
Reinforcement Learning

Stephen D. Scott
(Adapted from Tom Mitchell’s slides)

1

Outline

• Control learning

• Control policies that choose optimal actions

• Q learning

• Convergence

• Temporal difference learning

2

Control Learning

Consider learning to choose actions, e.g.,

• Robot learning to dock on battery charger

• Learning to choose actions to optimize factory output

• Learning to play Backgammon

Note several problem characteristics:

• Delayed reward (thus have problem of temporal
credit assignment)

• Opportunity for active exploration (versus exploitation
of known good actions)

• Possibility that state only partially observable

3

Example: TD-Gammon
[Tesauro, 1995]

Learn to play Backgammon

Immediate Reward:

• +100 if win

• −100 if lose

• 0 for all other states

Trained by playing 1.5 million games against itself

4

Reinforcement Learning Problem

Agent

Environment

State Reward Action

r + γγ r + r + ... , where γ <10 2
2

1

Goal: Learn to choose actions that maximize

0s 1s 2s0a 1a 2a

0r 1r 2r
...

 <0

5

Markov Decision Processes

Assume

• Finite set of states S

• Set of actions A

• At each discrete time agent observes state st ∈ S

and chooses action at ∈ A

• Then receives immediate reward rt, and state changes
to st+1

• Markov assumption: st+1 = δ(st, at) and
rt = r(st, at)

– I.e., rt and st+1 depend only on current state and
action

– Functions δ and r may be nondeterministic

– Functions δ and r not necessarily known to agent

6

Agent’s Learning Task

Execute actions in environment, observe results, and

• learn action policy π : S → A that maximizes

E
[
rt + γrt+1 + γ2rt+2 + . . .

]
from any starting state in S

• Here 0 ≤ γ < 1 is the discount factor for future re-
wards

Note something new:

• Target function is π : S → A

• But we have no training examples of form 〈s, a〉

• Training examples are of form 〈〈s, a〉, r〉

• I.e., not told what best action is, instead told reward
for executing action a in state s

7

Value Function

First consider deterministic worlds

For each possible policy π the agent might adopt, we can
define an evaluation function over states

V π(s) ≡ rt + γrt+1 + γ2rt+2 + · · ·

≡
∞∑
i=0

γirt+i

where rt, rt+1, . . . are generated by following policy π,
starting at state s

Restated, the task is to learn the optimal policy π∗

π∗ ≡ argmax
π

V π(s), (∀s)

8

Value Function
(cont’d)

G
100

100

0

0

0

0
0

0

0

0
0

0

0

r(s, a) (immediate reward) values

G
10090

100

81

90

81
81

90
81

72

72
81

0

Q(s, a) values

G100

10090

90

81

0

V ∗(s) values

G

One optimal policy 9

What to Learn

We might try to have agent learn the evaluation function
V π
∗

(which we write as V ∗)

It could then do a lookahead search to choose best action
from any state s because

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))]

i.e., choose action that maximized immediate reward +

discounted reward if optimal strategy followed from then
on

E.g., V ∗(bot. ctr.) = 0 +γ100 +γ20 +γ30 + · · · = 90

A problem:

• This works well if agent knows δ : S × A → S, and
r : S ×A→ R

• But when it doesn’t, it can’t choose actions this way

10

Q Function

Define new function very similar to V ∗:

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a))

i.e., Q(s, a) = total discounted reward if action a taken in
state s and optimal choices made from then on

If agent learns Q, it can choose optimal action even with-
out knowing δ!

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))]

= argmax
a

Q(s, a)

Q is the evaluation function the agent will learn

11

Training Rule to Learn Q

Note Q and V ∗ closely related:

V ∗(s) = max
a′

Q(s, a′)

Which allows us to write Q recursively as

Q(st, at) = r(st, at) + γV ∗(δ(st, at)))

= r(st, at) + γmax
a′

Q(st+1, a
′)

Nice! Let Q̂ denote learner’s current approximation to Q.
Consider training rule

Q̂(s, a)← r + γmax
a′

Q̂(s′, a′)

where s′ is the state resulting from applying action a in
state s

12

Q Learning for Deterministic Worlds

For each s, a initialize table entry Q̂(s, a)← 0

Observe current state s

Do forever:

• Select an action a (greedily or probabilistically) and
execute it

• Receive immediate reward r

• Observe the new state s′

• Update the table entry for Q̂(s, a) as follows:

Q̂(s, a)← r + γmax
a′

Q̂(s′, a′)

• s← s′

Note that actions not taken and states not seen don’t get
explicit updates (might need to generalize)

13

Updating Q̂

100

81

R
66

72

Initial state: s1

10090

81

R
66

Next state: s2

aright

Q̂(s1, aright) ← r + γmax
a′

Q̂(s2, a
′)

= 0 + 0.9 max{66,81,100}
= 90

Notice if rewards non-negative and Q̂’s initially 0, then

(∀s, a, n) Q̂n+1(s, a) ≥ Q̂n(s, a)

and

(∀s, a, n) 0 ≤ Q̂n(s, a) ≤ Q(s, a)

(can show via induction on n, using slides 11 and 12)

14

Updating Q̂
Convergence

Q̂ converges to Q. Consider case of deterministic world
where each 〈s, a〉 is visited infinitely often.

