
Reinforcement Learning

Stephen D. Scott
(Adapted from Tom Mitchell’s slides)

1

Outline

• Control learning

• Control policies that choose optimal actions

• Q learning

• Convergence

• Temporal difference learning

2

Control Learning

Consider learning to choose actions, e.g.,

• Robot learning to dock on battery charger

• Learning to choose actions to optimize factory output

• Learning to play Backgammon

Note several problem characteristics:

• Delayed reward (thus have problem of temporal
credit assignment)

• Opportunity for active exploration (versus exploitation
of known good actions)

• Possibility that state only partially observable

3

Example: TD-Gammon
[Tesauro, 1995]

Learn to play Backgammon

Immediate Reward:

• +100 if win

• �100 if lose

• 0 for all other states

Trained by playing 1.5 million games against itself

4

Reinforcement Learning Problem

Agent

Environment

State Reward Action

r + γγ r + r + ... , where γ <10 2
2

1

Goal: Learn to choose actions that maximize

0s 1s 2s0a 1a 2a

0r 1r 2r
...

 <0

5

Markov Decision Processes

Assume

• Finite set of states S

• Set of actions A

• At each discrete time agent observes state s

t

2 S

and chooses action a

t

2 A

• Then receives immediate reward r

t

, and state changes
to s

t+1

• Markov assumption: s
t+1

= �(s

t

, a

t

) and
r

t

= r(s

t

, a

t

)

– I.e., r
t

and s

t+1

depend only on current state and
action

– Functions � and r may be nondeterministic

– Functions � and r not necessarily known to agent

6

Agent’s Learning Task

Execute actions in environment, observe results, and

• learn action policy ⇡ : S ! A that maximizes

E
h
r

t

+ �r

t+1

+ �

2

r

t+2

+ . . .

i

from any starting state in S

• Here 0 � < 1 is the discount factor for future re-
wards

Note something new:

• Target function is ⇡ : S ! A

• But we have no training examples of form hs, ai

• Training examples are of form hhs, ai, ri

• I.e., not told what best action is, instead told reward
for executing action a in state s

7

Value Function

First consider deterministic worlds

For each possible policy ⇡ the agent might adopt, we can
define an evaluation function over states

V

⇡

(s) ⌘ r

t

+ �r

t+1

+ �

2

r

t+2

+ · · ·

⌘
1X

i=0

�

i

r

t+i

where r

t

, r

t+1

, . . . are generated by following policy ⇡,
starting at state s

Restated, the task is to learn the optimal policy ⇡

⇤

⇡

⇤ ⌘ argmax

⇡

V

⇡

(s), (8s)

8

Value Function
(cont’d)

G
100

100

0

0

0

0
0

0

0

0
0

0

0

r(s, a) (immediate reward) values

G
10090

100

81

90

81
81

90
81

72

72
81

0

Q(s, a) values

G100

10090

90

81

0

V

⇤
(s) values

G

One optimal policy 9

What to Learn

We might try to have agent learn the evaluation function
V

⇡

⇤ (which we write as V

⇤)

It could then do a lookahead search to choose best action
from any state s because

⇡

⇤
(s) = argmax

a

[r(s, a) + �V

⇤
(�(s, a))]

i.e., choose action that maximized immediate reward +

discounted reward if optimal strategy followed from then
on

E.g., V ⇤(bot. ctr.) = 0+�100+�

2

0+�

3

0+ · · · = 90

A problem:

• This works well if agent knows � : S ⇥ A ! S, and
r : S ⇥A! R

• But when it doesn’t, it can’t choose actions this way

10

Q Function

Define new function very similar to V

⇤:

Q(s, a) ⌘ r(s, a) + �V

⇤
(�(s, a))

i.e., Q(s, a) = total discounted reward if action a taken in
state s and optimal choices made from then on

If agent learns Q, it can choose optimal action even with-
out knowing �!

⇡

⇤
(s) = argmax

a

[r(s, a) + �V

⇤
(�(s, a))]

= argmax

a

Q(s, a)

Q is the evaluation function the agent will learn

11

Training Rule to Learn Q

Note Q and V

⇤ closely related:

V

⇤
(s) = max

a

0
Q(s, a

0
)

Which allows us to write Q recursively as

Q(s

t

, a

t

) = r(s

t

, a

t

) + �V

⇤
(�(s

t

, a

t

)))

= r(s

t

, a

t

) + �max

a

0
Q(s

t+1

, a

0
)

Nice! Let ˆ

Q denote learner’s current approximation to Q.
Consider training rule

ˆ

Q(s, a) r + �max

a

0
ˆ

Q(s

0
, a

0
)

where s

0 is the state resulting from applying action a in
state s

12

Q Learning for Deterministic Worlds

For each s, a initialize table entry ˆ

Q(s, a) 0

Observe current state s

Do forever:

• Select an action a (greedily or probabilistically) and
execute it

• Receive immediate reward r

• Observe the new state s

0

• Update the table entry for ˆ

Q(s, a) as follows:

ˆ

Q(s, a) r + �max

a

0
ˆ

Q(s

0
, a

0
)

• s s

0

Note that actions not taken and states not seen don’t get
explicit updates (might need to generalize)

13

Updating ˆ

Q

100

81

R
66

72

Initial state: s1

10090

81

R
66

Next state: s2

aright

ˆ

Q(s

1

, a

right

) r + �max

a

0
ˆ

Q(s

2

, a

0
)

= 0+ 0.9 max{66,81,100}
= 90

Notice if rewards non-negative and ˆ

Q’s initially 0, then

(8s, a, n) ˆ

Q

n+1

(s, a) � ˆ

Q

n

(s, a)

and

(8s, a, n) 0 ˆ

Q

n

(s, a) Q(s, a)

(can show via induction on n, using slides 11 and 12)

14

Updating ˆ

Q

Convergence

ˆ

Q converges to Q. Consider case of deterministic world
where each hs, ai is visited infinitely often.

