Nebraska Nebraska Introduction CSCE 478/878 ecture 2 78/878 ecture 2 CSCE 478/878 Lecture 2: Supervise Learning Supervise Learning Supervised Learning Stephen Sc ephen So troduction Introduction Outline Outline earning a Class from Learning a Class from Examples Stephen Scott oise and ther roblems Noise and Other Problems (Adapted from Ethem Alpaydin) Regressior Regression /lulti-Class Problems lems eneral Ster f Machine General Step of Machine arning earning sscott@cse.unl.edu

 CSCE 478878 Lacture 2: Supprivised Learning 3 Class from Examples
 Supprivised learning is most fundamental, "classic" form of machine learning "Supervised" part comes from the part of *labels* for examples (instances)

 Noise and Other Problems
 Supervised learning is most fundamental, "classic" form of machine learning

 Multi-Class Problems
 Supervised learning is most fundamental, "classic" form of machine learning

 Regression
 Supervised instances)

・ロト・西ト・モー・モー ひゃう

		_	
Nebraska Lincoln	Outline	Nebraska Lincoln	Learning a Class from Examples
CSCE 478/878 Lecture 2: Supervised Learning Stephen Scott Introduction Cutline Class from Examples Noise and Other Problems Regression Multi-Class Problems General Steps of Machine Learning	 Learning a class from labeled examples Definition Thinking about C Hypotheses and error Margin Noise and other problems Noise Model selection Inductive bias Regression Multi-class problems General steps of machine learning 	CSCE 478/878 Lecture 2: Supervised Learning Stephen Scott Introduction Outline Learning a Class from Examples Definition Margin Norbers and Other Problems Regression Multi-Class Problems	 Let <i>C</i> be the <i>target concept</i> to be learned Think of <i>C</i> as a function that takes as input an <i>example</i> (or <i>instance</i>) and outputs a <i>label</i> <i>Goal:</i> Given a <i>training set</i> X = {(x^t, r^t)}^N_{t=1} where r^t = C(x^t), output a <i>hypothesis</i> h ∈ H that approximates C in its classifications of new instances Each instance x represented as a vector of <i>attributes</i> or <i>features</i> E.g., let each x = (x₁, x₂) be a vector describing attributes of a car; x₁ = price and x₂ = engine power In this example, label is binary (positive/negative, yes/no, 1/0, +1/-1) indicating whether instance x is a "family car"
3/21	<ロ> <局> <長> <長> <長> <長> <し> <し> <長> <し> <し> <し> <し> <し> <し> <し> <し> <し> <し	General Steps of Mashine	<ロ> (日)

Nebraska Thinking about C (cont'd)

Nebraska Hypotheses and Error

478/878 ecture 2

ephen Sc

ntroductior

earning a class from

xamples

e and

/ulti-Class

Other

Outline

- A learning algorithm uses training set \mathcal{X} and finds a hypothesis $h \in \mathcal{H}$ that approximates *C*
- In example, \mathcal{H} can be set of all axis-parallel boxes
- If *C* guaranteed to come from *H*, then we know that a perfect hypothesis exists
 - In this case, we choose *h* from the *version space* = subset of \mathcal{H} consistent with \mathcal{X}
 - What learning algorithm can you think of to learn C?
- Can think of two types of *error* (or *loss*) of *h*
 - *Empirical error* is fraction of X that h gets wrong *Generalization error* is probability that a new, randomly selected, instance is misclassified by h
 - Depends on the probability distribution over instances
 Can further classify error as *false positive* and *false*
 - negative

lulti-Class

Noise and Other Problems (cont'd)

earning 12/21

Nebraska Model Selection

- Might prefer simpler hypothesis because it is:
 - Easier/more efficient to evaluate
 - Easier to train (fewer parameters)
 - Easier to describe/justify prediction
 - Better fits Occam's Razor: Tend to prefer simpler explanation among similar ones
- Model selection is the act of choosing a hypothesis class ${\cal H}$
 - Need to balance \mathcal{H} 's complexity with that of the model that labels the data:
 - If $\mathcal H$ not sophisticated enough, might underfit and not
 - generalize well (e.g., fit line to data from cubic model)
 If *H* too sophisticated, might *overfit* and not generalize well (e.g., fit the noise)
 - Can validate choice of h (and \mathcal{H}) if some data held back from \mathcal{X} to serve as validation set
 - Still part of training, but not directly used to select h
 - Independent *test set* often used to do final evaluation of chosen *h*

Nebraska Inductive Bias

CSCE 478/878 ecture 2

hon Sr

ntroductior

earning a class from

Examples

se and

eral St

Mach

Outline

- Must assume something about the learning task
- Otherwise, learning becomes rote memorization
- Imagine allowing H to be set of arbitrary functions over set of all possible instances
 - Every hypothesis in version space $\mathcal{V}\subseteq\mathcal{H}$ is consistent with all instances in \mathcal{X}
 - For every other instance, *exactly half* the hypotheses in \mathcal{V} will predict positive, the rest negative (see next slide)
 - ⇒ No way to generalize on new, unseen instances without way to favor one hypothesis over another
- Inductive bias is a set of assumptions that we make to enable generalization over rote memorization
 - Manifests in choice of H
 - Instead (or in addition), can have bias in *preference* of some hypotheses over others (e.g., based on specificity or simplicity)