Proof: Define a full interval to be an interval during which
each 〈s, a〉 is visited. Will show that during each full in-
terval the largest error in Q̂ table is reduced by factor of
γ

Let Q̂n be table after n updates, and ∆n be the maximum
error in Q̂n; i.e.,

∆n = max
s,a
|Q̂n(s, a)−Q(s, a)|

Let s′ = δ(s, a)

15

Updating Q̂
Convergence (cont’d)

For any table entry Q̂n(s, a) updated on iteration n + 1,
error in the revised estimate Q̂n+1(s, a) is

|Q̂n+1(s, a)−Q(s, a)| = |(r + γmax
a′

Q̂n(s′, a′))

−(r + γmax
a′

Q(s′, a′))|

= γ|max
a′

Q̂n(s′, a′)−max
a′

Q(s′, a′)|

(∗) ≤ γmax
a′
|Q̂n(s′, a′)−Q(s′, a′)|

(∗∗) ≤ γmax
s′′,a′
|Q̂n(s′′, a′)−Q(s′′, a′)|

= γ∆n

(∗) works since |maxa f1(a)−maxa f2(a)| ≤ maxa |f1(a)−f2(a)|
(∗∗) works since max will not decrease

Also, Q̂0(s, a) bounded and Q(s, a) bounded ∀ s, a ⇒
∆0 bounded

Thus after k full intervals, error ≤ γk∆0

Finally, each 〈s, a〉 visited infinitely often⇒ number of in-
tervals infinite, so ∆n → 0 as n→∞

16

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V,Q by taking expected values:

V π(s) ≡ E
[
rt + γrt+1 + γ2rt+2 + · · ·

]
= E

 ∞∑
i=0

γirt+i

Q(s, a) ≡ E
[
r(s, a) + γV ∗(δ(s, a))

]
= E [r(s, a)] + γE

[
V ∗(δ(s, a))

]
= E [r(s, a)] + γ

∑
s′
P (s′ | s, a)V ∗(s′)

= E [r(s, a)] + γ
∑
s′
P (s′ | s, a) max

a′
Q(s′, a′)

17

Nondeterministic Case
(cont’d)

Q learning generalizes to nondeterministic worlds

Alter training rule to

Q̂n(s, a)← (1−αn)Q̂n−1(s, a)+αn[r+γmax
a′

Q̂n−1(s′, a′)]

where

αn =
1

1 + visitsn(s, a)

Can still prove convergence of Q̂ to Q, with this and other
forms of αn [Watkins and Dayan, 1992]

18

Temporal Difference Learning

Q learning: reduce error between successive Q ests.

Q estimate using one-step time difference:

Q(1)(st, at) ≡ rt + γmax
a

Q̂(st+1, a)

Why not two steps?

Q(2)(st, at) ≡ rt + γrt+1 + γ2 max
a

Q̂(st+2, a)

Or n?

Q(n)(st, at) ≡ rt+γ rt+1 + · · ·+γ(n−1)rt+n−1 +γn max
a

Q̂(st+n, a)

Blend all of these (0 ≤ λ ≤ 1):

Qλ(st, at) ≡ (1− λ)
[
Q(1)(st, at) + λQ(2)(st, at) + λ2Q(3)(st, at) + · · ·

]
= rt + γ

[
(1− λ) max

a
Q̂(st+1, a) + λ Qλ(st+1, at+1)

]

TD(λ) algorithm uses above training rule

• Sometimes converges faster than Q learning

• converges for learning V ∗ for any 0 ≤ λ ≤ 1 (Dayan,
1992)

• Tesauro’s TD-Gammon uses this algorithm

19

Subtleties and Ongoing Research

• Replace Q̂ table with neural net or other generalizer
(example is 〈s, a〉, label is Q̂(s, a)); convergence proofs
break

• Handle case where state only partially observable

• Design optimal exploration strategies

• Extend to continuous action, state

• Learn and use δ̂ : S ×A→ S

• Relationship to dynamic programming (can solve op-
timally offline if δ(s, a) & r(s, a) known)

• Reinf. learning in autonomous multi-agent environments
(competitive and cooperative)

– Now must attribute credit/blame over agents as
well as actions

– Utilizes game-theoretic techniques, based on agents’
protocols for interacting with environment and each
other

• More info: survey papers & new textbook

20

