stephen Scott

Introduction . .

outine perfect hypothesis exists

- o In this case, we choose & from the version space =
Class ,HZ? subset of H consistent with X

Detitons e What learning algorithm can you think of to learn C?
Eorses ars @ Can think of two types of error (or loss) of h

e o Empirical error is fraction of X that 4 gets wrong

Noise and e Generalization error is probability that a new, randomly
Problems selected, instance is misclassified by A

Regression @ Depends on the probability distribution over instances
Pl o Can further classify error as false positive and false

negative
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Supervised

Learning o Easier to train (fewer parameters)
Stephen Scott o Easier to describe/justify prediction
o Better fits Occam’s Razor: Tend to prefer simpler

Introduction

explanation among similar ones
Buiine @ Model selection is the act of choosing a hypothesis
Learning a CIaSS ’].l
ey o Need to balance #’s complexity with that of the model
Noise and that labels the data:
Other @ If H not sophisticated enough, might underfit and not
Problems . 1 .
s generalize well (e.g., fit line to data from cubic model)
e If H too sophisticated, might overfit and not generalize
well (e.g., fit the noise)
e Can validate choice of # (and #) if some data held back
from X to serve as validation set
@ Still part of training, but not directly used to select
i:e’:r?(i:l:]g;ne o Independent test set often used to do final evaluation of
13/21 chosen h
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[ ({1,0,1), —)} then version space V is the set of truth

Outline tables satisfying

e 000 | + || 010 | — | 100 110 | +
101 | — || 111

Examples 001 011

oner @ Since there are 4 holes, [V| = 2* = 16 = number of
ways to fill holes, and for any yet unclassified example

x, exactly half of hyps in V classify x as + and half as —

Regression

Multi-Class
Problems

General Steps

of Machine

Learning
15/21

Nebiaska

Lincoln

Regression (contd)

CSCE
478/878
Lecture 2:
Supervised
Learning

Stephen Scott

Introduction
Outline

Learning a
Class from
Examples

Noise and
Other
Problems
Regression

Multi-Class
Problems

General Steps x: milage
of Machine

Learning

Polynomials of degree 1, 2, and 6

Nebiaska

Lincoln

Inductive Bias

CSCE
478/878
Lecture 2:
Supervised
Learning

@ Must assume something about the learning task
@ Otherwise, learning becomes rote memorization
@ Imagine allowing # to be set of arbitrary functions over
set of all possible instances
o Every hypothesis in version space V C H is consistent
Outline with all instances in X
e o For every other instance, exactly half the hypotheses in
Examples V will predict positive, the rest negative (see next slide)
= No way to generalize on new, unseen instances without
way to favor one hypothesis over another
@ Inductive bias is a set of assumptions that we make to
enable generalization over rote memorization
o Manifests in choice of H
e Instead (or in addition), can have bias in preference of
some hypotheses over others (e.g., based on specificity
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@ When labels f(x) are real-valued rather than discrete,
we call it regression
@ Error of hypothesis g measured by squared error
- instead of number of misclassifications: (f(x) — g(x))?
Outline e Empirical error is now average squared error and
generalization performance is expected squared error
@ Model selection now consists of choosing the
complexity of hypothesis g, e.g., degree of polynomial:
o Linear: g(x) = wix +wo
e Quadratic: g(x) = wax? + wix + wo
e And so on, where higher-order polynomials can better
fit data based on more complex models, but are also
more inclined to overfit

@ Learning consists of inferring parameters w;
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@ Some classification problems have discrete-valued
labels, but not binary

@ E.g., instead of “family car” versus “not family car”, have

e labels {“family car”, “luxury sedan”, “sports car”}

Outline @ How we handle this depends on the type of

Stephen Scott

Learing a hypothesis/learning algorithm we use

Examples e Some hypothesis classes (e.g., decision trees, k

Noise and m_aarest ne.ighbor) naturally have the ability to classify
Problems with non-binary labels

e e Some are binary only (e.g., artificial neural networks,
A Clogs support vector machines, axis-parallel boxes)

Problems @ In this case, can cast the multi-class problem as a

collection of binary problems
@ In a K-class problem, can give each instance a vector of
K binary labels
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of Machine of Machine
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e Acquire training set X = {(x',7)}Y,

vk o Assume independent and identically distributed (iid)
Stephen Scott o Assume probability distribution on X’ is same as what

we will see in practice

liiteluir @ Labels ' could be binary, multi-valued, real
Outl .
Le‘m‘:ie"ga @ Choose hypothesis class #
Class from @ Choose loss function L
Examples .
R e 0-1 loss versus hinge loss versus squared loss ...
e s @ Choose optimization procedure to find &
Regression e E.g., analytic solution for linear regression,
Multi-Class backpropagation for artificial neural network, sequential
Problems minimal optimization for SVM
General Steps . . . . . .
of Machine @ Evaluate quality of & via estimation of generalization

Learning

performance using independent test set