Nebraska Lincoln	Inductive Bias (cont'd)	Nebraska Lincoln	Regression
CSCE 478/878 Lecture 2: Supervised Learning Stephen Scott Introduction Outline Learning a Class from Examples Noise and Other Problems Near Made Blas Regression Multi-Class Problems General Steps of Machine Learning a	 E.g., if X = {(⟨0,0,0⟩, +), (⟨1,1,0⟩, +), (⟨0,1,0⟩, -), (⟨1,0,1⟩, -)} then version space V is the set of truth tables satisfying 000 + 010 - 100 - 110 + 111 001 + 011 - 101 - 111 + Since there are 4 holes, V = 2⁴ = 16 = number of ways to fill holes, and for any yet unclassified example x, exactly half of hyps in V classify x as + and half as - 	CSCE 478/878 Lecture 2: Supervised Learning Stephen Scott Introduction Outline Learning a Class from Examples Noise and Other Problems Regression Multi-Class General Steps of Machine Learning	 When labels f(x) are real-valued rather than discrete, we call it <i>regression</i> Error of hypothesis g measured by <i>squared error</i> instead of number of misclassifications: (f(x) - g(x))² Empirical error is now average squared error and generalization performance is expected squared error Model selection now consists of choosing the complexity of hypothesis g, e.g., degree of polynomial: Linear: g(x) = w₁x + w₀ Quadratic: g(x) = w₂x² + w₁x + w₀ And so on, where higher-order polynomials can better fit data based on more complex models, but are also more inclined to overfit Learning consists of inferring parameters w_i
15/21	(日)、(日)、(日)、(日)、(日)、(日)、(日)、(日)、(日)、(日)、	16/21	 (ロ) (豆) (豆)

Nebraska Lincoln	Multi-Class Problems				
CSCE 478/878 Lecture 2: Supervised Learning	 Some classification problems have discrete-valued labels, but not binary E.g., instead of "family car" versus "not family car", have labels {"family car", "luxury sedan", "sports car"} 				
Stephen Scott					
Outline	How we handle this depends on the type of				
Learning a Class from Examples	 Some hypothesis classes (e.g., decision trees, k 				
Noise and Other Problems	nearest neighbor) naturally have the ability to classify with non-binary labels				
Regression	 Some are binary only (e.g., artificial neural networks, support vector machines, avia parallel bayes) 				
Multi-Class Problems	 In this case, can cast the multi-class problem as a 				
General Steps of Machine Learning	 collection of binary problems In a K-class problem, can give each instance a vector of K binary labels 				
10/01	- ロ				

I TOUID

tephen Sc

troduction

earning a lass from

xamples

Outline

Nebraska Multi-Class Problems (cont'd)

CSCE 478/878 Lecture 2: Supervised Learning Stephen Sco earning a ulti-Class

• E.g., if original training set is

$$\mathcal{Y} = \{(\mathbf{x}^t, s^t)\}_{t=1}^N$$

for each $s^t \in \{C_1, \ldots, C_K\}$, then map it to

$$\mathcal{X} = \{(\mathbf{x}^t, \mathbf{r}^t)\}_{t=1}^N$$

where each \mathbf{r}^t is a *K*-dimensional binary vector:

$$r_i^t = \left\{ egin{array}{cc} 1 & ext{if } \mathbf{x}^t \in C_i \ 0 & ext{if } \mathbf{x}^t \in C_j, j
eq \end{array}
ight.$$

i

20/21

- Can then train K separate binary classifiers in one-versus-rest scheme
- (Other encodings of **r** also possible)

Nebraska Multi-Class Problems (cont'd)

Three axis-parallel boxes as three binary classifiers, one per class < ロ > < 団 > < 臣 > < 臣 > < 臣 > < 臣 < の < の< の</p>

Nebraska	General Steps of Machine Learning
CSCE 478/878 Lecture 2: Supervised Learning Stephen Scott Introduction	 Acquire training set X = {(x^t, r^t)}^N_{t=1} Assume <i>independent</i> and <i>identically distributed</i> (iid) Assume probability distribution on X is same as what we will see in practice Labels r^t could be binary, multi-valued, real
Outline Learning a Class from Examples Noise and Other Problems Regression Multi-Class Problems	 Choose hypothesis class <i>H</i> Choose loss function <i>L</i> 0-1 loss versus hinge loss versus squared loss Choose optimization procedure to find <i>h</i> E.g., analytic solution for linear regression, backpropagation for artificial neural network, sequential minimal optimization for SVM
General Steps of Machine Learning	 Evaluate quality of h via estimation of generalization performance using independent test set