Proof: Define a full interval to be an interval during which
each hs, ai is visited. Will show that during each full in-
terval the largest error in ˆ

Q table is reduced by factor of
�

Let ˆ

Q

n

be table after n updates, and �

n

be the maximum
error in ˆ

Q

n

; i.e.,

�

n

= max

s,a

| ˆQ
n

(s, a)�Q(s, a)|

Let s0 = �(s, a)

15

Updating ˆ

Q

Convergence (cont’d)

For any table entry ˆ

Q

n

(s, a) updated on iteration n + 1,
error in the revised estimate ˆ

Q

n+1

(s, a) is

| ˆQ
n+1

(s, a)�Q(s, a)| = |(r + �max

a

0
ˆ

Q

n

(s

0
, a

0
))

�(r + �max

a

0
Q(s

0
, a

0
))|

= �|max

a

0
ˆ

Q

n

(s

0
, a

0
)�max

a

0
Q(s

0
, a

0
)|

(⇤) �max

a

0
| ˆQ

n

(s

0
, a

0
)�Q(s

0
, a

0
)|

(⇤⇤) �max

s

00
,a

0
| ˆQ

n

(s

00
, a

0
)�Q(s

00
, a

0
)|

= ��

n

(⇤) works since |max

a

f

1

(a)�max

a

f

2

(a)| max

a

|f
1

(a)�f

2

(a)|
(⇤⇤) works since max will not decrease

Also, ˆ

Q

0

(s, a) bounded and Q(s, a) bounded 8 s, a)
�

0

bounded

Thus after k full intervals, error �

k

�

0

Finally, each hs, ai visited infinitely often) number of in-
tervals infinite, so �

n

! 0 as n!1

16

Nondeterministic Case

What if reward and next state are non-deterministic?

We redefine V,Q by taking expected values:

V

⇡

(s) ⌘ E
h
r

t

+ �r

t+1

+ �

2

r

t+2

+ · · ·
i

= E

2

4
1X

i=0

�

i

r

t+i

3

5

Q(s, a) ⌘ E
⇥
r(s, a) + �V

⇤
(�(s, a))

⇤

= E
[

r(s, a)

]

+ �E
⇥
V

⇤
(�(s, a))

⇤

= E
[

r(s, a)

]

+ �

X

s

0
P (s

0 | s, a)V ⇤(s0)

= E
[

r(s, a)

]

+ �

X

s

0
P (s

0 | s, a) max

a

0
Q(s

0
, a

0
)

17

Nondeterministic Case
(cont’d)

Q learning generalizes to nondeterministic worlds

Alter training rule to

ˆ

Q

n

(s, a) (1�↵
n

)

ˆ

Q

n�1(s, a)+↵

n

[r+�max

a

0
ˆ

Q

n�1(s
0
, a

0
)]

where

↵

n

=

1

1+ visits

n

(s, a)

Can still prove convergence of ˆ

Q to Q, with this and other
forms of ↵

n

[Watkins and Dayan, 1992]

18

Temporal Difference Learning

Q learning: reduce error between successive Q ests.

Q estimate using one-step time difference:

Q

(1)

(s

t

, a

t

) ⌘ r

t

+ �max

a

ˆ

Q(s

t+1

, a)

Why not two steps?

Q

(2)

(s

t

, a

t

) ⌘ r

t

+ �r

t+1

+ �

2

max

a

ˆ

Q(s

t+2

, a)

Or n?

Q

(n)

(s

t

, a

t

) ⌘ r

t

+� r

t+1

+ · · ·+�

(n�1)
r

t+n�1+�

n

max

a

ˆ

Q(s

t+n

, a)

Blend all of these (0 � 1):

Q

�

(s

t

, a

t

) ⌘ (1� �)

h
Q

(1)

(s

t

, a

t

) + �Q

(2)

(s

t

, a

t

) + �

2

Q

(3)

(s

t

, a

t

) + · · ·
i

= r

t

+ �

h
(1� �)max

a

ˆ

Q(s

t+1

, a) + � Q

�

(s

t+1

, a

t+1

)

i

TD(�) algorithm uses above training rule

• Sometimes converges faster than Q learning

• converges for learning V

⇤ for any 0 � 1 (Dayan,
1992)

• Tesauro’s TD-Gammon uses this algorithm

19

Subtleties and Ongoing Research

• Replace ˆ

Q table with neural net or other generalizer
(example is hs, ai, label is ˆ

Q(s, a)); convergence proofs
break

• Handle case where state only partially observable

• Design optimal exploration strategies

• Extend to continuous action, state

• Learn and use ˆ

� : S ⇥A! S

• Relationship to dynamic programming (can solve op-
timally offline if �(s, a) & r(s, a) known)

• Reinf. learning in autonomous multi-agent environments
(competitive and cooperative)

– Now must attribute credit/blame over agents as
well as actions

– Utilizes game-theoretic techniques, based on agents’
protocols for interacting with environment and each
other

• More info: survey papers & new textbook

20

