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Outline

• Control learning

• Control policies that choose optimal actions

• Q learning

• Convergence

• Temporal difference learning
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Control Learning

Consider learning to choose actions, e.g.,

• Robot learning to dock on battery charger

• Learning to choose actions to optimize factory output

• Learning to play Backgammon

Note several problem characteristics:

• Delayed reward (thus have problem of temporal
credit assignment)

• Opportunity for active exploration (versus exploitation
of known good actions)

• Possibility that state only partially observable

3



Example: TD-Gammon
[Tesauro, 1995]

Learn to play Backgammon

Immediate Reward:

• +100 if win

• −100 if lose

• 0 for all other states

Trained by playing 1.5 million games against itself
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Reinforcement Learning Problem

Agent

Environment

State Reward Action

r  + γγ r  +   r  + ...  , where γ <10 2
2

1

Goal: Learn to choose actions that maximize

0s 1s 2s0a 1a 2a

0r 1r 2r
...

  <0
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Markov Decision Processes

Assume

• Finite set of states S

• Set of actions A

• At each discrete time agent observes state st ∈ S

and chooses action at ∈ A

• Then receives immediate reward rt, and state changes
to st+1

• Markov assumption: st+1 = δ(st, at) and
rt = r(st, at)

– I.e., rt and st+1 depend only on current state and
action

– Functions δ and r may be nondeterministic

– Functions δ and r not necessarily known to agent
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Agent’s Learning Task

Execute actions in environment, observe results, and

• learn action policy π : S → A that maximizes

E
[
rt + γrt+1 + γ2rt+2 + . . .

]
from any starting state in S

• Here 0 ≤ γ < 1 is the discount factor for future re-
wards

Note something new:

• Target function is π : S → A

• But we have no training examples of form 〈s, a〉

• Training examples are of form 〈〈s, a〉, r〉

• I.e., not told what best action is, instead told reward
for executing action a in state s
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Value Function

First consider deterministic worlds

For each possible policy π the agent might adopt, we can
define an evaluation function over states

V π(s) ≡ rt + γrt+1 + γ2rt+2 + · · ·

≡
∞∑
i=0

γirt+i

where rt, rt+1, . . . are generated by following policy π,
starting at state s

Restated, the task is to learn the optimal policy π∗

π∗ ≡ argmax
π

V π(s), (∀s)
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Value Function
(cont’d)
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What to Learn

We might try to have agent learn the evaluation function
V π
∗

(which we write as V ∗)

It could then do a lookahead search to choose best action
from any state s because

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))]

i.e., choose action that maximized immediate reward +

discounted reward if optimal strategy followed from then
on

E.g., V ∗(bot. ctr.) = 0 +γ100 +γ20 +γ30 + · · · = 90

A problem:

• This works well if agent knows δ : S × A → S, and
r : S ×A→ R

• But when it doesn’t, it can’t choose actions this way
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Q Function

Define new function very similar to V ∗:

Q(s, a) ≡ r(s, a) + γV ∗(δ(s, a))

i.e., Q(s, a) = total discounted reward if action a taken in
state s and optimal choices made from then on

If agent learns Q, it can choose optimal action even with-
out knowing δ!

π∗(s) = argmax
a

[r(s, a) + γV ∗(δ(s, a))]

= argmax
a

Q(s, a)

Q is the evaluation function the agent will learn

11



Training Rule to Learn Q

Note Q and V ∗ closely related:

V ∗(s) = max
a′

Q(s, a′)

Which allows us to write Q recursively as

Q(st, at) = r(st, at) + γV ∗(δ(st, at)))

= r(st, at) + γmax
a′

Q(st+1, a
′)

Nice! Let Q̂ denote learner’s current approximation to Q.
Consider training rule

Q̂(s, a)← r + γmax
a′

Q̂(s′, a′)

where s′ is the state resulting from applying action a in
state s
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Q Learning for Deterministic Worlds

For each s, a initialize table entry Q̂(s, a)← 0

Observe current state s

Do forever:

• Select an action a (greedily or probabilistically) and
execute it

• Receive immediate reward r

• Observe the new state s′

• Update the table entry for Q̂(s, a) as follows:

Q̂(s, a)← r + γmax
a′

Q̂(s′, a′)

• s← s′

Note that actions not taken and states not seen don’t get
explicit updates (might need to generalize)
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Updating Q̂

100

81

R
66

72

Initial state: s1

10090

81

R
66

Next state: s2

aright

Q̂(s1, aright) ← r + γmax
a′

Q̂(s2, a
′)

= 0 + 0.9 max{66,81,100}
= 90

Notice if rewards non-negative and Q̂’s initially 0, then

(∀s, a, n) Q̂n+1(s, a) ≥ Q̂n(s, a)

and

(∀s, a, n) 0 ≤ Q̂n(s, a) ≤ Q(s, a)

(can show via induction on n, using slides 11 and 12)
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Updating Q̂
Convergence

Q̂ converges to Q. Consider case of deterministic world
where each 〈s, a〉 is visited infinitely often.

Proof: Define a full interval to be an interval during which
each 〈s, a〉 is visited. Will show that during each full in-
terval the largest error in Q̂ table is reduced by factor of
γ

Let Q̂n be table after n updates, and ∆n be the maximum
error in Q̂n; i.e.,

∆n = max
s,a
|Q̂n(s, a)−Q(s, a)|

Let s′ = δ(s, a)
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Updating Q̂
Convergence (cont’d)

For any table entry Q̂n(s, a) updated on iteration n + 1,
error in the revised estimate Q̂n+1(s, a) is

|Q̂n+1(s, a)−Q(s, a)| = |(r + γmax
a′

Q̂n(s′, a′))

−(r + γmax
a′

Q(s′, a′))|

= γ|max
a′

Q̂n(s′, a′)−max
a′

Q(s′, a′)|

(∗) ≤ γmax
a′
|Q̂n(s′, a′)−Q(s′, a′)|

(∗∗) ≤ γmax
s′′,a′
|Q̂n(s′′, a′)−Q(s′′, a′)|

= γ∆n

(∗) works since |maxa f1(a)−maxa f2(a)| ≤ maxa |f1(a)−f2(a)|
(∗∗) works since max will not decrease

Also, Q̂0(s, a) bounded and Q(s, a) bounded ∀ s, a ⇒
∆0 bounded

Thus after k full intervals, error ≤ γk∆0

Finally, each 〈s, a〉 visited infinitely often⇒ number of in-
tervals infinite, so ∆n → 0 as n→∞
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Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V,Q by taking expected values:

V π(s) ≡ E
[
rt + γrt+1 + γ2rt+2 + · · ·

]
= E

 ∞∑
i=0

γirt+i



Q(s, a) ≡ E
[
r(s, a) + γV ∗(δ(s, a))

]
= E [r(s, a)] + γE

[
V ∗(δ(s, a))

]
= E [r(s, a)] + γ

∑
s′
P (s′ | s, a)V ∗(s′)

= E [r(s, a)] + γ
∑
s′
P (s′ | s, a) max

a′
Q(s′, a′)
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Nondeterministic Case
(cont’d)

Q learning generalizes to nondeterministic worlds

Alter training rule to

Q̂n(s, a)← (1−αn)Q̂n−1(s, a)+αn[r+γmax
a′

Q̂n−1(s′, a′)]

where

αn =
1

1 + visitsn(s, a)

Can still prove convergence of Q̂ to Q, with this and other
forms of αn [Watkins and Dayan, 1992]
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Temporal Difference Learning

Q learning: reduce error between successive Q ests.

Q estimate using one-step time difference:

Q(1)(st, at) ≡ rt + γmax
a

Q̂(st+1, a)

Why not two steps?

Q(2)(st, at) ≡ rt + γrt+1 + γ2 max
a

Q̂(st+2, a)

Or n?

Q(n)(st, at) ≡ rt+γ rt+1 + · · ·+γ(n−1)rt+n−1 +γn max
a

Q̂(st+n, a)

Blend all of these (0 ≤ λ ≤ 1):

Qλ(st, at) ≡ (1− λ)
[
Q(1)(st, at) + λQ(2)(st, at) + λ2Q(3)(st, at) + · · ·

]
= rt + γ

[
(1− λ) max

a
Q̂(st+1, a) + λ Qλ(st+1, at+1)

]

TD(λ) algorithm uses above training rule

• Sometimes converges faster than Q learning

• converges for learning V ∗ for any 0 ≤ λ ≤ 1 (Dayan,
1992)

• Tesauro’s TD-Gammon uses this algorithm
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Subtleties and Ongoing Research

• Replace Q̂ table with neural net or other generalizer
(example is 〈s, a〉, label is Q̂(s, a)); convergence proofs
break

• Handle case where state only partially observable

• Design optimal exploration strategies

• Extend to continuous action, state

• Learn and use δ̂ : S ×A→ S

• Relationship to dynamic programming (can solve op-
timally offline if δ(s, a) & r(s, a) known)

• Reinf. learning in autonomous multi-agent environments
(competitive and cooperative)

– Now must attribute credit/blame over agents as
well as actions

– Utilizes game-theoretic techniques, based on agents’
protocols for interacting with environment and each
other

• More info: survey papers & new textbook
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